Towards Feature Decoupling for Lightweight Oriented Object Detection in Remote Sensing Images
<p>A general framework of a one-stage detector. The convolution operation in the backbone slides along a fixed axis, and the classifier and regressor share features from the backbone.</p> "> Figure 2
<p>Architecture of the proposed FDLO-Det.</p> "> Figure 3
<p>A symmetry group <math display="inline"><semantics> <mrow> <mi>p</mi> <mn>4</mn> </mrow> </semantics></math>.</p> "> Figure 4
<p>Rotational separable convolution.</p> "> Figure 5
<p>The architecture of OPTM.</p> "> Figure 6
<p>The curve of polarization function for classification and regression tasks.</p> "> Figure 7
<p>Visualization of results on DOTA dataset with FDLO-Det. Small vehicles and boats parked closely side by side are accurately detected.</p> "> Figure 8
<p>Comparison between FDLO-Det and S2ANet (typical CNN) on UCAS-AOD.</p> "> Figure 9
<p>Performance on UCAS-ADO.</p> "> Figure 10
<p>Visual detection results of FDLO-Det on HRSC 2016.</p> "> Figure 11
<p>Comparison between FDLO-Det and RetinaNet on HRSC2016.</p> "> Figure 12
<p>Visualization results of intermediate features.</p> ">
Abstract
:1. Introduction
2. Related Works
2.1. Oriented Object Detection
2.2. Lightweight Convolutional Design
3. Methodology
3.1. Rotational Separable Convolution
3.2. Orthogonal Polarization Transformation Module
4. Experiments
4.1. Datasets
4.2. Experimental Evaluation Metrics
4.3. Parameter Setting
4.4. Ablation Experiment
4.4.1. Evaluation on Different Components of FDLO-Det
4.4.2. Evaluation on Rotational Separable Convolution
4.4.3. Evaluation on Orthogonal Polarization Transformation Module
4.5. Comparisons Results for Different Datasets
4.5.1. Evaluation on DOTA
4.5.2. Evaluation on UCAS-AOD
4.5.3. Evaluation on HRSC2016
4.6. Comparisons with Data Augmentation
4.7. Feature Visualization
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, G.; Zhang, Y.; Zheng, X.; Sun, X.; Fu, K.; Wang, H. A new method on inshore ship detection in high-resolution satellite images using shape and context information. IEEE Geosci. Remote Sens. Lett. 2013, 11, 2272492. [Google Scholar] [CrossRef]
- Yang, F.; Xu, Q.; Li, B. Ship Detection From Optical Satellite Images Based on Saliency Segmentation and Structure-LBP Feature. IEEE Geosci. Remote Sens. Lett. 2017, 14, 2664118. [Google Scholar] [CrossRef]
- Hong, D.; Yokoya, N.; Chanussot, J.; Zhu, X.X. An Augmented Linear Mixing Model to Address Spectral Variability for Hyperspectral Unmixing. IEEE Trans. Image Process. 2019, 28, 2878958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, D.; Han, Z.; Yao, J.; Gao, L.; Zhang, B.; Plaza, A.; Chanussot, J. SpectralFormer: Rethinking Hyperspectral Image Classification with Transformers. IEEE Trans. Geosci. Remote. Sens. 2021, 60, 3130716. [Google Scholar] [CrossRef]
- Zhao, B.; Zhao, B.; Tang, L.; Han, Y.; Wang, W. Deep Spatial-Temporal Joint Feature Representation for Video Object Detection. Sensors 2018, 18, 774. [Google Scholar] [CrossRef] [Green Version]
