A Hybrid 3D–2D Feature Hierarchy CNN with Focal Loss for Hyperspectral Image Classification
"> Figure 1
<p>Overview of the proposed feature extractor FE-HybridSN and entire framework FEHN-FL. Note that batch normalization (BN) and rectified linear unit (ReLU), following every convolutional operation, are omitted in the figure.</p> "> Figure 2
<p>Classification accuracies (%) by different methods with 10% training samples and different spatial sizes over SV dataset (the left one is <math display="inline"><semantics> <mrow> <mn>11</mn> <mo>×</mo> <mn>11</mn> </mrow> </semantics></math>, another one is <math display="inline"><semantics> <mrow> <mn>23</mn> <mo>×</mo> <mn>23</mn> </mrow> </semantics></math>).</p> "> Figure 3
<p>Classification maps for the IP dataset with 15% labeled training samples and <math display="inline"><semantics> <mrow> <mn>19</mn> <mo>×</mo> <mn>19</mn> </mrow> </semantics></math> spatial window. (<b>a</b>) Ground truth. (<b>b</b>) 2D-CNN [<a href="#B53-remotesensing-15-04439" class="html-bibr">53</a>]. (<b>c</b>) 3D-CNN [<a href="#B54-remotesensing-15-04439" class="html-bibr">54</a>]. (<b>d</b>) 3D2D-HybridSN [<a href="#B31-remotesensing-15-04439" class="html-bibr">31</a>]. (<b>e</b>) M3D-CNN [<a href="#B55-remotesensing-15-04439" class="html-bibr">55</a>]. (<b>f</b>) Proposed. In the subfigure (<b>b</b>–<b>f</b>), the right brackets encompass the overall classification accuracies, and the best classfication result is highlighted in bold.</p> "> Figure 4
<p>Classification maps for the UP dataset with 10% labeled training samples and <math display="inline"><semantics> <mrow> <mn>19</mn> <mo>×</mo> <mn>19</mn> </mrow> </semantics></math> spatial window. (<b>a</b>) Ground truth. (<b>b</b>) 2D-CNN [<a href="#B53-remotesensing-15-04439" class="html-bibr">53</a>]. (<b>c</b>) 3D-CNN [<a href="#B54-remotesensing-15-04439" class="html-bibr">54</a>]. (<b>d</b>) 3D2D-HybridSN [<a href="#B31-remotesensing-15-04439" class="html-bibr">31</a>]. (<b>e</b>) M3D-CNN [<a href="#B55-remotesensing-15-04439" class="html-bibr">55</a>]. (<b>f</b>) Proposed. In the subfigure (<b>b</b>–<b>f</b>), the right brackets encompass the overall classification accuracies, and the best classification result is highlighted in bold.</p> "> Figure 5
<p>Classification maps for the SV dataset with 5% labeled training samples and <math display="inline"><semantics> <mrow> <mn>19</mn> <mo>×</mo> <mn>19</mn> </mrow> </semantics></math> spatial window. (<b>a</b>) Ground truth. (<b>b</b>) 2D-CNN [<a href="#B53-remotesensing-15-04439" class="html-bibr">53</a>]. (<b>c</b>) 3D-CNN [<a href="#B54-remotesensing-15-04439" class="html-bibr">54</a>]. (<b>d</b>) 3D2D-HybridSN [<a href="#B31-remotesensing-15-04439" class="html-bibr">31</a>]. (<b>e</b>) M3D-CNN [<a href="#B55-remotesensing-15-04439" class="html-bibr">55</a>]. (<b>f</b>) Proposed. In the subfigure (<b>b</b>–<b>f</b>), the right brackets encompass the overall classification accuracies, and the best classification result is highlighted in bold.</p> "> Figure 5 Cont.
