DBH Estimation for Individual Tree: Two-Dimensional Images or Three-Dimensional Point Clouds?
<p>Study area. Details of site 1 (<b>top row</b>) and site 2 (<b>bottom row</b>). The left column represents the RGB images, the middle column represents the LiDAR point clouds and the right column represents the individual tree segmentation results based on LiDAR point cloud.</p> "> Figure 2
<p>Person’s correlation coefficient between DBH and extracted metrics.</p> "> Figure 3
<p>DBH prediction results based on different metric sets: (<b>a</b>) the individual tree crown boundaries were derived from LiDAR point cloud; (<b>b</b>) the individual tree crown boundaries were derived from DAP point cloud. The <span class="html-italic">X</span>-axis represents the different metric sets based on three models (MLR, RF and SVM), while the <span class="html-italic">Y</span>-axis represents the predicted results of DBH.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Acquisition and Pre-Processing
2.2.1. UAV Data Acquisition and Pre-Processing
2.2.2. Field Data
2.3. Metric Parameter Extraction and Selection
2.4. DBH Modeling and Validation
3. Results
3.1. Relationship between DBH and Different Metrics
3.2. DBH Estimated Using 2D Image-Based Metrics
3.3. DBH Estimated Using Composed Metrics
4. Discussion
4.1. Effect of 2D Images on DBH Estimation
4.2. Effect of 3D Point Clouds on DBH Estimation
4.3. Advantages and Challenges
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- West, P.W. Tree and Forest Measurement; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2004. [Google Scholar]
- Fu, L.; Duan, G.; Ye, Q.; Meng, X.; Liu, Q. Prediction of Individual Tree Diameter Using a Nonlinear Mixed-Effects Modeling Approach and Airborne LiDAR Data. Remote Sens. 2020, 12, 1066. [Google Scholar] [CrossRef]
- Dyderski, M.K.; Pawlik, A.; Chwistek, K.; Czarnota, P. Tree aboveground biomass increment and mortality in temperate mountain forests: Tracing dynamic changes along 25-year monitoring period. For. Ecol. Manag. 2023, 540, 121054. [Google Scholar] [CrossRef]
- Abegg, M.; Bösch, R.; Kükenbrink, D.; Morsdorf, F. Tree volume estimation with terrestrial laser scanning—Testing for bias in a 3D virtual environment. Agric. For. Meteorol. 2023, 331, 109348. [Google Scholar] [CrossRef]
- Chimdessa, T. Forest carbon stock variation with altitude in bolale natural forest, Western Ethiopia. Glob. Ecol. Conserv. 2023, 45, e2537. [Google Scholar] [CrossRef]
- Wu, X.; Zhou, S.; Xu, A.; Chen, B. Passive measurement method of tree diameter at breast height using a smartphone. Comput. Electron. Agric. 2019, 163, 104875. [Google Scholar] [CrossRef]
- Chave, J.; Andalo, C.; Brown, S.; Cairns, M.A.; Chambers, J.Q.; Eamus, D.; Fölster, H.; Fromard, F.; Higuchi, N.; Kira, T.; et al. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 2005, 145, 87–99. [Google Scholar] [CrossRef]
- Martin, M.; Xinlian, L.; Peter, S.; Peter, V.; Juraj, E.; Franti Ek, C.; Daniel, T.; Imon, S.; Ján, M. Evaluation of Close-Range Photogrammetry Image Collection Methods for Estimating Tree Diameters. Int. J. Geo-Inf. 2018, 7, 93. [Google Scholar] [CrossRef]