- Tang, L.; Tang, W.; Qu, X.; Han, Y.; Wang, W.; Zhao, B. A scale-aware pyramid network for multi-scale object detection in SAR images. Remote Sens. 2022, 14, 973. [Google Scholar] [CrossRef]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single shot multibox detector. In Computer Vision—ECCV 2016—14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Lecture Notes in Computer Science; Springer: Amsterdam, The Netherlands, 2016; Volume 9905. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Liew, J.H.; Zou, Y.; Zhou, D.; Feng, J. PANet: Few-shot image semantic segmentation with prototype alignment. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 9197–9206. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar] [CrossRef] [Green Version]
- Cai, Z.; Vasconcelos, N. Cascade R-CNN: Delving Into High Quality Object Detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018. [Google Scholar]
- Dai, J.; Li, Y.; He, K.; Sun, J. R-FCN: Object Detection via Region-based Fully Convolutional Networks. Adv. Neural Inf. Process. Syst. 2016, 29, 1–9. [Google Scholar]
- Jiang, Y.; Zhu, X.; Wang, X.; Yang, S.; Li, W.; Wang, H.; Fu, P.; Luo, Z. R2CNN: Rotational Region CNN for Orientation Robust Scene Text Detection. arXiv 2017, arXiv:1706.09579. [Google Scholar]
- Yang, X.; Yan, J.; Liao, W.; Yang, X.; Tang, J.; He, T. SCRDet++: Detecting Small, Cluttered and Rotated Objects via Instance-Level Feature Denoising and Rotation Loss Smoothing. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 45, 2384–2399. [Google Scholar] [CrossRef]
- Qiu, H.; Li, H.; Wu, Q.; Meng, F.; Ngan, K.N.; Shi, H. A2RMNet: Adaptively Aspect Ratio Multi-Scale Network for Object Detection in Remote Sensing Images. Remote Sens. 2019, 11, 1594. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Fu, M.; Wang, Q.; Wang, Y.; Chen, K.; Xia, G.S.; Bai, X. Gliding Vertex on the Horizontal Bounding Box for Multi-Oriented Object Detection. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 43, 1452–1459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2577031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 4510–4520. [Google Scholar]
- Howard, A.; Sandler, M.; Chu, G.; Chen, L.C.; Chen, B.; Tan, M.; Wang, W.; Zhu, Y.; Pang, R.; Vasudevan, V.; et al. Searching for mobilenetv3. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October 2019–2 November 2019; pp. 1314–1324. [Google Scholar]
- Zhang, X.; Zhou, X.; Lin, M.; Sun, J. Shufflenet: An extremely efficient convolutional neural network for mobile devices. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18 June 2018–23 June 2018; pp. 6848–6856. [Google Scholar]
- Ma, N.; Zhang, X.; Zheng, H.T.; Sun, J. Shufflenet v2: Practical guidelines for efficient cnn architecture design. In Proceedings of the Computer Vision—ECCV 2018: 15th European Conference, Munich, Germany, 8–14 September 2018; pp. 116–131. [Google Scholar]
- Han, K.; Wang, Y.; Tian, Q.; Guo, J.; Xu, C.; Xu, C. GhostNet: More Features From Cheap Operations. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, 13–19 June 2020; pp. 1577–1586. [Google Scholar] [CrossRef]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861. [Google Scholar]
- Li, Z.; Peng, C.; Yu, G.; Zhang, X.; Deng, Y.; Sun, J. Light-Head R-CNN: In Defense of Two-Stage Object Detector. arXiv 2017, arXiv:1711.07264. [Google Scholar]
