Interferometric Synthetic Aperture Radar Applicability Analysis for Potential Landslide Identification in Steep Mountainous Areas with C/L Band Data
"> Figure 1
<p>Overview of the study area; (<b>a</b>) geographic location of the study area; (<b>b</b>) fault distribution; and (<b>c</b>) topography of the study area.</p> "> Figure 2
<p>(<b>a</b>) Temporal–spatial baseline of Sentinel-1; (<b>b</b>) temporal–spatial baseline of ALOS-2.</p> "> Figure 3
<p>Flowchart of the study.</p> "> Figure 4
<p>(<b>a</b>) Annual velocity map from ALOS-2; (<b>b</b>) annual velocity map from Sentinel-1.</p> "> Figure 5
<p>(<b>a</b>) Annual velocity map of potential landslides A21 to A23; (<b>b</b>–<b>g</b>) field verification images of potential landslides A21 to A23.</p> "> Figure 6
<p>(<b>a</b>) Annual velocity map of potential landslides A12; (<b>b</b>–<b>e</b>) field verification images of potential landslides A12.</p> "> Figure 7
<p>(<b>a</b>) Annual velocity map of potential landslides A17; (<b>b</b>–<b>d</b>) field verification images of potential landslides A17.</p> "> Figure 8
<p>Coherence distribution and comparison plot of ALOS-2 and Sentinel-1; (<b>a</b>,<b>b</b>) coherence map of interferogram 1; (<b>c</b>,<b>d</b>) coherence map of interferogram 2; (<b>a</b>,<b>c</b>) is from Sentinel-1, (<b>b</b>,<b>d</b>) are from ALOS-2; (<b>e</b>) coherence distribution of interferogram 1; and (<b>f</b>) coherence distribution of interferogram 2.</p> "> Figure 9
<p>Comparative analysis of time series result; (<b>a</b>,<b>c</b>,<b>e</b>) annual velocity map from ALOS-2; (<b>b</b>,<b>d</b>,<b>f</b>) annual velocity map from Sentinel-1.</p> "> Figure 10
<p>Geometric distortion comparison maps: (<b>a</b>) ALOS-2 geometric distortion distribution; (<b>b</b>) Sentinel-1 geometric distortion distribution; (<b>c</b>) geometric distortion classification; and (<b>d</b>) geometric distortion comparison.</p> ">
Abstract
:1. Introduction
2. Study Area and Datasets
2.1. Study Area
2.2. Datasets
3. Methodology
4. Results
4.1. Time Series Results by SBAS–InSAR
4.2. Field Verification
5. Discussion
5.1. Comparative Analysis of Coherence
5.2. Comparative Analysis of Time Series Result
5.3. Comparative Analysis of Geometric Distortion
6. Conclusions
- In terms of coherence distribution, ALOS-2 has a higher proportion of 57.4% in winter when coherence is above 0.6, which is much higher than that of Sentinel-1. In summer, the proportion of ALOS-2 satellites with coherence greater than 0.4 is 74.3%, which is significantly higher than the proportion of Sentinel-1. The pixel numbers with medium or higher coherence (>0.4) in ALOS-2 are 4.8 times higher than in Sentinel-1. The coherence distribution demonstrates the superiority of the ALOS-2 image in terms of the number of coherent points and the high coherence when applied to steep mountainous areas;
- Sentinel-1 tends to lose coherence when detecting large-scale displacement, whereas ALOS-2 maintains good coherence; this demonstrates that ALOS-2 is highly effective in identifying significant displacements. However, due to its relatively shorter wavelength, Sentinel-1 performs better than ALOS-2 in identifying potential landslides with subtle displacements;
- In the study area, the suitable observation coverage using ALOS-2 is slightly greater than that using Sentinel-1. When classifying the suitable observation areas into detectable areas and areas affected by others as non-detectable areas, the percentage of detectable areas using ALOS-2 is 46.64%, where no significant difference was observed between the two satellites.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ma, H.; Wu, Y.; Feng, J.; Xu, R.; Wu, S.; Wang, Q. Research on Recent GPS Crustal Deformation Characteristics in the Northeastern Edge of Qinghai-Tibet Plateau. J. Phys. Conf. Ser. 2017, 910, 012028. [Google Scholar] [CrossRef]
