Remote Sensing Classification of Offshore Seaweed Aquaculture Farms on Sample Dataset Amplification and Semantic Segmentation Model
<p>Location of the study area: (<b>a</b>) Dalian; (<b>b</b>) study area A, Lvshunkou offshore aquaculture area; (<b>c</b>) study area B, Jinzhou offshore aquaculture area.</p> "> Figure 2
<p>Workflow of the remote sensing classification of offshore seaweed aquaculture farms on sample dataset amplification and semantic segmentation model.</p> "> Figure 3
<p>Structure diagram of the improved DCGAN generator network. The generator network has a total of five layers, including one fully linked layer (first cuboid) and four convolutional layers (last four cuboids). The input is a 100-dimensional random noise vector that obeys a normal distribution, and the output is an image of 32 × 32 × 10.</p> "> Figure 4
<p>Structure diagram of the improved DCGAN discriminator network. The discriminator network has a total of five layers, including four convolutional layers (first four cuboids) and one fully linked layer (fifth cuboid). The input is an image of 32 × 32 × 10, and the output is a single predictive value (probability that the image of the input discriminator is identically distributed with the dataset image).</p> "> Figure 5
<p>Structure of the UNet aquaculture classification model, consisting of three parts: encoder (left column), converter (bottom line and “skip connection”), and decoder (right column).</p> "> Figure 6
<p>Overview of DeepLabv3 architecture consisting of three stages: basic network, atrous spatial pyramid pooling (ASPP) module, and post-processing stage.</p> "> Figure 7
<p>Structure of the SegNet aquaculture classification model. The model comprises two steps: an encoding process that compresses the images, followed by a decoding process that restores the images.</p> "> Figure 8
<p>Comparison of the NDAWI values of the training samples and NDAWI values of the generated samples: (<b>a</b>) kelp; (<b>b</b>) wakame; (<b>c</b>) seawater in the Lvshunkou offshore aquaculture area.</p> "> Figure 9
<p>(<b>a</b>) Sample images of part of the Lvshunkou offshore aquaculture area and (<b>b</b>) their corresponding labels.</p> "> Figure 10
<p>The classification results of the (<b>a</b>) UNet, (<b>b</b>) DeepLabv3, and (<b>c</b>) SegNet models based on the amplified NDAWI dataset in the Lvshunkou offshore aquaculture area (large) and a detailed comparison (small).</p> "> Figure 10 Cont.
<p>The classification results of the (<b>a</b>) UNet, (<b>b</b>) DeepLabv3, and (<b>c</b>) SegNet models based on the amplified NDAWI dataset in the Lvshunkou offshore aquaculture area (large) and a detailed comparison (small).</p> "> Figure 11
<p>Classification result maps of aquaculture use before and after sample amplification in the Lvshunkou offshore aquaculture area (<b>a</b>,<b>e</b>) and detailed comparison maps (<b>b</b>,<b>f</b>;<b>c</b>,<b>g</b>;<b>d</b>,<b>h</b>).</p> "> Figure 12
<p>The classification results of the (<b>a</b>) UNet, (<b>b</b>) DeepLabv3, and (<b>c</b>) SegNet models based on the amplified NDAWI dataset in the Jinzhou offshore aquaculture area (large) and a detailed comparison(s) (small).</p> "> Figure 13
<p>Classification result maps of aquaculture use before and after sample amplification in the Jinzhou offshore aquaculture area (<b>a</b>,<b>e</b>) and detailed comparison maps (<b>b</b>,<b>f</b>;<b>c</b>,<b>g</b>;<b>d</b>,<b>h</b>).</p> ">