- Han, J.; Ding, J.; Li, J.; Xia, G. Align Deep Features for Oriented Object Detection. IEEE Trans. Geosci. Remote Sens. 2022, 60, 3062048. [Google Scholar] [CrossRef]
- Wang, J.; Chen, K.; Yang, S.; Loy, C.C.; Lin, D. Region proposal by guided anchoring. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 2960–2969. [Google Scholar] [CrossRef] [Green Version]
- Jiang, B.; Luo, R.; Mao, J.; Xiao, T.; Jiang, Y. Acquisition of Localization Confidence for Accurate Object Detection. In Proceedings of the ECCV 2018, Munich, Germany, 8–14 September 2018. [Google Scholar]
- Wu, Y.; Chen, Y.; Yuan, L.; Liu, Z.; Wang, L.; Li, H.; Fu, Y. Rethinking Classification and Localization for Object Detection. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, 13–19 June 2020; pp. 10183–10192. [Google Scholar] [CrossRef]
- Dai, J.; Qi, H.; Xiong, Y.; Li, Y.; Zhang, G.; Hu, H.; Wei, Y. Deformable Convolutional Networks. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Han, C.; Wang, N.; Zhang, Z. Revisiting Feature Alignment for One-stage Object Detection. arXiv 2019, arXiv:1908.01570. [Google Scholar]
- Cheng, G.; Zhou, P.; Han, J. RIFD-CNN: Rotation-Invariant and Fisher Discriminative Convolutional Neural Networks for Object Detection. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR, Las Vegas, NV, USA, 26 June 2016–1 July 2016; pp. 2884–2893. [Google Scholar] [CrossRef]
- Wang, P.; Sun, X.; Diao, W.; Fu, K. FMSSD: Feature-Merged Single-Shot Detection for Multiscale Objects in Large-Scale Remote Sensing Imagery. IEEE Trans. Geosci. Remote. Sens. 2020, 58, 3377–3390. [Google Scholar] [CrossRef]
- Yang, X.; Yang, J.; Yan, J.; Zhang, Y.; Zhang, T.; Guo, Z.; Sun, X.; Fu, K. SCRDet: Towards more robust detection for small, cluttered and rotated objects. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October 2019–2 November 2019; pp. 8231–8240. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Zhang, G.; Yang, X.; Zhou, Y.; Wang, W.; Tang, J.; He, T.; Yan, J. Detecting Rotated Objects as Gaussian Distributions and its 3-D Generalization. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 4335–4354. [Google Scholar] [CrossRef]
- Lin, Y.; Feng, P.; Guan, J. IENet: Interacting Embranchment One Stage Anchor Free Detector for Orientation Aerial Object Detection. arXiv 2019, arXiv:1912.00969. [Google Scholar]
- Chen, Z.; Chen, K.; Lin, W.; See, J.; Yu, H.; Ke, Y.; Yang, C. PIoU Loss: Towards Accurate Oriented Object Detection in Complex Environments. Comput. Vis. ECCV 2020, 12350, 195–211. [Google Scholar] [CrossRef]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2017), Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708. [Google Scholar]
- Xie, S.; Girshick, R.B.; Dollár, P.; Tu, Z.; He, K. Aggregated Residual Transformations for Deep Neural Networks. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 5987–5995. [Google Scholar] [CrossRef] [Green Version]
- Dang, J.; Yang, J. HIGCNN: Hierarchical Interleaved Group Convolutional Neural Networks for Point Clouds Analysis. In Proceedings of the ICASSP 2021—2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, ON, Canada, 6–11 June 2021; pp. 2825–2829. [Google Scholar] [CrossRef]