<p>Classification maps for the SV dataset with 5% labeled training samples and <math display="inline"><semantics> <mrow> <mn>19</mn> <mo>×</mo> <mn>19</mn> </mrow> </semantics></math> spatial window. (<b>a</b>) Ground truth. (<b>b</b>) 2D-CNN [<a href="#B53-remotesensing-15-04439" class="html-bibr">53</a>]. (<b>c</b>) 3D-CNN [<a href="#B54-remotesensing-15-04439" class="html-bibr">54</a>]. (<b>d</b>) 3D2D-HybridSN [<a href="#B31-remotesensing-15-04439" class="html-bibr">31</a>]. (<b>e</b>) M3D-CNN [<a href="#B55-remotesensing-15-04439" class="html-bibr">55</a>]. (<b>f</b>) Proposed. In the subfigure (<b>b</b>–<b>f</b>), the right brackets encompass the overall classification accuracies, and the best classification result is highlighted in bold.</p> ">
Abstract
:1. Introduction
- We fashion a novel five-layer FE-HybridSN of hyperspectral images for mining spatial context and spectral features;
- We apply the focal loss as the loss function to alleviate the class-imbalanced problem in the HSI classification task;
- We explore feature learning and classification of hyperspectral images using systematic experiments, and inspire new deep learning ideas for hyperspectral applications.
2. Methodology
2.1. Proposed Model
2.2. Focal Loss
2.2.1. Balanced Cross Entropy
2.2.2. Focal Loss Definition
3. Experiments
3.1. Description of Experiment Datasets
Indian Pines | University Of Pavia | Salinas | ||||||
---|---|---|---|---|---|---|---|---|
Color | Land-Cover type | Samples | Color | Land-Cover type | Samples | Color | Land-Cover type | Samples |
Background | 10,776 | Background | 164,624 | Background | 56,975 | |||
Alfalfa | 46 | Asphalt | 6631 | Brocoli-green-weeds-1 | 2009 | |||
Corn-notill | 1428 | Meadows | 18,649 | Brocoli-green-weeds-2 | 3726 | |||
Corn-min | 830 | Gravel | 2099 | Fallow | 1976 | |||
Corn | 237 | Trees | 3064 | Fallow-rough-plow | 1394 | |||
Pasture | 483 | Painted metal sheets | 1345 | Fallow-smooth | 2678 | |||
Trees | 730 | Bare Soil | 5029 | Stubble | 3959 | |||
Pasture-mowed | 28 | Bitumen | 1330 | Celery | 3579 | |||
Hay-windrowed | 478 | Self-Blocking Bricks | 3682 | Grapes-untrained | 11,271 | |||
Oats | 20 | Shadows | 947 | Soil-vineyard-develop | 6203 | |||
Soybean-notill | 972 | Corn-senesced-green-weeds | 3278 | |||||
Soybean-min | 2455 | Lettuce-romaine-4wk | 1068 | |||||
Soybean-clean | 593 | Lettuce-romaine-5wk | 1927 | |||||
Wheat | 205 | Lettuce-romaine-6wk | 916 | |||||
Woods | 1265 | Lettuce-romaine-7wk | 1070 | |||||
Bldgs-Grass-Trees-Drives | 386 | Vinyard-untrained | 7268 | |||||
Stone-Steel towers | 93 | Vinyard-vertical-trellis | 1807 | |||||
Total samples | 21,025 | Total samples | 207,400 | Total samples | 111,104 |
3.2. Experimental Configuration
- In the first experiment, the FE-HybridSN was compared with 2D-CNN [53], 3D-CNN [54], M3D-CNN [55], and 3D2D-HybridSN [31] classification methods using a training set accounting for 15% of the whole labeled dataset over IP, UP, and SV datasets. Additionally, we set the input spatial size to be (N could be 11, 15, 19, or 23) for the 2D-CNN [53], 3D-CNN [54], M3D-CNN [55], 3D2D-HybridSN [31], and FE-HybridSN, with N being the spatial size (i.e., patch size).