Abstract
:1. Introduction
2. Materials
2.1. Study Area
2.2. Data
3. Methods
3.1. Research Route
3.2. Calculation of Spectral Characteristic Index
3.3. Sample Amplification Based on Improved DCGAN
3.3.1. Improvement of DCGAN
- Improvement of the Loss Function
- Improvement of the Network Structure
3.3.2. Amplification of NDAWI Dataset Based on Improved DCGAN
3.4. Construction of Classification Model for Offshore Seaweed Aquaculture Farms
3.4.1. Classification Model of Marine Seaweed Aquaculture Based on UNet
3.4.2. Classification Model of Marine Seaweed Aquaculture Based on DeepLabv3
3.4.3. Classification Model of Marine Seaweed Aquaculture Based on SegNet
3.5. Accuracy Assessment
4. Results
4.1. Amplification Comparison of the NDAWI Dataset Based on the Improved DCGAN
4.2. Selection and Analysis of the Before-and-After DCGAN Aquaculture Sea Classification Models
4.3. Classification of Aquaculture Farms Based on UNet Model
5. Discussion
5.1. Demonstration of the Model’s Application
5.2. Limitations and Prospects
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ottinger, M.; Clauss, K.; Kuenzer, C. Aquaculture: Relevance, Distribution, Impacts and Spatial Assessments—A Review. Ocean Coast. Manag. 2016, 119, 244–266. [Google Scholar] [CrossRef]
- Liu, W.; Zhai, W.; Fan, S.; Cao, Y.; Guo, L. Current situation assessment and policy suggestion of the sea use for aquaculture all over the country. Ocean Dev. Manag. 2022, 39, 89–93. [Google Scholar] [CrossRef]
- Gao, Q.; Zhang, G.; Dong, S. Reviews on cage-culture ecology. Period. Ocean Univ. China 2019, 49, 7–17. [Google Scholar] [CrossRef]
- Ministry of Agriculture and Rural Affairs of the People’s Republic of China. Several opinions of the Ministry of Agriculture and Rural Affairs on accelerating the green development of the aquaculture industry. Announc. Minist. Agric. Rural Aff. People’s Repub. China 2019, 24–28. [Google Scholar]
- Kramer, S.J.; Siegel, D.A.; Maritorena, S.; Catlett, D. Modeling Surface Ocean Phytoplankton Pigments from Hyperspectral Remote Sensing Reflectance on Global Scales. Remote Sens. Environ. 2022, 270, 112879. [Google Scholar] [CrossRef]
- Mohseni, F.; Saba, F.; Mirmazloumi, S.M.; Amani, M.; Mokhtarzade, M.; Jamali, S.; Mahdavi, S. Ocean Water Quality Monitoring Using Remote Sensing Techniques: A Review. Mar. Environ. Res. 2022, 180, 105701. [Google Scholar] [CrossRef]
- Salgado-Hernanz, P.M.; Bauzà, J.; Alomar, C.; Compa, M.; Romero, L.; Deudero, S. Assessment of Marine Litter through Remote Sensing: Recent Approaches and Future Goals. Mar. Pollut. Bull. 2021, 168, 112347. [Google Scholar] [CrossRef]
- Alexandridis, T.K.; Topaloglou, C.A.; Lazaridou, E.; Zalidis, G.C. The Performance of Satellite Images in Mapping Aquacultures. Ocean Coast. Manag. 2008, 51, 638–644. [Google Scholar] [CrossRef]
- Sun, X.; Su, F.; Zhou, C.; Xue, Z. Analyses on spatial-temporal changes in aquaculture land in coastal areas of the Pearl River Estuarine. Resour. Sci. 2010, 32, 71–77. [Google Scholar]
- Virdis, S.G.P. An Object-Based Image Analysis Approach for Aquaculture Ponds Precise Mapping and Monitoring: A Case Study of Tam Giang-Cau Hai Lagoon, Vietnam. Environ. Monit. Assess. 2014, 186, 117–133. [Google Scholar] [CrossRef]