- Yu, F.; Koltun, V. Multi-Scale Context Aggregation by Dilated Convolutions. In Proceedings of the 4th International Conference on Learning Representations, ICLR, San Juan, Puerto Rico, 2–4 May 2016. [Google Scholar]
- Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; pp. 6105–6114. [Google Scholar]
- Ma, N.; Zhang, X.; Huang, J.; Sun, J. WeightNet: Revisiting the Design Space of Weight Networks. In Computer Vision—ECCV 2020, 16th European Conference, Glasgow, UK, 23–28 August 2020, Proceedings, Part XV; Springer: Berlin/Heidelberg, Germany, 2020; Volume 12360, pp. 776–792. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Y.; Dai, X.; Chen, D.; Liu, M.; Yuan, L.; Liu, Z.; Zhang, L.; Vasconcelos, N. MicroNet: Improving Image Recognition with Extremely Low FLOPs. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, ICCV, Montreal, QC, Canada, 10–17 October 2021; pp. 458–467. [Google Scholar] [CrossRef]
- Tang, Q.; Li, J.; Shi, Z.; Hu, Y. Lightdet: A Lightweight and Accurate Object Detection Network. In Proceedings of the 2020 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2020, Barcelona, Spain, 4–8 May 2020; pp. 2243–2247. [Google Scholar] [CrossRef]
- Qin, Z.; Li, Z.; Zhang, Z.; Bao, Y.; Yu, G.; Peng, Y.; Sun, J. ThunderNet: Towards Real-Time Generic Object Detection on Mobile Devices. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, ICCV, Seoul, Republic of Korea, 27 October 2019–2 November 2019; pp. 6717–6726. [Google Scholar] [CrossRef]
- Ding, P.; Zhang, Y.; Deng, W.J.; Jia, P.; Kuijper, A. A light and faster regional convolutional neural network for object detection in optical remote sensing images. ISPRS J. Photogramm. Remote Sens. 2018, 141, 208–218. [Google Scholar] [CrossRef]
- Wang, N.; Li, B.; Wei, X.; Wang, Y.; Yan, H. Ship Detection in Spaceborne Infrared Image Based on Lightweight CNN and Multisource Feature Cascade Decision. IEEE Trans. Geosci. Remote Sens. 2021, 59, 4324–4339. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, X.; Zhou, S.; Wang, Y.; Hou, Y. Arbitrary-oriented ship detection through center-head point extraction. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5612414. [Google Scholar] [CrossRef]
- Yang, X.; Yan, J.; Feng, Z.; He, T. R3Det: Refined Single-Stage Detector with Feature Refinement for Rotating Object. arXiv 2019, arXiv:1908.05612. [Google Scholar] [CrossRef]
- Ma, J.; Shao, W.; Ye, H.; Wang, L.; Wang, H.; Zheng, Y.; Xue, X. Arbitrary-oriented scene text detection via rotation proposals. IEEE Trans. Multimed. 2018, 20, 3111–3122. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Yuan, L.; Weng, L.; Yang, Y. A high resolution optical satellite image dataset for ship recognition and some new baselines. In Proceedings of the 6th International Conference on Pattern Recognition Applications and Methods ICPRAM, Porto, Portugal, 24–26 February 2017; Volume 1, pp. 324–331. [Google Scholar] [CrossRef]
- Zhu, H.; Chen, X.; Dai, W.; Fu, K.; Ye, Q.; Jiao, J. Orientation robust object detection in aerial images using deep convolutional neural network. In Proceedings of the 2015 IEEE International Conference on Image Processing, ICIP, Quebec City, QC, Canada, 27–30 September 2015; pp. 3735–3739. [Google Scholar] [CrossRef]