- Ahmed, S.; Pretzsch, H. TLidar-based crown shape indicates tree ring pattern in Norway spruce (Picea abies (L.) H. Karst) trees across competition gradients. A modeling and methodological approach. Ecol. Indic. 2023, 148, 110116. [Google Scholar] [CrossRef]
- Watt, P.J.; Donoghue, D.N.M. Measuring forest structure with terrestrial laser scanning. Int. J. Remote Sens. 2005, 26, 1437–1446. [Google Scholar] [CrossRef]
- Heleno, S. Assessment of the Influence of Survey Design and Processing Choices on the Accuracy of Tree Diameter at Breast Height (DBH) Measurements Using UAV-Based Photogrammetry. Drones 2021, 5, 43. [Google Scholar] [CrossRef]
- Iizuka, K.; Kosugi, Y.; Noguchi, S.; Iwagami, S. Toward a comprehensive model for estimating diameter at breast height of Japanese cypress (Chamaecyparis obtusa) using crown size derived from unmanned aerial systems. Comput. Electron. Agric. 2022, 192, 106579. [Google Scholar] [CrossRef]
- Jucker, T.; Caspersen, J.; Chave, J.; Antin, C.; Barbier, N.; Bongers, F.; Dalponte, M.; van Ewijk, K.Y.; Forrester, D.I.; Haeni, M.; et al. Allometric equations for integrating remote sensing imagery into forest monitoring programmes. Glob. Chang. Biol. 2017, 23, 177–190. [Google Scholar] [CrossRef]
- Maltamo, M.; Meht Talo, L.; Valbuena, R.; Vauhkonen, J.; Packalen, P. Airborne laser scanning for tree diameter distribution modelling: A comparison of different modelling alternatives in a tropical single-species plantation. Forestry 2017, 91, 121–131. [Google Scholar] [CrossRef]
- Guo, L.; Wu, Y.; Deng, L.; Hou, P.; Zhai, J.; Chen, Y. A Feature-Level Point Cloud Fusion Method for Timber Volume of Forest Stands Estimation. Remote Sens. 2023, 15, 2995. [Google Scholar] [CrossRef]
- Rishmawi, K.; Huang, C.; Zhan, X. Monitoring Key Forest Structure Attributes across the Conterminous United States by Integrating GEDI LiDAR Measurements and VIIRS Data. Remote Sens. 2021, 13, 442. [Google Scholar] [CrossRef]
- Shaobo, X.; Cheng, W.; Xiaohuan, X.I.; Shezhou, L.; Hongcheng, Z. Point cloud filtering and tree height estimation using airborne experiment data of ICESat-2. J. Remote Sens. 2014, 18, 1199–1207. [Google Scholar] [CrossRef]
- Tuominen, S.; Pekkarinen, A. Performance of different spectral and textural aerial photograph features in multi-source forest inventory. Remote Sens. Environ. 2005, 94, 256–268. [Google Scholar] [CrossRef]
- Ozdemir, I.; Karnieli, A. Predicting forest structural parameters using the image texture derived from WorldView-2 multispectral imagery in a dryland forest, Israel. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 701–710. [Google Scholar] [CrossRef]
- Díaz-Varela, R.; Álvarez-Álvarez, P.; Diaz-Varela, E.; Calvo-Iglesias, S. Prediction of stand quality characteristics in sweet chestnut forests in NW Spain by combining terrain attributes, spectral textural features and landscape metrics. For. Ecol. Manag. 2011, 261, 1962–1972. [Google Scholar] [CrossRef]