- In the second experiment, the FEHN-FL was compared with the four aforementioned methods. We designed four different patch sizes, i.e., . Here, we considered 10% of available labeled data for the IP, UP, and SV datasets.
- In the final experiment, we compared the convergence speed of different loss functions, including cross-entropy (CE) loss, multiclass hinge (MCH) loss, and focal loss, using training samples of the same scale on the Indian Pines (IP), University of Pavia (UP), and Salinas Valley (SV) datasets.
3.3. Experimental Results
3.3.1. Experiment 1
3.3.2. Experiment 2
3.3.3. Experiment 3
3.3.4. Experiment 4
4. Discussion
5. Conclusions
- Enhancing the model design to enable adaptive adjustment of decision boundaries based on different hyperspectral datasets. This will allow our method to better accommodate the unique characteristics and variations present in different datasets.
- Exploring and integrating advanced data augmentation techniques to tackle the issue of limited sample sizes. By generating synthetic data and applying transformational operations, we can effectively expand the training dataset and improve the model’s generalization capability.
- Investigating alternative strategies to mitigate or alleviate the impact of spatial size during the convolutional process. This includes exploring methods such as multiscale feature extraction and attention mechanisms to capture both local and global spatial information more effectively.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bioucas-Dias, J.M.; Plaza, A.; Camps-Valls, G.; Scheunders, P.; Nasrabadi, N.; Chanussot, J. Hyperspectral remote sensing data analysis and future challenges. IEEE Geosci. Remote Sens. Mag. 2013, 1, 6–36. [Google Scholar] [CrossRef]
- Keshava, N.; Mustard, J.F. Spectral unmixing. IEEE Signal Process. Mag. 2002, 19, 44–57. [Google Scholar] [CrossRef]
- Bioucas-Dias, J.M.; Plaza, A. An overview on hyperspectral unmixing: Geometrical, statistical, and sparse regression based approaches. In Proceedings of the 2011 IEEE International Geoscience and Remote Sensing Symposium, Vancouver, BC, Canada, 24–29 July 2011; pp. 1135–1138. [Google Scholar]
- Ye, Q.; Li, Z.; Fu, L.; Zhang, Z.; Yang, W.; Yang, G. Nonpeaked discriminant analysis for data representation. IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 3818–3832. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.; Li, Z.; Ye, Q.; Yin, H.; Liu, Q.; Chen, X.; Fan, X.; Yang, W.; Yang, G. Learning Robust Discriminant Subspace Based on Joint L2,p -and L2,s -Norm Distance Metrics. IEEE Trans. Neural Netw. Learn. Syst. 2020, 33, 130–144. [Google Scholar] [CrossRef]
- He, C.; Sun, L.; Huang, W.; Zhang, J.; Zheng, Y.; Jeon, B. TSLRLN: Tensor subspace low-rank learning with non-local prior for hyperspectral image mixed denoising. Signal Process. 2021, 184, 108060. [Google Scholar] [CrossRef]
- Huang, J.; Liu, K.; Li, X. Locality constrained low rank representation and automatic dictionary learning for hyperspectral anomaly detection. Remote Sens. 2022, 14, 1327. [Google Scholar] [CrossRef]