- Ottinger, M.; Clauss, K.; Kuenzer, C. Large-Scale Assessment of Coastal Aquaculture Ponds with Sentinel-1 Time Series Data. Remote Sens. 2017, 9, 440. [Google Scholar] [CrossRef]
- Wang, M.; Cui, Q.; Wang, J.; Ming, D.; Lv, G. Raft Cultivation Area Extraction from High Resolution Remote Sensing Imagery by Fusing Multi-Scale Region-Line Primitive Association Features. ISPRS J. Photogramm. Remote Sens. 2017, 123, 104–113. [Google Scholar] [CrossRef]
- Duan, Y.; Li, X.; Zhang, L.; Liu, W.; Liu, S.; Chen, D.; Ji, H. Detecting Spatiotemporal Changes of Large-Scale Aquaculture Ponds Regions over 1988–2018 in Jiangsu Province, China Using Google Earth Engine. Ocean Coast. Manag. 2020, 188, 105144. [Google Scholar] [CrossRef]
- Kurekin, A.A.; Miller, P.I.; Avillanosa, A.L.; Sumeldan, J.D.C. Monitoring of Coastal Aquaculture Sites in the Philippines through Automated Time Series Analysis of Sentinel-1 SAR Images. Remote Sens. 2022, 14, 2862. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Ma, L.; Liu, Y.; Zhang, X.; Ye, Y.; Yin, G.; Johnson, B.A. Deep Learning in Remote Sensing Applications: A Meta-Analysis and Review. ISPRS J. Photogramm. Remote Sens. 2019, 152, 166–177. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, X.; Wang, Z.; Lu, C. Extracting ralt aquaculture areas in Sanduao from high-resolution remote sensing images using RCF. Haiyang Xuebao 2019, 41, 119–130. [Google Scholar]
- Zheng, Z.; Fan, H.; Wang, J.; Wu, Y.; Wang, B.; Huang, T. An improved double-branch network method for intelligently extracting marine cage culture area. Remote Sens. Land Resour. 2020, 32, 120–129. [Google Scholar]
- Sui, B.; Jiang, T.; Zhang, Z.; Pan, X.; Liu, C. A Modeling Method for Automatic Extraction of Offshore Aquaculture Zones Based on Semantic Segmentation. ISPRS Int. J. Geo-Inf. 2020, 9, 145. [Google Scholar] [CrossRef]
- Aggarwal, C.C. Neural Networks and Deep Learning: A Textbook; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; ISBN 978-3-319-94462-3. [Google Scholar]
- Reichstein, M.; Camps-Valls, G.; Stevens, B.; Jung, M.; Denzler, J.; Carvalhais, N. Prabhat Deep Learning and Process Understanding for Data-Driven Earth System Science. Nature 2019, 566, 195–204. [Google Scholar] [CrossRef]
- Roh, Y.; Heo, G.; Whang, S.E. A Survey on Data Collection for Machine Learning: A Big Data—AI Integration Perspective. IEEE Trans. Knowl. Data Eng. 2021, 33, 1328–1347. [Google Scholar] [CrossRef]
- Hao, X.; Liu, L.; Yang, R.; Yin, L.; Zhang, L.; Li, X. A Review of Data Augmentation Methods of Remote Sensing Image Target Recognition. Remote Sens. 2023, 15, 827. [Google Scholar] [CrossRef]
- Lalitha, V.; Latha, B. A Review on Remote Sensing Imagery Augmentation Using Deep Learning. Mater. Today Proc. 2022, 62, 4772–4778. [Google Scholar] [CrossRef]
- Feng, Q.; Chen, B.; Li, G.; Yao, X.; Gao, B.; Zhang, L. A review for sample datasets of remote sensing imagery. Natl. Remote Sens. Bull. 2022, 26, 589–605. [Google Scholar] [CrossRef]
- Zhu, Q.; Zhong, Y.; Zhao, B.; Xia, G.-S.; Zhang, L. Bag-of-Visual-Words Scene Classifier With Local and Global Features for High Spatial Resolution Remote Sensing Imagery. IEEE Geosci. Remote Sens. Lett. 2016, 13, 747–751. [Google Scholar] [CrossRef]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial Nets. In Proceedings of the Advances in Neural Information Processing Systems; Curran Associates, Inc.: Red Hook, NY, USA, 2014; Volume 27. [Google Scholar]