- Sibiya, B.; Lottering, R.; Odindi, J. Discriminating commercial forest species using image texture computed from a WorldView-2 pan-sharpened image and partial least squares discriminant analysis. Remote Sens. Appl. Soc. Environ. 2021, 23, 100605. [Google Scholar] [CrossRef]
- Qin, H.; Zhou, W.; Yao, Y.; Wang, W. Individual tree segmentation and tree species classification in subtropical broadleaf forests using UAV-based LiDAR, hyperspectral, and ultrahigh-resolution RGB data. Remote Sens. Environ. 2022, 280, 113143. [Google Scholar] [CrossRef]
- Samal, A.; Brandle, J.R.; Zhang, D. Texture as the basis for individual tree identification. Inf. Sci. 2006, 176, 565–576. [Google Scholar] [CrossRef]
- Besl, P.J.; Mckay, H.D. A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 1992, 14, 239–256. [Google Scholar] [CrossRef]
- Shimizu, K.; Nishizono, T.; Kitahara, F.; Fukumoto, K.; Saito, H. Integrating terrestrial laser scanning and unmanned aerial vehicle photogrammetry to estimate individual tree attributes in managed coniferous forests in Japan. Int. J. Appl. Earth Obs. Geoinf. 2022, 106, 102658. [Google Scholar] [CrossRef]
- Bazezew, M.N.; Hussin, Y.A.; Kloosterman, E.H. Integrating Airborne LiDAR and Terrestrial Laser Scanner forest parameters for accurate above-ground biomass/carbon estimation in Ayer Hitam tropical forest, Malaysia. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 638–652. [Google Scholar] [CrossRef]
- Henning, J.G.; Radtke, P.J. Detailed stem measurements of standing trees from ground-based scanning lidar. For. Sci. 2006, 52, 67–80. [Google Scholar]
- Zhang, Z.; Wang, T.; Skidmore, A.K.; Cao, F.; She, G.; Cao, L. An improved area-based approach for estimating plot-level tree DBH from airborne LiDAR data. For. Ecosyst. 2023, 10, 100089. [Google Scholar] [CrossRef]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural Features for Image Classification. IEEE Trans. Syst. Man Cybern. 1973, 6, 610–621. [Google Scholar] [CrossRef]
- Meyer, G.E.; Neto, J.C. Verification of color vegetation indices for automated crop imaging applications. Comput. Electron. Agric. 2008, 63, 282–293. [Google Scholar] [CrossRef]
- Woebbecke, D.M.; Meyer, G.E.; Bargen, K.V.; Mortensen, D.A. Color Indices for Weed Identification Under Various Soil, Residue, and Lighting Conditions. Trans. Asae 1995, 38, 259–269. [Google Scholar] [CrossRef]
- Neto, J.C. A Combined Statistical-Soft Computing Approach for Classification and Mapping Weed Species in Minimum -Tillage Systems; University of Nebraska: Lincoln, NE, USA, 2004. [Google Scholar]
- Louhaichi, M.; Borman, M.M.; Johnson, D.E. Spatially Located Platform and Aerial Photography for Documentation of Grazing Impacts on Wheat. Geocarto Int. 2001, 16, 65–70. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Stark, R.; Rundquist, D. Novel algorithms for remote estimation of vegetation fraction. Remote Sens. Environ. 2002, 80, 76–87. [Google Scholar] [CrossRef]
- Bohlin, J.; Wallerman, J.; Fransson, J.E.S.; Sveriges, L. Forest variable estimation using photogrammetric matching of digital aerial images in combination with a high-resolution DEM. Scand. J. For. Res. 2012, 27, 692–699. [Google Scholar] [CrossRef]