- Zhang, P. A review on active tectonics and deep crustal processes of the Western Sichuan region, eastern margin of the Tibetan Plateau. Tectonophysics 2013, 584, 7–22. [Google Scholar] [CrossRef]
- Del Soldato, M.; Bianchini, S.; Calcaterra, D.; De Vita, P.; Martire, D.D.; Tomás, R.; Casagli, N. A new approach for landslide-induced damage assessment. Geomat. Nat. Hazards Risk 2017, 8, 1524–1537. [Google Scholar] [CrossRef]
- Kang, Y.; Lu, Z.; Zhao, C.; Zhang, Q.; Kim, J.-W.; Niu, Y. Diagnosis of Xinmo (China) landslide based on interferometric synthetic aperture radar observation and modeling. Remote Sens. 2019, 11, 1846. [Google Scholar] [CrossRef]
- Li, X.; Kong, J.; Wang, Z. Landslide displacement prediction based on combining method with optimal weight. Nat. Hazards 2011, 61, 635–646. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, C.; Zhang, Q.; Yang, C.; Zhu, W. Heifangtai loess landslide type and failure mode analysis with ascending and descending Spot-mode TerraSAR-X datasets. Landslides 2019, 17, 205–215. [Google Scholar] [CrossRef]
- Schuster, R.L.; Highland, L.M. The Third Hans Cloos Lecture. Urban landslides: Socioeconomic impacts and overview of mitigative strategies. Bull. Eng. Geol. Environ. 2007, 66, 1–27. [Google Scholar] [CrossRef]
- Edelstein, W.N.; Madsen, S.N.; Moussessian, A.; Chen, C. Concepts and technologies for synthetic aperture radar from MEO and geosynchronous orbits. In Proceedings of the Fourth International Asia-Pacific Environmental Remote Sensing Symposium 2004: Remote Sensing of the Atmosphere, Ocean, Environment, and Space, Honolulu, HI, USA, 11 January 2005; Volume 5659, pp. 195–203. [Google Scholar]
- Liao, M.; Lin, H. Synthetic Aperture Radar Interferometry-Principle and Signal Processing; Surveying and Mapping Press: Beijing, China, 2003; p. 167. [Google Scholar]
- Zhang, L.; Dai, K.; Deng, J.; Ge, D.; Liang, R.; Li, W.; Xu, Q. Identifying potential landslides by Stacking-InSAR in southwestern China and its performance comparison with SBAS-InSAR. Remote Sens. 2021, 13, 3662. [Google Scholar] [CrossRef]
- Rosi, A.; Tofani, V.; Tanteri, L.; Tacconi Stefanelli, C.; Agostini, A.; Catani, F.; Casagli, N. The new landslide inventory of Tuscany (Italy) updated with PS-InSAR: Geomorphological features and landslide distribution. Landslides 2018, 15, 5–19. [Google Scholar] [CrossRef]
- Wasowski, J.; Bovenga, F. Investigating landslides and unstable slopes with satellite Multi temporal interferometry: Current issues and future perspectives. Eng. Geol. 2014, 174, 103–138. [Google Scholar] [CrossRef]
- Zhao, C.; Lu, Z.; Zhang, Q.; Fuente, J.d.l. Large-area landslide detection and monitoring with ALOS/PALSAR imagery data over Northern California and Southern Oregon, USA. Remote Sens. Environ. 2012, 124, 348–359. [Google Scholar] [CrossRef]
- Zhao, C.; Zhang, Q.; Yin, Y.; Lu, Z.; Yang, C.; Zhu, W.; Li, B. Pre-, co-, and post- rockslide analysis with ALOS/PALSAR imagery: A case study of the Jiweishan rockslide, China. Nat. Hazards Earth Syst. Sci. 2013, 13, 2851–2861. [Google Scholar] [CrossRef]
- Canuti, P.; Casagli, N.; Catani, F.; Falorni, G.; Farina, P. Integration of remote sensing techniques in different stages of landslide response. In Progress in Landslide Science; Sassa, K., Fukuoka, H., Wang, F., Wang, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 251–260. [Google Scholar] [CrossRef]
- Schlögel, R.; Doubre, C.; Malet, J.-P.; Masson, F. Landslide deformation monitoring with ALOS/PALSAR imagery: A D-InSAR geomorphological interpretation method. Geomorphology 2015, 231, 314–330. [Google Scholar] [CrossRef]
- Wicks Jr, C.; Thatcher, W.; Dzurisin, D. Migration of fluids beneath Yellowstone caldera inferred from satellite radar interferometry. Science 1998, 282, 458–462. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Mallorqui, J.J.; Iglesias, R.; Gili, J.A.; Corominas, J. Landslide monitoring using multi-temporal SAR interferometry with advanced persistent scatterers identification methods and super high-spatial resolution TerraSAR-X images. Remote Sens. 2018, 10, 921. [Google Scholar] [CrossRef]
