Map of Land Cover Agreement: Ensambling Existing Datasets for Large-Scale Training Data Provision
<p>Regions where MOLCA data are produced.</p> "> Figure 2
<p>Schema of the MOLCA generation procedure.</p> "> Figure 3
<p>Example of MOLCA tile in the Amazon region (<b>left</b>), in Siberian region (<b>center</b>), and African region (<b>right</b>). The names of the tiles from left to right in order are <span class="html-italic">MOLCA_21KUU_v1.tif</span>, <span class="html-italic">MOLCA_43VEH_v1.tif</span>, <span class="html-italic">MOLCA_36NXF_v1.tif</span>, where the identifiers are 21KUU, 43VEH, and 36NXF.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Input Datasets
2.2. MOLCA Methodology Concepts
2.3. MOLCA Generation Procedure
2.4. MOLCA Validation
3. Results
3.1. MOLCA Statistics
3.2. Accuracy
4. Discussion
5. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CCI | Climate Change Initiative |
CRS | Coordinate Reference System |
DLR | German Aerospace Center |
DUE | Data User Element |
ESA | European Space Agency |
FAO | Food and Agriculture Organization |
FDR | False Discovery Rate |
FNF | Forest Non-Forest |
FROM-GLC | Finer Resolution Observation and Monitoring of Global Land Cover |
GEE | Google Earth Engine |
GHS BU | Global Human Settlements—Built-Up |
GHS BU S1NODSM | Global Human Settlements—Built-Up Sentinel-1-derived |
GMW | Global Mangrove Watch |
GSW | Global Surface Water |
HRLC | High-Resolution Land Cover |
IUCN | International Union for Conservation of Nature |
JAXA | Japan Aerospace Exploration Agency |
JRC | Joint Research Centre |
LC | Land Cover |
LCCS | Land Cover Classification System |
LRLC | Low-Resolution Land Cover |
ML | Machine Learning |
MOLCA | Map Of Land Cover Agreement |
MRLC | Medium-Resolution Land Cover |
NGCC | National Geomatics Center of China |
OA | Overall Accuracy |
PA | Producer’s Accuracy |
UA | User’s Accuracy |
UTM | Universal Transverse Mercator |
WGS84 | World Geodetic System 1984 |
WSF | World Settlement Footprint |
Appendix A
MOLCA | FROM-GLC | GL30 | GHS BU S1-NODSM | WSF | GSW | FNF | CCI Africa Prototype | ESA DUE GlobPermafrost | MapBiomas |
---|---|---|---|---|---|---|---|---|---|
Bareland | Bare land | Bare land | Bare areas | Sparse vegetation (without shrubs), mostly sandy soil, flood plains, recent landslides, also within fire scars; Barren, rare vegetation (petrophytes and psammophytes) | Salt flat; Rocky outcrop; Beach; Dune and sand spot; Mining; Other non vegetated areas | ||||
Cropland | Cropland | Cultivated land | Cropland | Agriculture; Temporary crop; Mosaic of uses | |||||
Forest | Forest | Forest | Forest | Trees cover areas | Tall shrubs, deciduous forest; Coniferous (partially mixed) forest | Forest formation; Forest plantation | |||
Grassland | Grass | Grassland | Grassland | Meadows, grass and herb-dominated | Grassland; Pasture | ||||
Built-up | Impervious | Artificial surfaces | Built-up | Settlements | Built up areas | Urban area | |||
Shrubland | Shrub | Shrubland | Shrubs cover areas | Graminoid, prostrate dwarf shrub, patterned ground, partially bare; Dry to moist prostrate to erect dwarf shrub tundra; Moist to wet graminoid prostrate to erect dwarf shrub tundra; Wet to waterlogged graminoid prostrate to low shrub tundra; Moist low dense shrubs | Savanna formation | ||||
Permanent ice and snow | Snow/Ice | Permanent snow and ice | Snow and/or ice | ||||||
Water | Water | Water bodies | Seasonal water; Permanent water | Open water | Floodplain, mostly fluvial; Seasonally inundated, Water (shallow or high sediment yield); Water (medium depth or medium sediment yield); Water (low sediment yield) | River; Lake and ocean; Aquaculture | |||
Wetland | Wetland | Wetland | Vegetation aquatic or regularly flooded | Floodplain, mostly lacustrine | Mangrove; Wetland |