- Tompalski, P.; White, J.C.; Coops, N.C.; Wulder, M.A. Quantifying the contribution of spectral metrics derived from digital aerial photogrammetry to area-based models of forest inventory attributes. Remote Sens. Environ. 2019, 234, 111434. [Google Scholar] [CrossRef]
- Yue, J.; Yang, G.; Tian, Q.; Feng, H.; Xu, K.; Zhou, C. Estimate of winter-wheat above-ground biomass based on UAV ultrahigh-ground-resolution image textures and vegetation indices. Isprs-J. Photogramm. Remote Sens. 2019, 150, 226–244. [Google Scholar] [CrossRef]
- Jayathunga, S.; Owari, T.; Tsuyuki, S. The use of fixed–wing UAV photogrammetry with LiDAR DTM to estimate merchantable volume and carbon stock in living biomass over a mixed conifer–broadleaf forest. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 767–777. [Google Scholar] [CrossRef]
- Kotivuori, E.; Kukkonen, M.; Mehtätalo, L.; Maltamo, M.; Korhonen, L.; Packalen, P. Forest inventories for small areas using drone imagery without in-situ field measurements. Remote Sens. Environ. 2020, 237, 111404. [Google Scholar] [CrossRef]
- Tian, H.; Zhu, J.; He, X.; Chen, X.; Jian, Z.; Li, C.; Ou, Q.; Li, Q.; Huang, G.; Liu, C.; et al. Using machine learning algorithms to estimate stand volume growth of Larix and Quercus forests based on national-scale Forest Inventory data in China. For. Ecosyst. 2022, 9, 100037. [Google Scholar] [CrossRef]
- Puliti, S.; Gobakken, T.; Ørka, H.O.; Næsset, E. Assessing 3D point clouds from aerial photographs for species-specific forest inventories. Scand. J. For. Res. 2017, 32, 68–79. [Google Scholar] [CrossRef]
- Zheng, H.; Cheng, T.; Zhou, M.; Li, D.; Yao, X.; Tian, Y.; Cao, W.; Zhu, Y. Improved estimation of rice aboveground biomass combining textural and spectral analysis of UAV imagery. Precis. Agric. 2019, 20, 611–629. [Google Scholar] [CrossRef]
- Mensah, S.; Pienaar, O.L.; Kunneke, A.; du Toit, B.; Seydack, A.; Uhl, E.; Pretzsch, H.; Seifert, T. Height—Diameter allometry in South Africa’s indigenous high forests: Assessing generic models performance and function forms. For. Ecol. Manag. 2018, 410, 1–11. [Google Scholar] [CrossRef]
- Meyer, H.A. A Mathematical Expression for Height Curves. J. For. 1940, 38, 415–420. [Google Scholar]
- Tuan, N.T.; Dinh, T.T.; Long, S.H. Height-diameter relationship for Pinus koraiensis in Mengjiagang Forest Farm of Northeast China using nonlinear regressions and artificial neural network models. J. For. Sci. 2019, 65, 134–143. [Google Scholar] [CrossRef]
- Markus, T.; Neumann, T.; Martino, A.; Abdalati, W.; Brunt, K.; Csatho, B.; Farrell, S.; Fricker, H.; Gardner, A.; Harding, D. The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation. Remote Sens. Environ. 2017, 190, 260–273. [Google Scholar] [CrossRef]
- Torresani, M.; Rocchini, D.; Alberti, A.; Moudrý, V.; Heym, M.; Thouverai, E.; Kacic, P.; Tomelleri, E. LiDAR GEDI derived tree canopy height heterogeneity reveals patterns of biodiversity in forest ecosystems. Ecol. Inform. 2023, 76, 102082. [Google Scholar] [CrossRef]