- Bi, K.; Xiao, S.; Gao, S.; Zhang, C.; Huang, N.; Niu, Z. Estimating vertical chlorophyll concentrations in maize in different health states using hyperspectral LiDAR. IEEE Trans. Geosci. Remote Sens. 2020, 58, 8125–8133. [Google Scholar] [CrossRef]
- Liu, Y.; Li, M.; Wang, S.; Wu, T.; Jiang, W.; Liu, Z. Identification of heat damage in imported soybeans based on hyperspectral imaging technology. J. Sci. Food Agric. 2020, 100, 1775–1786. [Google Scholar] [CrossRef]
- Wang, W.; Qian, Y.; Tang, Y.Y. Hypergraph-regularized sparse NMF for hyperspectral unmixing. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 681–694. [Google Scholar] [CrossRef]
- Shimoni, M.; Haelterman, R.; Perneel, C. Hypersectral imaging for military and security applications: Combining myriad processing and sensing techniques. IEEE Geosci. Remote Sens. Mag. 2019, 7, 101–117. [Google Scholar] [CrossRef]
- Barberio, M.; Benedicenti, S.; Pizzicannella, M.; Felli, E.; Collins, T.; Jansen-Winkeln, B.; Marescaux, J.; Viola, M.G.; Diana, M. Intraoperative guidance using hyperspectral imaging: A review for surgeons. Diagnostics 2021, 11, 2066. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Qian, J. Hyperspectral image classification via multiscale joint collaborative representation with locally adaptive dictionary. IEEE Geosci. Remote Sens. Lett. 2017, 15, 112–116. [Google Scholar] [CrossRef]
- Camps-Valls, G.; Gomez-Chova, L.; Muñoz-Marí, J.; Vila-Francés, J.; Calpe-Maravilla, J. Composite kernels for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 2006, 3, 93–97. [Google Scholar] [CrossRef]
- Gao, Q.; Lim, S.; Jia, X. Hyperspectral image classification using joint sparse model and discontinuity preserving relaxation. IEEE Geosci. Remote Sens. Lett. 2017, 15, 78–82. [Google Scholar] [CrossRef]
- Hu, P.; Liu, X.; Cai, Y.; Cai, Z. Band selection of hyperspectral images using multiobjective optimization-based sparse self-representation. IEEE Geosci. Remote Sens. Lett. 2018, 16, 452–456. [Google Scholar] [CrossRef]
- Tu, B.; Zhang, X.; Kang, X.; Zhang, G.; Wang, J.; Wu, J. Hyperspectral image classification via fusing correlation coefficient and joint sparse representation. IEEE Geosci. Remote Sens. Lett. 2018, 15, 340–344. [Google Scholar] [CrossRef]
- Dundar, T.; Ince, T. Sparse representation-based hyperspectral image classification using multiscale superpixels and guided filter. IEEE Geosci. Remote Sens. Lett. 2018, 16, 246–250. [Google Scholar] [CrossRef]
- Gao, P.; Wang, J.; Zhang, H.; Li, Z. Boltzmann entropy-based unsupervised band selection for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 2018, 16, 462–466. [Google Scholar] [CrossRef]
- Landgrebe, D. Hyperspectral image data analysis. IEEE Signal Process. Mag. 2002, 19, 17–28. [Google Scholar] [CrossRef]
- Chen, Y.; Jiang, H.; Li, C.; Jia, X.; Ghamisi, P. Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6232–6251. [Google Scholar] [CrossRef]