- Xia, G.; Bai, X.; Ding, J.; Zhu, Z.; Belongie, S.J.; Luo, J.; Datcu, M.; Pelillo, M.; Zhang, L. DOTA: A Large-Scale Dataset for Object Detection in Aerial Images. In Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 3974–3983. [Google Scholar] [CrossRef] [Green Version]
- Ding, J.; Xue, N.; Long, Y.; Xia, G.S.; Lu, Q. Learning roi transformer for oriented object detection in aerial images. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019. [Google Scholar] [CrossRef]
- Wang, J.; Ding, J.; Guo, H.; Cheng, W.; Pan, T.; Yang, W. Mask OBB: A Semantic Attention-Based Mask Oriented Bounding Box Representation for Multi-Category Object Detection in Aerial Images. Remote Sens. 2019, 11, 2930. [Google Scholar] [CrossRef] [Green Version]
- Qian, W.; Yang, X.; Peng, S.; Guo, Y.; Yan, J. Learning Modulated Loss for Rotated Object Detection. arXiv 2019, arXiv:1911.08299. [Google Scholar] [CrossRef]
- Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollar, P. Focal Loss for Dense Object Detection. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 318–327. [Google Scholar] [CrossRef] [Green Version]
- Yi, J.; Wu, P.; Liu, B.; Huang, Q.; Qu, H.; Metaxas, D. Oriented object detection in aerial images with box boundary-aware vectors. In Proceedings of the 2021 IEEE Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA, 3–8 January 2021. [Google Scholar] [CrossRef]
- Yang, X.; Yan, J. On the Arbitrary-Oriented Object Detection: Classification based Approaches Revisited. arXiv 2022, arXiv:2003.055973. [Google Scholar] [CrossRef]
- Huang, Z.; Li, W.; Xia, X.G.; Wu, X.; Cai, Z.; Tao, R. A Novel Nonlocal-Aware Pyramid and Multiscale Multitask Refinement Detector for Object Detection in Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5601920. [Google Scholar] [CrossRef]
- Huang, Z.; Li, W.; Xia, X.G.; Tao, R. A General Gaussian Heatmap Label Assignment for Arbitrary-Oriented Object Detection. IEEE Trans. Image Process. 2022, 31, 1895–1910. [Google Scholar] [CrossRef] [PubMed]
- Ming, Q.; Miao, L.; Zhou, Z.; Yang, X.; Dong, Y. Optimization for Arbitrary-Oriented Object Detection via Representation Invariance Loss. IEEE Geosci. Remote Sens. Lett. 2022, 19, 8021505. [Google Scholar] [CrossRef]
- Ming, Q.; Miao, L.; Zhou, Z.; Dong, Y. CFC-Net: A Critical Feature Capturing Network for Arbitrary-Oriented Object Detection in Remote Sensing Images. arXiv 2021, arXiv:2101.06849. [Google Scholar] [CrossRef]
- Zhang, Z.; Guo, W.; Zhu, S.; Yu, W. Toward Arbitrary-Oriented Ship Detection With Rotated Region Proposal and Discrimination Networks. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1745–1749. [Google Scholar] [CrossRef]
- Liao, M.; Zhu, Z.; Shi, B.; Xia, G.S.; Bai, X. Rotation-Sensitive Regression for Oriented Scene Text Detection. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018. [Google Scholar] [CrossRef] [Green Version]
- Shu, Z.; Hu, X.; Sun, J. Center-Point-Guided Proposal Generation for Detection of Small and Dense Buildings in Aerial Imagery. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1100–1104. [Google Scholar] [CrossRef]
- Yang, Y.; Tang, X.; Cheung, Y.M.; Zhang, X.; Liu, F.; Ma, J.; Jiao, L. AR2Det: An Accurate and Real-Time Rotational One-Stage Ship Detector in Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5605414. [Google Scholar] [CrossRef]