- Esch, T.; Heldens, W.; Hirner, A.; Keil, M.; Marconcini, M.; Roth, A.; Zeidler, J.; Dech, S.; Strano, E. Breaking new ground in mapping human settlements from space–The Global Urban Footprint. ISPRS J. Photogramm. Remote Sens. 2017, 134, 30–42. [Google Scholar] [CrossRef]
- Kankaku, Y.; Suzuki, S.; Osawa, Y. ALOS-2 mission and development status. In Proceedings of the 2013 IEEE International Geoscience and Remote Sensing Symposium–IGARSS, Melbourne, Australia, 21–26 July 2013; pp. 2396–2399. [Google Scholar] [CrossRef]
- Lindsey, E.O.; Natsuaki, R.; Xu, X.; Shimada, M.; Hashimoto, M.; Melgar, D.; Sandwell, D.T. Line-of-sight displacement from ALOS-2 interferometry: Mw 7.8 Gorkha Earthquake and Mw 7.3 aftershock. Geophys. Res. Lett. 2015, 42, 6655–6661. [Google Scholar] [CrossRef]
- Ng, A.H.-M.; Ge, L.; Li, X.; Zhang, K. Monitoring ground deformation in Beijing, China with persistent scatterer SAR interferometry. J. Geod. 2012, 86, 375–392. [Google Scholar] [CrossRef]
- Wempen, J.M.; McCarter, M.K. Comparison of L-band and X-band differential interferometric synthetic aperture radar for mine subsidence monitoring in central Utah. Int. J. Min. Sci. Technol. 2017, 27, 159–163. [Google Scholar] [CrossRef]
- Werninghaus, R.; Buckreuss, S. The TerraSAR-X mission and system design. IEEE Trans. Geosci. Remote Sens. 2010, 48, 606–614. [Google Scholar] [CrossRef]
- Dong, J.; Zhang, L.; Li, M.; Yu, Y.; Liao, M.; Gong, J.; Luo, H. Measuring precursory movements of the recent Xinmo landslide in Mao County, China with Sentinel-1 and ALOS-2 PALSAR-2 datasets. Landslides 2017, 15, 135–144. [Google Scholar] [CrossRef]
- Lu, H.; Li, W.; Xu, Q.; Dong, X.; Dai, C.; Wang, D. Early detection of landslides in the upstream and downstream areas of the Baige Landslide, the Jinsha River based on optical remote sensing and InSAR technologies. Geomat. Inf. Sci. Wuhan Univ. 2019, 44, 1342–1354. [Google Scholar] [CrossRef]
- Herrera, G.; Gutiérrez, F.; García-Davalillo, J.; Guerrero, J.; Notti, D.; Galve, J.; Fernández-Merodo, J.; Cooksley, G. Multi-sensor advanced DInSAR monitoring of very slow landslides: The Tena Valley case study (Central Spanish Pyrenees). Remote Sens. Environ. 2013, 128, 31–43. [Google Scholar] [CrossRef]
- Zhang, L.; Liao, M.; Dong, J.; Xu, Q.; Gong, J. Early detection of landslide hazards in mountainous areas of west China using time series SAR interferometry: A case study of Danba, Sichuan. Geomat. Inf. Sci. Wuhan Univ. 2018, 43, 2039–2049. [Google Scholar] [CrossRef]
- Dai, K.; Deng, J.; Xu, Q.; Li, Z.; Shi, X.; Hancock, C.; Wen, N.; Zhang, L.; Zhuo, G. Interpretation and sensitivity analysis of the InSAR line of sight displacements in landslide measurements. GIScience Remote Sens. 2022, 59, 1226–1242. [Google Scholar] [CrossRef]
- Dai, K.; Li, Z.; Xu, Q.; Bürgmann, R.; Milledge, D.G.; Tomas, R.; Fan, X.; Zhao, C.; Liu, X.; Peng, J. Entering the era of earth observation-based landslide warning systems: A novel and exciting framework. IEEE Geosci. Remote Sens. Mag. 2020, 8, 136–153. [Google Scholar] [CrossRef]
- Dai, K.; Xu, Q.; Li, Z.; Tomás, R.; Fan, X.; Dong, X.; Li, W.; Zhou, Z.; Gou, J.; Ran, P. Post-disaster assessment of 2017 catastrophic Xinmo landslide (China) by spaceborne SAR interferometry. Landslides 2019, 16, 1189–1199. [Google Scholar] [CrossRef]
- Poursanidis, D.; Chrysoulakis, N. Remote Sensing, natural hazards and the contribution of ESA Sentinels missions. Remote Sens. Appl. Soc. Environ. 2017, 6, 25–38. [Google Scholar] [CrossRef]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The shuttle radar topography mission. Rev. Geophys. 2007, 45, RG2004. [Google Scholar] [CrossRef]