- Mao, P.; Qin, L.; Hao, M.; Zhao, W.; Luo, J.; Qiu, X.; Xu, L.; Xiong, Y.; Ran, Y.; Yan, C.; et al. An improved approach to estimate above-ground volume and biomass of desert shrub communities based on UAV RGB images. Ecol. Indic. 2021, 125, 107494. [Google Scholar] [CrossRef]
- Verma, N.K.; Lamb, D.W.; Reid, N.; Wilson, B. An allometric model for estimating DBH of isolated and clustered Eucalyptus trees from measurements of crown projection area. For. Ecol. Manag. 2014, 236, 125–132. [Google Scholar] [CrossRef]
- Carbonell-Rivera, J.P.; Torralba, J.; Estornell, J.; Ruiz, L.Á.; Crespo-Peremarch, P. Classification of Mediterranean Shrub Species from UAV Point Clouds. Remote Sens. 2022, 14, 199. [Google Scholar] [CrossRef]
- Clark, M.L.; Clark, D.B.; Roberts, D.A. Small-footprint lidar estimation of sub-canopy elevation and tree height in a tropical rain forest landscape. Remote Sens. Environ. 2004, 91, 68–89. [Google Scholar] [CrossRef]
- Hilker, T.; Leeuwen, M.V.; Coops, N.C.; Wulder, M.A.; Newnham, G.J.; Jupp, D.L.B.; Culvenor, D.S. Comparing canopy metrics derived from terrestrial and airborne laser scanning in a Douglas-fir dominated forest stand. Trees 2010, 24, 819–832. [Google Scholar] [CrossRef]
- Kalacska, M.; Chmura, G.L.; Lucanus, O.; Bérubé, D.; Arroyo-Mora, J.P. Structure from motion will revolutionize analyses of tidal wetland landscapes. Remote Sens. Environ. 2017, 23, 177–190. [Google Scholar] [CrossRef]
- Fan, J.; Dai, W.; Wang, B.; Li, J.; Yao, J.; Chen, K. UAV-Based Terrain Modeling in Low-Vegetation Areas: A Framework Based on Multiscale Elevation Variation Coefficients. Remote Sens. 2023, 15, 3569. [Google Scholar] [CrossRef]
- Morrison, W.; Grimmond, S.; Kotthaus, S. Simulating satellite urban land surface temperatures: Sensitivity to sensor view angle and assumed landscape complexity. Remote Sens. Environ. 2023, 293, 113579. [Google Scholar] [CrossRef]
- Rizeei, H.M.; Shafri, H.Z.M.; Mohamoud, M.A.; Pradhan, B.; Kalantar, B. Oil Palm Counting and Age Estimation from WorldView-3 Imagery and LiDAR Data Using an Integrated OBIA Height Model and Regression Analysis. J. Sens. 2018, 2018, 2536327. [Google Scholar] [CrossRef]
- Chen, J.M. Spatial Scaling of a Remotely Sensed Surface Parameter by Contexture. Remote Sens. Environ. 1999, 69, 30–42. [Google Scholar] [CrossRef]
Metrics | Description | Reference | |
---|---|---|---|
Spectral indices | Normalized redness intensity (r) | R/(R + G + B) | [30] |
Normalized greenness intensity (g) | G/(R + G + B) | [30] | |
Normalized blueness intensity (b) | B/(R + G + B) | [30] | |
Excess green index (ExG) | 2g − r − b | [31] | |
Excess green minus excess red index (ExGR) | 3g − 2.4r − b | [32] | |
Green leaf index (GLI) | (2G – B − R)/(2G + B + R) | [33] | |
Normalized green–red difference index (NGRDI) | (G − R)/(G + R) | [34] | |
Visible atmospherically resistant index (VARI) | (G − R)/(G + R − B) | [34] | |
Textural metrics | Mean | Mean of GLCM | [29] |
Var | Variance of GLCM | ||
Homo | Homogeneity of GLCM | ||
Contr | Contrast of GLCM | ||