- Ren, Z.; Tang, Y.; He, Z.; Tian, L.; Yang, Y.; Zhang, W. Ship Detection in High-Resolution Optical Remote Sensing Images Aided by Saliency Information. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5623616. [Google Scholar] [CrossRef]
With RSC? | With OPTM? | Parametes (MB) | FLOPs (G) | mAP |
---|---|---|---|---|
✗ | ✗ | 140.5 | 121.6 | 83.3% |
✓ | ✗ | 31.6 | 59.9 | 87.4% |
✗ | ✓ | 140.7 | 121.9 | 88.5% |
✓ | ✓ | 31.7 | 60.1 | 90.4% |
With RSC? | With OPTM? | Parametes (MB) | FLOPs (G) | mAP |
---|---|---|---|---|
✗ | ✗ | 140.6 | 121.8 | 86.7% |
✓ | ✗ | 31.7 | 60.2 | 88.6% |
✗ | ✓ | 140.7 | 122.1 | 89.2% |
✓ | ✓ | 31.8 | 60.3 | 91.3% |
Backbone | Group | Parametes (MB) | FLOPs (G) | mAP |
---|---|---|---|---|
✗ | - | 140.7 | 121.9 | 88.5% |
✓ | 31.7 | 60.1 | 90.4% | |
✓ | 22.4 | 30.5 | 89.2% | |
✓ | 10.3 | 11.7 | 85.3% |
Method | Parameters (MB) | FLOPs (G) | mAP |
---|---|---|---|
SSD | 246.5 | 121.6 | 83.8% |
SSD+ | 63.4 | 49.7 | 85.6% |
Faster RCNN | 361.1 | 100.5 | 89.2% |
Faster RCNN+ | 96.1 | 63.2 | 89.7% |
With SOAM? | With Polarization? | mAP |
---|---|---|
✗ | ✗ | 88.5% |
✗ | ✓ | 88.6% |
✓ | ✗ | 89.2% |
✓ | ✓ | 90.4% |
Compression Ratio | ||||
---|---|---|---|---|
mAP | 85.8% | 88.6% | 90.4% | 89.2% |
Methods | PL | BD | BR | GTF | SV | LV | SH | TC | BC | ST | SBF | RA | HA | SP | HC | mAP |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Two-Stage: | ||||||||||||||||
FR-O [16] | 79.42 | 77.13 | 17.70 | 64.05 | 35.30 | 38.02 | 37.16 | 89.41 | 69.64 | 59.28 | 50.30 | 52.91 | 47.89 | 47.40 | 46.30 | 54.13 |
RRPN [49] | 88.52 | 71.20 | 31.66 | 59.30 | 51.85 | 56.19 | 57.25 | 90.81 | 72.84 | 67.38 | 56.69 | 52.84 | 53.08 | 51.94 | 53.58 | 61.01 |
RoI-Trans [53] | 88.64 | 78.52 | 43.44 | 75.92 | 68.81 | 73.68 | 83.59 | 90.74 | 77.27 | 81.46 | 58.39 | 53.54 | 62.83 | 58.93 | 47.67 | 69.56 |
R2CNN [12] | 80.94 | 65.67 | 35.34 | 67.44 | 59.92 | 50.91 | 55.81 | 90.67 | 66.92 | 72.39 | 55.06 | 52.23 | 55.14 | 53.35 | 48.22 | 60.67 |
Gliding Vertex [15] | 89.64 | 85.00 | 52.26 | 77.34 | 73.01 | 73.14 | 86.82 | 90.74 | 79.02 | 86.81 | 59.55 | 70.91 | 72.94 | 70.86 | 57.32 | 75.02 |
A2RMNet [14] | 89.84 | 83.39 | 60.06 | 73.46 | 79.25 | 83.07 | 87.88 | 90.90 | 87.02 | 87.35 | 60.74 | 69.05 | 79.88 | 79.74 | 65.17 | 78.45 |
MASK-OBB [54] | 89.69 | 87.07 | 58.51 | 72.04 | 78.21 | 71.47 | 85.20 | 89.55 | 84.71 | 86.76 | 54.38 | 70.21 | 78.98 | 77.46 | 70.40 | 76.98 |
SCRDet [8] | 89.98 | 80.65 | 52.09 | 68.36 | 68.36 | 60.32 | 72.41 | 90.85 | 87.94 | 86.86 | 65.02 | 66.68 | 66.25 | 68.24 | 65.21 | 72.61 |
SCRDet++ [13] | 90.01 | 82.32 | 61.94 | 68.62 | 69.62 | 81.17 | 78.83 | 90.86 | 86.32 | 85.10 | 65.10 | 61.12 | 77.69 | 80.68 | 64.25 | 76.24 |
RSDet [55] | 89.80 | 82.90 | 48.60 | 65.20 | 69.50 | 70.10 | 70.20 | 90.50 | 85.60 | 83.40 | 62.50 | 63,90 | 65.60 | 67.20 | 68.00 | 72.20 |
R3Det [48] | 89.54 | 81.99 | 48.46 | 62.52 | 70.48 | 74.29 | 77.54 | 90.80 | 81.39 | 83.54 | 61.97 | 59.82 | 65.44 | 67.46 | 60.05 | 71.69 |
R-RetinaNet [56] | 88.82 | 81.74 | 44.44 | 65.72 | 67.11 | 55.82 | 72.77 | 90.55 | 82.83 | 76.30 | 54.19 | 63.64 | 63.71 | 69.73 | 53.37 | 68.72 |