- Lanari, R.; Mora, O.; Manunta, M.; Mallorquí, J.J.; Berardino, P.; Sansosti, E. A small-baseline approach for investigating deformations on full-resolution differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1377–1386. [Google Scholar] [CrossRef]
- Mora, O.; Mallorqui, J.J.; Broquetas, A. Linear and nonlinear terrain deformation maps from a reduced set of interferometric SAR images. IEEE Trans. Geosci. Remote Sens. 2003, 41, 2243–2253. [Google Scholar] [CrossRef]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef]
- Dai, K.; Feng, Y.; Zhuo, G.; Tie, Y.; Deng, J.; Balz, T.; Li, Z. Applicability analysis of potential landslide identification by InSAR in alpine-canyon terrain—Case study on Yalong River. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 2110–2118. [Google Scholar] [CrossRef]
- Dai, K.; Zhang, L.; Song, C.; Li, Z.; Zhuo, G.; Xu, Q. Quantitative analysis of sentinel-1 imagery geometric distortion and their suitability along Sichuan-Tibet Railway. Geomat. Inf. Sci. Wuhan Univ. 2021, 46, 1450–1460. (In Chinese) [Google Scholar]
- Notti, D.; Herrera, G.; Bianchini, S.; Meisina, C.; García-Davalillo, J.C.; Zucca, F. A methodology for improving landslide PSI data analysis. Int. J. Remote Sens. 2014, 35, 2186–2214. [Google Scholar] [CrossRef]
- Notti, D.; Meisina, C.; Zucca, F.; Colombo, A. Models to predict Persistent Scatterers data distribution and their capacity to register movement along the slope. In Proceedings of the Fringe 2011 Workshop, Frascati, Italy, 19–23 September 2011; pp. 19–23. Available online: https://earth.esa.int/eogateway/documents/20142/37627/Models_predict_persistent_scatterers_data_distribution.pdf (accessed on 5 July 2023).
Parameters | Sentinel-1 | ALOS-2 |
---|---|---|
Orbit | Ascending | Ascending |
Band | C | L |
Polarization | VV | HH |
Wavelength (cm) | 5.6 | 23.6 |
Resolution (m) | 13.9/3.5 | 2.03/2.42 |
Revisit (day) | 12 | 14 |
Incident angle (°) | 41.696 | 36.18 |
Azimuth angle (°) | −12.77 | −16 |
Time span | 27 November 2017−17 October 2018 | 26 November 2017−14 October 2018 |
Number of images | 28 | 10 |
Parameter | Sentinel-1 | ALOS-2 |
---|---|---|
Method | SBAS–InSAR | SBAS–InSAR |
Multi-look | 4:1 | 3:3 |
Unwrapping | 0.2 | 0.2 |
Filtering Method and Parameters | Goldstein, 3−5 | Goldstein, 3−5 |
Unwrapping Method | Minimum Cost Flow | Minimum Cost Flow |
Satellite | Interferogram 1 (Winter) | Temporal Baseline (Day) | Normal Baseline (m) | Interferogram 2 (Summer) | Temporal Baseline (Day) | Normal Baseline (m) |
---|---|---|---|---|---|---|
Sentinel-1 | 27 November 2017–21 December 2017 | 24 | 102.654 | 14 May 2018–7 June 2018 | 24 | 25.317 |
ALOS-2 | 26 November 2017–24 December 2017 | 28 | 6.458 | 13 May 2018–10 June 2018 | 28 | 211.359 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, J.; Dai, K.; Liang, R.; Chen, L.; Wen, N.; Zheng, G.; Xu, H. Interferometric Synthetic Aperture Radar Applicability Analysis for Potential Landslide Identification in Steep Mountainous Areas with C/L Band Data. Remote Sens. 2023, 15, 4538. https://doi.org/10.3390/rs15184538
Deng J, Dai K, Liang R, Chen L, Wen N, Zheng G, Xu H. Interferometric Synthetic Aperture Radar Applicability Analysis for Potential Landslide Identification in Steep Mountainous Areas with C/L Band Data. Remote Sensing. 2023; 15(18):4538. https://doi.org/10.3390/rs15184538
Chicago/Turabian StyleDeng, Jin, Keren Dai, Rubing Liang, Lichuan Chen, Ningling Wen, Guang Zheng, and Hong Xu. 2023. "Interferometric Synthetic Aperture Radar Applicability Analysis for Potential Landslide Identification in Steep Mountainous Areas with C/L Band Data" Remote Sensing 15, no. 18: 4538. https://doi.org/10.3390/rs15184538
APA StyleDeng, J., Dai, K., Liang, R., Chen, L., Wen, N., Zheng, G., & Xu, H. (2023). Interferometric Synthetic Aperture Radar Applicability Analysis for Potential Landslide Identification in Steep Mountainous Areas with C/L Band Data. Remote Sensing, 15(18), 4538. https://doi.org/10.3390/rs15184538