- Brock, A.; Donahue, J.; Simonyan, K. Large Scale GAN Training for High Fidelity Natural Image Synthesis 2019. arXiv 2018, arXiv:1809.11096. [Google Scholar]
- Gao, Q.; Jiang, Z. Amplification of small sample library based on GAN equivalent model. Electr. Meas. Instrum. 2019, 56, 76–81. [Google Scholar] [CrossRef]
- Shaham, T.R.; Dekel, T.; Michaeli, T. SinGAN: Learning a Generative Model From a Single Natural Image. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019; pp. 4570–4580. [Google Scholar]
- Office of Local Chronicles Compilation of Dalian City. Dalian City Chronicle: Aquatic Chronicle; Dalian Publishing House: Dalian, China, 2004; ISBN 7-80684-218-7. [Google Scholar]
- Xing, Q.; An, D.; Zheng, X.; Wei, Z.; Wang, X.; Li, L.; Tian, L.; Chen, J. Monitoring Seaweed Aquaculture in the Yellow Sea with Multiple Sensors for Managing the Disaster of Macroalgal Blooms. Remote Sens. Environ. 2019, 231, 111279. [Google Scholar] [CrossRef]
- Bell, T.W.; Nidzieko, N.J.; Siegel, D.A.; Miller, R.J.; Cavanaugh, K.C.; Nelson, N.B.; Reed, D.C.; Fedorov, D.; Moran, C.; Snyder, J.N.; et al. The Utility of Satellites and Autonomous Remote Sensing Platforms for Monitoring Offshore Aquaculture Farms: A Case Study for Canopy Forming Kelps. Front. Mar. Sci. 2020, 7, 520223. [Google Scholar] [CrossRef]
- Langford, A.; Waldron, S.; Sulfahri; Saleh, H. Monitoring the COVID-19-Affected Indonesian Seaweed Industry Using Remote Sensing Data. Mar. Policy 2021, 127, 104431. [Google Scholar] [CrossRef]
- Cheng, J.; Jia, N.; Chen, R.; Guo, X.; Ge, J.; Zhou, F. High-Resolution Mapping of Seaweed Aquaculture along the Jiangsu Coast of China Using Google Earth Engine (2016–2022). Remote Sens. 2022, 14, 6202. [Google Scholar] [CrossRef]
- Zhang, C.; Gao, L.; Lu, Z.; Liu, H.; Zhu, H.; Tang, K. Classification of Aquaculture Waters through Remote Sensing on the Basis of a Time-Series Water Index. J. Coast. Res. 2022, 38, 1148–1162. [Google Scholar] [CrossRef]
- Ren, K.; Meng, L.; Fan, C.; Wang, P. Least Squares DCGAN Based Semantic Image Inpainting. In Proceedings of the 2018 5th IEEE International Conference on Cloud Computing and Intelligence Systems (CCIS), Nanjing, China, 23–25 November 2018; pp. 890–894. [Google Scholar]
- Gulrajani, I.; Ahmed, F.; Arjovsky, M.; Dumoulin, V.; Courville, A.C. Improved Training of Wasserstein GANs. In Proceedings of the Advances in Neural Information Processing Systems; Curran Associates, Inc.: Red Hook, NY, USA, 2017; Volume 30. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015, Munich, Germany, 5–9 October 2015; Springer International Publishing: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar]
- Chen, L.-C.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking Atrous Convolution for Semantic Image Segmentation 2017. arXiv 2017, arXiv:1706.05587. [Google Scholar]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [Google Scholar] [CrossRef]
Number | Lvshunkou Offshore Aquaculture Area | Jinzhou Offshore Aquaculture Area | ||
---|---|---|---|---|
Satellite Sensor | Date Obtained | Satellite Sensor | Date Obtained | |
1 | Sentinel-2B | 13 December 2017 | Sentinel-2B | 30 November 2017 |
2 | Sentinel-2B | 2 January 2018 | Sentinel-2B | 19 January 2018 |
3 | Sentinel-2B | 1 February 2018 | Sentinel-2B | 8 February 2018 |
4 | Sentinel-2A | 16 February 2018 | Sentinel-2A | 5 March 2018 |