BBAVectors [57] | 88.63 | 84.06 | 52.13 | 69.56 | 78.26 | 80.40 | 88.06 | 90.87 | 87.23 | 86.39 | 56.11 | 65.62 | 67.10 | 72.08 | 63.96 | 75.36 |
CSL [58] | 90.25 | 85.53 | 54.64 | 75.31 | 70.44 | 73.51 | 77.62 | 90.84 | 86.15 | 86.69 | 69.60 | 68.04 | 73.83 | 71.10 | 68.93 | 76.17 |
NPMMR-Det [59] | 89.44 | 83.18 | 54.50 | 66.10 | 76.93 | 84.08 | 88.25 | 90.87 | 88.29 | 86.32 | 49.95 | 68.16 | 79.61 | 79.51 | 57.26 | 76.16 |
GGHL [60] | 89.74 | 85.63 | 44.50 | 77.48 | 76.72 | 80.45 | 86.16 | 90.83 | 88.18 | 86.25 | 67.07 | 69.40 | 73.38 | 68.45 | 70.14 | 76.95 |
RIDet-O [61] | 88.94 | 78.45 | 46.87 | 72.63 | 77.63 | 80.68 | 88.18 | 90.55 | 81.33 | 83.61 | 64.85 | 63.72 | 73.09 | 73.13 | 56.87 | 74.70 |
S2A-Net [24] | 89.28 | 84.11 | 56.95 | 79.21 | 80.18 | 82.93 | 89.21 | 90.86 | 84.66 | 87.61 | 71.66 | 68.23 | 78.58 | 78.20 | 65.55 | 79.15 |
FDLO-Det (ours) | 90.63 | 80.03 | 66.60 | 85.68 | 69.60 | 87.11 | 89.83 | 90.86 | 88.02 | 71.84 | 79.85 | 76.04 | 78.51 | 60.44 | 83.72 | 79.92 |
The explanation of each category: | ||||||||||||||||
Full Name | plane | baseball diamond | bridge | groun dtrack field | small vehicle | large vehicle | ship | tennis court | basketball court | storage tank | soccerball field | roundabout | harbor | swimming pool | helicopter | – |
Methods | Car | Airplane | mAP |
---|---|---|---|
RoI-Trans [53] | 88.02 | 90.02 | 89.02 |
S2ANet [24] | 89.56 | 90.42 | 89.99 |
RIDet-O [62] | 88.88 | 90.35 | 89.62 |
R-RetinaNet [56] | 84.65 | 85.46 | 78.19 |
R2PN [63] | 76.74 | 88.66 | 78.63 |
YOLOV3 | 74.63 | 89.52 | 82.08 |
FDLO-Det | 87.31 | 93.24 | 91.31 |
Methods | Backbone | Size | mAP |
---|---|---|---|
Two-Stage: | |||
Gliding Vertex [15] | ResNet101 | 512 × 800 | 88.2 |
RRPN [49] | ResNet101 | 800 × 800 | 79.1 |
R2CNN [12] | ResNet101 | 800 × 800 | 73.1 |
RoI-Trans [53] | ResNet101 | 512 × 800 | 86.2 |
R2PN [63] | VGG16 | - | 79.6 |
One-stage: | |||
RRD [64] | VGG16 | 384 × 384 | 84.3 |
R3Det [8] | ResNet101 | 800 × 800 | 89.3 |
OPLD [65] | ResNet101 | 800 × 800 | 88.4 |
BBAVectors [57] | ResNet101 | 800 × 800 | 89.7 |
R-RetinaNet [56] | ResNet101 | 800 × 800 | 89.2 |
AR2Det [66] | ResNet101 | 512 × 512 | 89.6 |
SDet [67] | ResNet101 | 800 × 800 | 89.2 |
FDLO-Det | ResNet101 | 800 × 800 | 90.4 |
Methods | Backbone | Sizee | mAP |
---|---|---|---|
RetinaNet | ResNet101 | 800 × 800 | 83.3 |
RetinaNet+aug | ResNet101 | 800 × 800 | 88.1 |
RetinaNet+RSC and OPTM | ResNet101 | 800 × 800 | 90.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, C.; Jing, D.; Han, Y.; Deng, Z.; Zhang, H. Towards Feature Decoupling for Lightweight Oriented Object Detection in Remote Sensing Images. Remote Sens. 2023, 15, 3801. https://doi.org/10.3390/rs15153801
Deng C, Jing D, Han Y, Deng Z, Zhang H. Towards Feature Decoupling for Lightweight Oriented Object Detection in Remote Sensing Images. Remote Sensing. 2023; 15(15):3801. https://doi.org/10.3390/rs15153801
Chicago/Turabian StyleDeng, Chenwei, Donglin Jing, Yuqi Han, Zhiyuan Deng, and Hong Zhang. 2023. "Towards Feature Decoupling for Lightweight Oriented Object Detection in Remote Sensing Images" Remote Sensing 15, no. 15: 3801. https://doi.org/10.3390/rs15153801