- Zhang, M.; Li, W.; Du, Q. Collaborative classification of hyperspectral and visible images with convolutional neural network. J. Appl. Remote Sens. 2017, 11, 042607. [Google Scholar] [CrossRef]
- Hamouda, M.; Ettabaa, K.S.; Bouhlel, M.S. Smart feature extraction and classification of hyperspectral images based on convolutional neural networks. IET Image Process. 2020, 14, 1999–2005. [Google Scholar] [CrossRef]
- An, J.; Zhang, X.; Jiao, L. Dimensionality reduction based on group-based tensor model for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1497–1501. [Google Scholar] [CrossRef]
- Yu, X.; Ding, R.; Shao, J.; Li, X. Hyperspectral Remote Sensing Image Feature Representation Method Based on CAE-H with Nuclear Norm Constraint. Electronics 2021, 10, 2667. [Google Scholar] [CrossRef]
- Li, W.; Chen, C.; Zhang, M.; Li, H.; Du, Q. Data augmentation for hyperspectral image classification with deep CNN. IEEE Geosci. Remote Sens. Lett. 2018, 16, 593–597. [Google Scholar] [CrossRef]
- Mei, S.; Ji, J.; Bi, Q.; Hou, J.; Du, Q.; Li, W. Integrating spectral and spatial information into deep convolutional neural networks for hyperspectral classification. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 5067–5070. [Google Scholar]
- Paoletti, M.E.; Haut, J.M.; Plaza, J.; Plaza, A. A new deep convolutional neural network for fast hyperspectral image classification. ISPRS J. Photogramm. Remote Sens. 2018, 145, 120–147. [Google Scholar] [CrossRef]
- Li, Y.; Xie, W.; Li, H. Hyperspectral image reconstruction by deep convolutional neural network for classification. Pattern Recognit. 2017, 63, 371–383. [Google Scholar] [CrossRef]
- Yang, J.; Zhao, Y.Q.; Chan, J.C.W.; Xiao, L. A multi-scale wavelet 3D-CNN for hyperspectral image super-resolution. Remote Sens. 2019, 11, 1557. [Google Scholar] [CrossRef]
- Roy, S.K.; Krishna, G.; Dubey, S.R.; Chaudhuri, B.B. HybridSN: Exploring 3-D–2-D CNN feature hierarchy for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 2019, 17, 277–281. [Google Scholar] [CrossRef]
- Liu, K.; Zhong, P.; Zheng, Y.; Yang, K.; Liu, M. P_VggNet: A convolutional neural network (CNN) with pixel-based attention map. PLoS ONE 2018, 13, e0208497. [Google Scholar] [CrossRef]
- Zhong, Z.; Li, J.; Luo, Z.; Chapman, M. Spectral–spatial residual network for hyperspectral image classification: A 3-D deep learning framework. IEEE Trans. Geosci. Remote Sens. 2017, 56, 847–858. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. Adv. Neural Inf. Process. Syst. 2017, 30, 5998–6008. [Google Scholar]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929. [Google Scholar]
- Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 10012–10022. [Google Scholar]
- Liu, B.; Liu, Y.; Zhang, W.; Tian, Y.; Kong, W. Spectral Swin Transformer Network for Hyperspectral Image Classification. Remote Sens. 2023, 15, 3721. [Google Scholar] [CrossRef]