Appendix B
Existing HRLCs in Siberia | Year | Bareland | Built-Up | Cropland | Forest | Grassland | Permanent | Ice and Snow | Shrubland | Water | Wetland |
---|---|---|---|---|---|---|---|---|---|---|---|
FROM-GLC | 2017 | ||||||||||
GL30 | 2017 | ||||||||||
ESA DUE GlobPermafrost | 2016 | ||||||||||
GHS BU S1NODSM | 2016 | ||||||||||
WSF | 2019 | ||||||||||
FNF | 2017 | ||||||||||
GSW | 2019 |
Existing HRLCs in Amazon | Year | Bareland | Built-Up | Cropland | Forest | Grassland | Shrubland | Water | Wetland |
---|---|---|---|---|---|---|---|---|---|
FROM-GLC | 2017 | ||||||||
GL30 | 2017 | ||||||||
MapBiomas | 2019 | ||||||||
GHS BU S1NODSM | 2016 | ||||||||
WSF | 2019 | ||||||||
FNF | 2017 | ||||||||
GSW | 2019 |
Existing HRLCs in Africa | Year | Bareland | Built-Up | Cropland | Forest | Grassland | Shrubland | Water | Wetland |
---|---|---|---|---|---|---|---|---|---|
FROM-GLC | 2017 | ||||||||
GL30 | 2017 | ||||||||
CCI Africa Prototype | 2016 | ||||||||
GHS BU S1NODSM | 2016 | ||||||||
WSF | 2019 | ||||||||
FNF | 2017 | ||||||||
GSW | 2019 |
References
- Bontemps, S.; Defourny, P.; Radoux, J.; Van Bogaert, E.; Lamarche, C.; Achard, F.; Mayaux, P.; Boettcher, M.; Brockmann, C.; Kirches, G.; et al. Consistent Global Land Cover Maps for Climate Modelling Communities: Current Achievements of the ESA’ Land Cover CCI. 2013. Available online: https://ui.adsabs.harvard.edu/abs/2013ESASP.722E..62B (accessed on 26 May 2023).
- Haddad, N.M.; Brudvig, L.A.; Clobert, J.; Davies, K.F.; Gonzalez, A.; Holt, R.D.; Lovejoy, T.E.; Sexton, J.O.; Austin, M.P.; Collins, C.D.; et al. Habitat Fragmentation and its Lasting Impact on Earth’S Ecosystems. Sci. Adv. 2015, 1, e1500052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abe, C.; Lobo, F.; Dibike, Y.; Costa, M.; Dos Santos, V.; Novo, E. Modelling the Effects of Historical and Future Land Cover Changes on the Hydrology of an Amazonian Basin. Water 2018, 10, 932. [Google Scholar] [CrossRef] [Green Version]
- Birhanu, A.; Masih, I.; van der Zaag, P.; Nyssen, J.; Cai, X. Impacts of Land Use and Land Cover Changes on Hydrology of the Gumara Catchment, Ethiopia. Phys. Chem. Earth Parts A/B/C 2019, 112, 165–174. [Google Scholar] [CrossRef]
- Cui, G.; Lee, W.K.; Kwak, D.A.; Choi, S.; Park, T.; Lee, J. Desertification Monitoring by LANDSAT TM Satellite Imagery. For. Sci. Technol. 2011, 7, 110–116. [Google Scholar] [CrossRef]
- Enoguanbhor, E.; Gollnow, F.; Nielsen, J.; Lakes, T.; Walker, B. Land Cover Change in the Abuja City-Region, Nigeria: Integrating GIS and Remotely Sensed Data to Support Land Use Planning. Sustainability 2019, 11, 1313. [Google Scholar] [CrossRef] [Green Version]
- Picoli, M.C.A.; Camara, G.; Sanches, I.; Simões, R.; Carvalho, A.; Maciel, A.; Coutinho, A.; Esquerdo, J.; Antunes, J.; Begotti, R.A.; et al. Big Earth Observation Time Series Analysis for Monitoring Brazilian Agriculture. ISPRS J. Photogramm. Remote Sens. 2018, 145, 328–339. [Google Scholar] [CrossRef]
- Zhu, Z.; Wulder, M.A.; Roy, D.P.; Woodcock, C.E.; Hansen, M.C.; Radeloff, V.C.; Healey, S.P.; Schaaf, C.; Hostert, P.; Strobl, P.; et al. Benefits of the Free and Open Landsat Data Policy. Remote Sens. Environ. 2019, 224, 382–385. [Google Scholar] [CrossRef]
- Woodcock, C.E.; Allen, R.; Anderson, M.; Belward, A.; Bindschadler, R.; Cohen, W.; Gao, F.; Goward, S.N.; Helder, D.; Helmer, E.; et al. Free Access to Landsat Imagery. Science 2008, 320, 1011. [Google Scholar] [CrossRef]
- Copernicus Open Access Hub. Legal Notice on the Use of Copernicus Sentinel Data and Service Information. Available online: https://sentinels.copernicus.eu/documents/247904/690755/Sentinel_Data_Legal_Notice (accessed on 31 May 2023).