Dissi | Dissimilarity of GLCM | ||
Entro | Entropy of GLCM | ||
ASM | Angular second moment of GLCM | ||
Corr | Correlation of GLCM |
Metric Sets | Contained Metrics | No. | |
---|---|---|---|
Based on LiDAR point cloud | TexM | ASM, Entro, Dissi, Contr, Homo, Var, Mean | 7 |
VIs | r, g, b, VARI, NGRDI, GLI, EXGR, EXG | 8 | |
StrM | H, CD | 2 | |
TexM + VIs | ASM, Entro, Dissi, Contr, Homo, Var, Mean, r, g, b, VARI, NGRDI, GLI, EXGR, EXG | 15 | |
TexM + StrM | ASM, Entro, Dissi, Contr, Homo, Var, Mean, H, CD | 9 | |
VIs + StrM | r, g, b, VARI, NGRDI, GLI, EXGR, EXG, H, CD | 10 | |
TexM + VIs + StrM | ASM, Entro, Dissi, Contr, Homo, Var, Mean, r, g, b, VARI, NGRDI, GLI, EXGR, EXG, H, CD | 17 | |
Based on DAP point cloud | TexM | ASM, Entro, Dissi, Contr, Homo, Var | 6 |
VIs | r, g, b, VARI, NGRDI, GLI, EXGR, EXG | 8 | |
StrM | H, CD | 2 | |
TexM + VIs | ASM, Entro, Dissi, Contr, Homo, Var, r, g, b, VARI, NGRDI, GLI, EXGR, EXG | 14 | |
TexM + StrM | ASM, Entro, Dissi, Contr, Homo, Var, H, CD | 8 | |
VIs + StrM | r, g, b, VARI, NGRDI, GLI, EXGR, EXG, H, CD | 10 | |
TexM + VIs + StrM | ASM, Entro, Dissi, Contr, Homo, Var, r, g, b, VARI, NGRDI, GLI, EXGR, EXG, H, CD | 16 |
Model | Metric Sets | LiDAR-Based | DAP-Based | ||
---|---|---|---|---|---|
RMSE | RMSE% | RMSE | RMSE% | ||
MLR | TexM | 0.032 | 16.879 | 0.034 | 17.454 |
VIs | 0.033 | 17.392 | 0.035 | 17.903 | |
TexM + VIs | 0.032 | 16.744 | 0.035 | 17.869 | |
RF | TexM | 0.035 | 18.566 | 0.036 | 18.646 |
VIs | 0.037 | 19.494 | 0.037 | 19.033 | |
TexM + VIs | 0.037 | 19.401 | 0.036 | 18.246 | |
SVM | TexM | 0.043 | 22.599 | 0.035 | 17.933 |
VIs | 0.051 | 26.831 | 0.047 | 24.075 | |
TexM + VIs | 0.047 | 24.825 | 0.041 | 21.155 |
Model | Metric Sets | LiDAR-Based | DAP-Based | ||
---|---|---|---|---|---|
RMSE | RMSE% | RMSE | RMSE% | ||
MLR | StrM | 0.034 | 17.609 | 0.033 | 16.907 |
TexM + StrM | 0.033 | 17.534 | 0.034 | 17.447 | |
VIs + StrM | 0.033 | 17.403 | 0.034 | 17.396 | |
TexM + VIs + StrM | 0.033 | 17.308 | 0.035 | 17.869 | |
RF | StrM | 0.037 | 19.152 | 0.038 | 19.365 |
TexM + StrM | 0.038 | 19.899 | 0.038 | 19.740 | |
VIs + StrM | 0.035 | 18.419 | 0.036 | 18.668 | |
TexM + VIs + StrM | 0.039 | 20.476 | 0.037 | 18.723 | |
SVM | StrM | 0.054 | 28.483 | 0.050 | 25.589 |
TexM + StrM | 0.047 | 24.797 | 0.036 | 18.479 | |
VIs + StrM | 0.040 | 20.773 | 0.052 | 26.834 | |
TexM + VIs + StrM | 0.052 | 27.152 | 0.050 | 25.502 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mao, Z.; Lu, Z.; Wu, Y.; Deng, L. DBH Estimation for Individual Tree: Two-Dimensional Images or Three-Dimensional Point Clouds? Remote Sens. 2023, 15, 4116. https://doi.org/10.3390/rs15164116
Mao Z, Lu Z, Wu Y, Deng L. DBH Estimation for Individual Tree: Two-Dimensional Images or Three-Dimensional Point Clouds? Remote Sensing. 2023; 15(16):4116. https://doi.org/10.3390/rs15164116
Chicago/Turabian StyleMao, Zhihui, Zhuo Lu, Yanjie Wu, and Lei Deng. 2023. "DBH Estimation for Individual Tree: Two-Dimensional Images or Three-Dimensional Point Clouds?" Remote Sensing 15, no. 16: 4116. https://doi.org/10.3390/rs15164116