- Ayas, S.; Tunc-Gormus, E. SpectralSWIN: A spectral-swin transformer network for hyperspectral image classification. Int. J. Remote Sens. 2022, 43, 4025–4044. [Google Scholar] [CrossRef]
- Zhao, E.; Guo, Z.; Li, Y.; Zhang, D. SaaFormer: Spectral-spatial Axial Aggregation Transformer for Hyperspectral Image Classification. arXiv 2023, arXiv:2306.16759. [Google Scholar]
- Wang, Y.; Duan, H. Classification of Hyperspectral Images by SVM Using a Composite Kernel by Employing Spectral, Spatial and Hierarchical Structure Information. Remote Sens. 2018, 10, 441. [Google Scholar] [CrossRef]
- Haut, J.M.; Paoletti, M.E.; Plaza, J.; Plaza, A.; Li, J. Visual attention-driven hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2019, 57, 8065–8080. [Google Scholar] [CrossRef]
- Roy, S.K.; Manna, S.; Song, T.; Bruzzone, L. Attention-based adaptive spectral–spatial kernel ResNet for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2020, 59, 7831–7843. [Google Scholar] [CrossRef]
- Zhou, B.; Cui, Q.; Wei, X.S.; Chen, Z.M. Bbn: Bilateral-branch network with cumulative learning for long-tailed visual recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 9719–9728. [Google Scholar]
- Ochal, M.; Patacchiola, M.; Storkey, A.; Vazquez, J.; Wang, S. Few-shot learning with class imbalance. arXiv 2021, arXiv:2101.02523. [Google Scholar] [CrossRef]
- Kubat, M.; Matwin, S. Addressing the curse of imbalanced training sets: One-sided selection. In Proceedings of the Fourteenth International Conference on Machine Learning (ICML 1997), Nashville, TN, USA, 8–12 July 1997; Volume 97, p. 179. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Ji, S.; Xu, W.; Yang, M.; Yu, K. 3D convolutional neural networks for human action recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 35, 221–231. [Google Scholar] [CrossRef] [PubMed]
- Huang, C. ReLU networks are universal approximators via piecewise linear or constant functions. Neural Comput. 2020, 32, 2249–2278. [Google Scholar] [CrossRef]
- Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988. [Google Scholar]
- Audebert, N.; Le Saux, B.; Lefèvre, S. Deep learning for classification of hyperspectral data: A comparative review. IEEE Geosci. Remote Sens. Mag. 2019, 7, 159–173. [Google Scholar] [CrossRef]
- Tuia, D.; Persello, C.; Bruzzone, L. Domain adaptation for the classification of remote sensing data: An overview of recent advances. IEEE Geosci. Remote Sens. Mag. 2016, 4, 41–57. [Google Scholar] [CrossRef]
- Landgrebe, D.A. Signal Theory Methods in Multispectral Remote Sensing; John Wiley & Sons: Hoboken, NJ, USA, 2003; Volume 24. [Google Scholar]
- Makantasis, K.; Karantzalos, K.; Doulamis, A.; Doulamis, N. Deep supervised learning for hyperspectral data classification through convolutional neural networks. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 4959–4962. [Google Scholar]
- Hamida, A.B.; Benoit, A.; Lambert, P.; Amar, C.B. 3-D deep learning approach for remote sensing image classification. IEEE Trans. Geosci. Remote Sens. 2018, 56, 4420–4434. [Google Scholar] [CrossRef]