- Burke, M.; Driscoll, A.; Lobell, D.B.; Ermon, S. Using Satellite Imagery to Understand and Promote Sustainable Development. Science 2021, 371, eabe8628. [Google Scholar] [CrossRef]
- Sambasivan, N.; Kapania, S.; Highfill, H.; Akrong, D.; Paritosh, P.; Aroyo, L.M. “Everyone Wants to Do the Model Work, Not the Data Work”: Data Cascades in High-Stakes AI. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, Yokohama, Japan, 8–13 May 2021; ACM: Yokohama, Japan, 2021; pp. 1–15. [Google Scholar] [CrossRef]
- Ball, J.E.; Anderson, D.T.; Chan, C.S. Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools, and Challenges for the Community. J. Appl. Remote Sens. 2017, 11, 042609. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Q.; Shen, H.; Li, T.; Li, Z.; Li, S.; Jiang, Y.; Xu, H.; Tan, W.; Yang, Q.; Wang, J.; et al. Deep Learning in Environmental Remote Sensing: Achievements and Challenges. Remote Sens. Environ. 2020, 241, 111716. [Google Scholar] [CrossRef]
- Scott, G.J.; England, M.R.; Starms, W.A.; Marcum, R.A.; Davis, C.H. Training Deep Convolutional Neural Networks for Land–Cover Classification of High-Resolution Imagery. IEEE Geosci. Remote Sens. Lett. 2017, 14, 549–553. [Google Scholar] [CrossRef]
- Dimitrovski, I.; Kitanovski, I.; Kocev, D.; Simidjievski, N. Current Trends in Deep Learning for Earth Observation: An Open-Source Benchmark Arena for Image Classification. ISPRS J. Photogramm. Remote Sens. 2023, 197, 18–35. [Google Scholar] [CrossRef]
- Sumbul, G.; De Wall, A.; Kreuziger, T.; Marcelino, F.; Costa, H.; Benevides, P.; Caetano, M.; Demir, B.; Markl, V. BigEarthNet-MM: A Large-Scale, Multimodal, Multilabel Benchmark Archive for Remote Sensing Image Classification and Retrieval [Software and Data Sets]. IEEE Geosci. Remote Sens. Mag. 2021, 9, 174–180. [Google Scholar] [CrossRef]
- Cheng, G.; Han, J.; Lu, X. Remote Sensing Image Scene Classification: Benchmark and State of the Art. Proc. IEEE 2017, 105, 1865–1883. [Google Scholar] [CrossRef]
- Qi, X.; Zhu, P.; Wang, Y.; Zhang, L.; Peng, J.; Wu, M.; Chen, J.; Zhao, X.; Zang, N.; Mathiopoulos, P.T. MLRSNet: A Multi-Label High Spatial Resolution Remote Sensing Dataset for Semantic Scene Understanding. ISPRS J. Photogramm. Remote Sens. 2020, 169, 337–350. [Google Scholar] [CrossRef]
- Bratic, G.; Vavassori, A.; Brovelli, M.A. Review of High-Resolution Global Land Cover. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2021, 43, 175–182. [Google Scholar] [CrossRef]
- Brown, C.F.; Brumby, S.P.; Guzder-Williams, B.; Birch, T.; Hyde, S.B.; Mazzariello, J.; Czerwinski, W.; Pasquarella, V.J.; Haertel, R.; Ilyushchenko, S.; et al. Dynamic World, Near Real-Time Global 10 m Land Use Land Cover Mapping. Sci. Data 2022, 9, 251. [Google Scholar] [CrossRef]
- Karra, K.; Kontgis, C.; Statman-Weil, Z.; Mazzariello, J.C.; Mathis, M.; Brumby, S.P. Global Land Use/Land Cover with Sentinel 2 and Deep Learning. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; IEEE: Brussels, Belgium, 2021; pp. 4704–4707. [Google Scholar] [CrossRef]