5 | Sentinel-2A | 5 March 2018 | Sentinel-2B | 30 March 2018 |
6 | Sentinel-2A | 25 March 2018 | Sentinel-2B | 9 April 2018 |
7 | Sentinel-2A | 7 April 2018 | Sentinel-2B | 19 April 2018 |
8 | Sentinel-2A | 27 April 2018 | Sentinel-2B | 29 April 2018 |
9 | Sentinel-2B | 9 May 2018 | Sentinel-2A | 4 May 2018 |
10 | Sentinel-2A | 24 May 2018 | Sentinel-2A | 24 May 2018 |
Dataset | Index | GAN | DCGAN | Improved DCGAN |
---|---|---|---|---|
The kelp + aquaculture-free sea area dataset | SSIM | 53.82% | 64.89% | 78.96% |
PSNR | 51.78% | 50.36% | 49.75% | |
The wakame + aquaculture-free sea area dataset | SSIM | 55.54% | 66.56% | 79.28% |
PSNR | 52.96% | 51.59% | 50.51% | |
The aquaculture-free sea area dataset | SSIM | 69.66% | 77.84% | 82.11% |
PSNR | 63.12% | 57.69% | 48.96% |
Model | Before Amplification | After Amplification | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
OA (%) | Kappa | Recall (%) | Precision (%) | F1 | OA (%) | Kappa | Recall (%) | Precision (%) | F1 | |
UNet | 90.72 | 0.883 | 89.91 | 89.58 | 0.8974 | 94.56 | 0.905 | 93.69 | 93.75 | 0.9372 |
DeepLabv3 | 89.23 | 0.875 | 89.54 | 89.81 | 0.8967 | 92.12 | 0.894 | 91.13 | 90.96 | 0.9104 |
SegNet | 89.56 | 0.879 | 89.62 | 89.25 | 0.8943 | 93.48 | 0.899 | 93.48 | 93.55 | 0.9351 |
Dataset | Index | GAN | DCGAN | Improved DCGAN |
---|---|---|---|---|
The kelp + aquaculture-free sea area dataset | SSIM | 55.57% | 65.58% | 79.14% |
PSNR | 52.56% | 49.26% | 50.69% | |
The wakame + aquaculture-free sea area dataset | SSIM | 56.23% | 67.31% | 80.02% |
PSNR | 54.25% | 50.65% | 49.23% | |
The aquaculture-free sea area dataset | SSIM | 70.23% | 78.63% | 83.5% |
PSNR | 63.55% | 58.85% | 53.95% |
Model | Before Amplification | After Amplification | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
OA (%) | Kappa | Recall (%) | Precision (%) | F1 | OA (%) | Kappa | Recall (%) | Precision (%) | F1 | |
UNet | 90.25 | 0.881 | 90.34 | 90.89 | 0.9065 | 94.68 | 0.913 | 94.68 | 94.89 | 0.9478 |
DeepLabv3 | 89.12 | 0.863 | 90.21 | 89.51 | 0.8985 | 92.31 | 0.901 | 92.31 | 91.25 | 0.9178 |
SegNet | 89.95 | 0.877 | 90.13 | 89.65 | 0.8989 | 93.56 | 0.909 | 93.56 | 92.45 | 0.9302 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, H.; Lu, Z.; Zhang, C.; Yang, Y.; Zhu, G.; Zhang, Y.; Liu, H. Remote Sensing Classification of Offshore Seaweed Aquaculture Farms on Sample Dataset Amplification and Semantic Segmentation Model. Remote Sens. 2023, 15, 4423. https://doi.org/10.3390/rs15184423
Zhu H, Lu Z, Zhang C, Yang Y, Zhu G, Zhang Y, Liu H. Remote Sensing Classification of Offshore Seaweed Aquaculture Farms on Sample Dataset Amplification and Semantic Segmentation Model. Remote Sensing. 2023; 15(18):4423. https://doi.org/10.3390/rs15184423
Chicago/Turabian StyleZhu, Hongchun, Zhiwei Lu, Chao Zhang, Yanrui Yang, Guocan Zhu, Yining Zhang, and Haiying Liu. 2023. "Remote Sensing Classification of Offshore Seaweed Aquaculture Farms on Sample Dataset Amplification and Semantic Segmentation Model" Remote Sensing 15, no. 18: 4423. https://doi.org/10.3390/rs15184423
APA StyleZhu, H., Lu, Z., Zhang, C., Yang, Y., Zhu, G., Zhang, Y., & Liu, H. (2023). Remote Sensing Classification of Offshore Seaweed Aquaculture Farms on Sample Dataset Amplification and Semantic Segmentation Model. Remote Sensing, 15(18), 4423. https://doi.org/10.3390/rs15184423