- He, M.; Li, B.; Chen, H. Multi-scale 3D deep convolutional neural network for hyperspectral image classification. In Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; pp. 3904–3908. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
Layer-Index | Output Shape | # Parameter |
---|---|---|
Input-0 | (1, 15, 15, 15) | - |
Conv3d-1 | (8, 9, 13, 13) | 512 |
BatchNorm3d-2 | (8, 9, 13, 13) | 16 |
ReLU-3 | (8, 9, 13, 13) | 0 |
Conv3d-4 | (16, 5, 11, 11) | 5776 |
BatchNorm3d-5 | (16, 5, 11, 11) | 32 |
ReLU-6 | (16, 5, 11, 11) | 0 |
Conv3d-7 | (32, 3, 9, 9) | 13,856 |
BatchNorm3d-8 | (32, 3, 9, 9) | 64 |
ReLU-9 | (16, 5, 11, 11) | 0 |
Conv2d-10 | (128, 7, 7) | 110,720 |
BatchNorm2d-11 | (128, 7, 7) | 256 |
ReLU-12 | (128, 7, 7) | 0 |
Conv2d-13 | (256, 5, 5) | 295,168 |
BatchNorm2d-14 | (256, 5, 5) | 512 |
ReLU-15 | (256, 5, 5) | 0 |
Linear-16 | (256) | 1,638,656 |
Dropout-17 | (256) | 0 |
Linear-18 | (128) | 32,896 |
Dropout-19 | (128) | 0 |
Linear-20 | (16) | 2064 |
Total parameters: 2,100,528 | ||
Trainable parameters: 2,100,528 | ||
Nontrainable parameters: 0 |
IP | UP | SV | |
---|---|---|---|
Epochs | 150 | ||
Optimizer | Adam [56] | ||
Batch size | 53 | 128 | 128 |
Learning rate (LR) | 1 × 10−3 | ||
and | 1 and 1 × 10−6 |
Methods | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
OA | AA | Kappa | OA | AA | Kappa | OA | AA | Kappa | OA | AA | Kappa | |
2D-CNN [53] | 88.38 | 84.82 | 86.7 | 98.28 | 98.25 | 98.03 | 93.42 | 90.34 | 92.48 | 95.98 | 95.85 | 95.41 |
3D-CNN [54] | 96.75 | 96.18 | 96.29 | 98.82 | 98.96 | 98.65 | 98.55 | 98.25 | 98.35 | 98.24 | 98.42 | 98.00 |
3D2D-HybridSN [31] | 97.23 | 97.01 | 96.84 | 98.55 | 98.56 | 98.39 | 98.60 | 98.52 | 98.40 | 98.21 | 98.41 | 98.30 |
M3D-CNN [55] | 96.90 | 95.29 | 96.46 | 98.07 | 96.63 | 97.80 | 98.30 | 97.97 | 98.06 | 98.35 | 95.54 | 98.12 |
FE-HybridSN | 97.41 | 97.85 | 97.04 | 98.85 | 99.02 | 98.71 | 98.65 | 98.56 | 98.46 | 98.77 | 99.11 | 98.60 |
Methods | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
OA | AA | Kappa | OA | AA | Kappa | OA | AA | Kappa | OA | AA | Kappa | |
2D-CNN [53] | 95.71 | 93.75 | 94.32 | 99.15 | 98.79 | 98.87 | 98.36 | 97.23 | 97.83 | 95.80 | 94.08 | 94.45 |
3D-CNN [54] | 98.99 | 98.43 | 98.66 | 99.53 | 99.28 | 99.38 | 99.53 | 99.19 | 99.38 | 99.49 | 98.90 | 99.32 |
3D2D-HybridSN [31] | 99.40 | 99.02 | 99.20 | 99.38 | 99.20 | 99.17 | 99.59 | 99.37 | 99.46 | 99.70 | 99.37 | 99.60 |
M3D-CNN [55] | 99.08 | 98.17 | 98.78 | 99.51 | 99.15 | 99.46 | 99.57 | 99.18 | 99.44 | 99.65 | 99.13 | 99.54 |
FE-HybridSN | 99.47 | 99.13 | 99.30 | 99.61 | 99.40 | 99.48 | 99.73 | 99.50 | 99.64 | 99.73 | 99.37 | 99.64 |
Training Ratio | Methods | SV | UP | ||||
---|---|---|---|---|---|---|---|
OA | AA | Kappa | OA | AA | Kappa | ||
15% | 2D-CNN [53] | 98.91 | 99.42 | 98.78 | 98.43 | 97.48 | 97.91 |
3D-CNN [54] | 99.90 | 99.88 | 99.89 | 99.69 | 99.44 | 99.59 | |
3D2D-HybridSN [31] | 99.90 | 99.88 | 99.89 | 99.32 | 99.09 | 99.09 | |