- Gong, P.; Wang, J.; Yu, L.; Zhao, Y.; Zhao, Y.; Liang, L.; Niu, Z.; Huang, X.; Fu, H.; Liu, S.; et al. Finer Resolution Observation and Monitoring of Global Land Cover: First Mapping Results with Landsat TM and ETM+ Data. Int. J. Remote Sens. 2013, 34, 2607–2654. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Gong, P.; Wang, J.; Zhu, Z.; Biging, G.S.; Yuan, C.; Hu, T.; Zhang, H.; Wang, Q.; Li, X.; et al. The First All-Season Sample Set for Mapping Global Land Cover with Landsat-8 Data. Sci. Bull. 2017, 62, 508–515. [Google Scholar] [CrossRef]
- Gong, P.; Liu, H.; Zhang, M.; Li, C.; Wang, J.; Huang, H.; Clinton, N.; Ji, L.; Li, W.; Bai, Y.; et al. Stable Classification with Limited Sample: Transferring a 30-M Resolution Sample Set Collected in 2015 to Mapping 10-M Resolution Global Land Cover in 2017. Sci. Bull. 2019, 64, 370–373. [Google Scholar] [CrossRef]
- Marconcini, M.; Metz-Marconcini, A.; Üreyen, S.; Palacios-Lopez, D.; Hanke, W.; Bachofer, F.; Zeidler, J.; Esch, T.; Gorelick, N.; Kakarla, A.; et al. Outlining Where Humans Live—The World Settlement Footprint 2015. Sci. Data 2020, 7, 242. [Google Scholar] [CrossRef] [PubMed]
- Marconcini, M.; Marconcini, A.M.; Esch, T.; Gorelick, N. Understanding Current Trends in Global Urbanisation—The World Settlement Footprint Suite. GI_Forum 2021, 9, 33–38. [Google Scholar] [CrossRef]
- Pekel, J.F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution Mapping of Global Surface Water and its Long-Term Changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef]
- Shimada, M.; Itoh, T.; Motooka, T.; Watanabe, M.; Shiraishi, T.; Thapa, R.; Lucas, R. New Global Forest/Non-Forest Maps from ALOS PALSAR Data (2007–2010). Remote Sens. Environ. 2014, 155, 13–31. [Google Scholar] [CrossRef]
- Chen, J.; Chen, J.; Liao, A.; Cao, X.; Chen, L.; Chen, X.; He, C.; Han, G.; Peng, S.; Lu, M.; et al. Global Land Cover Mapping at 30M Resolution: A Pok-Based Operational Approach. ISPRS J. Photogramm. Remote Sens. 2015, 103, 7–27. [Google Scholar] [CrossRef] [Green Version]
- Pesaresi, M.; Corbane, C.; Julea, A.; Florczyk, A.J.; Syrris, V.; Soille, P. Assessment of the Added-Value of Sentinel-2 for Detecting Built-Up Areas. Remote Sens. 2016, 8, 299. [Google Scholar] [CrossRef] [Green Version]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-Resolution Global Maps of 21St-Century Forest Cover Change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [Green Version]
- Bunting, P.; Rosenqvist, A.; Lucas, R.; Rebelo, L.M.; Hilarides, L.; Thomas, N.; Hardy, A.; Itoh, T.; Shimada, M.; Finlayson, C. The Global Mangrove Watch—A New 2010 Global Baseline of Mangrove Extent. Remote Sens. 2018, 10, 1669. [Google Scholar] [CrossRef] [Green Version]
- Bunting, P.; Rosenqvist, A.; Hilarides, L.; Lucas, R.M.; Thomas, N.; Tadono, T.; Worthington, T.A.; Spalding, M.; Murray, N.J.; Rebelo, L.M. Global Mangrove Extent Change 1996–2020: Global Mangrove Watch Version 3.0. Remote Sens. 2022, 14, 3657. [Google Scholar] [CrossRef]
- Van De Kerchove, R.; Zanaga, D.; De Keersmaecker, W.; Li, L.; Tsendbazar, N.; Lesiv, M.; Arino, O. World Cover: Product User Manual. 2020. Available online: https://esa-worldcover.s3.amazonaws.com/v100/2020/docs/WorldCover_PUM_V1.0.pdf (accessed on 1 June 2023).