FE-HybridSN | 99.91 | 99.89 | 99.90 | 99.73 | 99.66 | 99.64 | |
10% | 2D-CNN [53] | 98.79 | 99.39 | 98.65 | 97.21 | 96.42 | 96.30 |
3D-CNN [54] | 99.77 | 99.87 | 99.74 | 99.34 | 99.06 | 99.12 | |
3D2D-HybridSN [31] | 99.82 | 99.85 | 99.80 | 99.71 | 99.60 | 99.62 | |
FE-HybridSN | 99.85 | 99.92 | 99.83 | 99.84 | 99.77 | 99.79 | |
5% | 2D-CNN [53] | 98.21 | 99.02 | 98.01 | 96.05 | 95.05 | 94.77 |
3D-CNN [54] | 98.92 | 99.18 | 98.80 | 99.03 | 98.48 | 98.71 | |
3D2D-HybridSN [31] | 98.48 | 98.46 | 98.31 | 99.21 | 98.97 | 98.95 | |
FE-HybridSN | 98.92 | 99.22 | 99.45 | 99.45 | 99.17 | 99.27 |
Training Ratio | Methods | SV | UP | ||||
---|---|---|---|---|---|---|---|
OA | AA | Kappa | OA | AA | Kappa | ||
15% | 2D-CNN [53] + CE | 99.95 | 99.89 | 99.94 | 99.09 | 98.71 | 98.80 |
3D-CNN [54] + CE | 99.99 | 99.99 | 99.99 | 99.91 | 99.84 | 99.88 | |
3D2D-HybridSN [31] + CE | 99.99 | 99.99 | 99.99 | 99.95 | 99.91 | 99.94 | |
M3D-CNN [55] + CE | 99.99 | 99.99 | 99.99 | 99.87 | 99.79 | 99.82 | |
FE-HybridSN + CE | 99.97 | 99.95 | 99.98 | 99.93 | 99.91 | 99.91 | |
FE-HybridSN + MCH | 99.96 | 99.93 | 99.96 | 99.24 | 99.01 | 98.99 | |
Proposed | 99.99 | 99.99 | 99.99 | 99.95 | 99.95 | 99.94 | |
10% | 2D-CNN [53] + CE | 99.89 | 99.89 | 99.88 | 98.14 | 97.12 | 97.54 |
3D-CNN [54] + CE | 99.94 | 99.94 | 99.94 | 99.74 | 99.21 | 99.65 | |
3D2D-HybridSN [31] + CE | 99.94 | 99.93 | 99.93 | 99.89 | 99.77 | 99.84 | |
M3D-CNN [55] + CE | 99.93 | 99.90 | 99.92 | 99.83 | 99.54 | 99.77 | |
FE-HybridSN + CE | 99.96 | 99.94 | 99.93 | 99.89 | 99.79 | 99.83 | |
FE-HybridSN + MCH | 99.85 | 99.94 | 99.84 | 99.72 | 99.53 | 99.64 | |
Proposed | 99.96 | 99.95 | 99.96 | 99.89 | 99.79 | 99.85 | |
5% | 2D-CNN [53] + CE | 98.86 | 99.17 | 98.85 | 95.80 | 94.08 | 94.45 |
3D-CNN [54] + CE | 99.68 | 99.81 | 99.75 | 99.49 | 98.90 | 99.32 | |
3D2D-HybridSN [31] + CE | 99.64 | 99.79 | 99.60 | 99.70 | 99.37 | 99.60 | |
M3D-CNN [55] + CE | 99.60 | 99.03 | 99.47 | 99.65 | 99.13 | 99.54 | |
FE-HybridSN + CE | 99.34 | 99.67 | 99.27 | 99.73 | 99.37 | 99.64 | |
FE-HybridSN + MCH | 99.55 | 99.75 | 99.50 | 99.36 | 98.61 | 99.15 | |
Proposed | 99.75 | 99.88 | 99.79 | 99.75 | 99.43 | 99.65 |
Focal Loss (min) | CE Loss (min) | MCH (min) | |
---|---|---|---|
IP | 4.12 | 4.13 | 4.22 |
UP | 14.93 | 15.35 | 15.01 |
SV | 18.82 | 21.77 | 19.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, X.; Yu, X.; Wang, Y.; Yang, C.; Sun, Y. A Hybrid 3D–2D Feature Hierarchy CNN with Focal Loss for Hyperspectral Image Classification. Remote Sens. 2023, 15, 4439. https://doi.org/10.3390/rs15184439
Wen X, Yu X, Wang Y, Yang C, Sun Y. A Hybrid 3D–2D Feature Hierarchy CNN with Focal Loss for Hyperspectral Image Classification. Remote Sensing. 2023; 15(18):4439. https://doi.org/10.3390/rs15184439
Chicago/Turabian StyleWen, Xiaoyan, Xiaodong Yu, Yufan Wang, Cuiping Yang, and Yu Sun. 2023. "A Hybrid 3D–2D Feature Hierarchy CNN with Focal Loss for Hyperspectral Image Classification" Remote Sensing 15, no. 18: 4439. https://doi.org/10.3390/rs15184439