- Potapov, P.; Turubanova, S.; Hansen, M.C.; Tyukavina, A.; Zalles, V.; Khan, A.; Song, X.P.; Pickens, A.; Shen, Q.; Cortez, J. Global Maps of Cropland Extent and Change Show Accelerated Cropland Expansion in the Twenty-First Century. Nat. Food 2022, 3, 19–28. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, L.; Chen, X.; Gao, Y.; Xie, S.; Mi, J. GLC_FCS30: Global Land-Cover Product with Fine Classification System at 30 m Using Time-Series Landsat Imagery. Earth Syst. Sci. Data 2021, 13, 2753–2776. [Google Scholar] [CrossRef]
- National Geomatics Center of China. GlobeLand30: Product Introduction. Available online: http://globeland30.org/Page/EN_sysFrame/dataIntroduce.html?columnID=81&head=product¶=product&type=data (accessed on 12 June 2023).
- Esri and Microsoft and Impact Observatory. Sentinel-2 Land Use Land Cover Downloader. Available online: https://www.arcgis.com/apps/instant/media/index.html?appid=fc92d38533d440078f17678ebc20e8e2 (accessed on 12 June 2023).
- Oxoli, D.; Bratic, G.; Wu, H.; Brovelli, M. Extending Accuracy Assessment Procedures of Global Coverage Land Cover Maps Through Spatial Association Analysis. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 42, 1601–1607. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Chen, L.; Ban, T.; Lyu, D.; Guan, Y.; Wu, X.; Zhou, X.; Chen, H. Accurate Label Refinement from Multiannotator of Remote Sensing Data. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–13. [Google Scholar] [CrossRef]
- Chaudhuri, B.; Demir, B.; Chaudhuri, S.; Bruzzone, L. Multilabel Remote Sensing Image Retrieval Using a Semisupervised Graph-Theoretic Method. IEEE Trans. Geosci. Remote Sens. 2018, 56, 1144–1158. [Google Scholar] [CrossRef]
- Helber, P.; Bischke, B.; Dengel, A.; Borth, D. EuroSAT: A Novel Dataset and Deep Learning Benchmark for Land Use and Land Cover Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 2217–2226. [Google Scholar] [CrossRef] [Green Version]
- Xia, G.S.; Hu, J.; Hu, F.; Shi, B.; Bai, X.; Zhong, Y.; Zhang, L.; Lu, X. AID: A Benchmark Data Set for Performance Evaluation of Aerial Scene Classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3965–3981. [Google Scholar] [CrossRef] [Green Version]
- Zhao, B.; Zhong, Y.; Xia, G.S.; Zhang, L. Dirichlet-Derived Multiple Topic Scene Classification Model for High Spatial Resolution Remote Sensing Imagery. IEEE Trans. Geosci. Remote Sens. 2016, 54, 2108–2123. [Google Scholar] [CrossRef]
- Zhou, W.; Newsam, S.; Li, C.; Shao, Z. PatternNet: A Benchmark Dataset for Performance Evaluation of Remote Sensing Image Retrieval. ISPRS J. Photogramm. Remote Sens. 2018, 145, 197–209. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.X.; Hu, J.; Qiu, C.; Shi, Y.; Kang, J.; Mou, L.; Bagheri, H.; Haberle, M.; Hua, Y.; Huang, R.; et al. So2Sat LCZ42: A Benchmark Data Set for the Classification of Global Local Climate Zones [Software and Data Sets]. IEEE Geosci. Remote Sens. Mag. 2020, 8, 76–89. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Newsam, S. Bag-of-visual-words and spatial extensions for land-use classification. In Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems, San Jose, CA, USA, 2–5 November 2010; ACM: San Jose, CA, USA, 2010; pp. 270–279. [Google Scholar] [CrossRef]
- Planet; SCOON. Planet: Understanding the Amazon from Space. Available online: https://kaggle.com/competitions/planet-understanding-the-amazon-from-space (accessed on 4 June 2023).
- Corbane, C.; Pesaresi, M.; Politis, P.; Syrris, V.; Florczyk, A.J.; Soille, P.; Maffenini, L.; Burger, A.; Vasilev, V.; Rodriguez, D.; et al. Big Earth Data Analytics on Sentinel-1 and Landsat Imagery in Support to Global Human Settlements Mapping. Big Earth Data 2017, 1, 118–144. [Google Scholar] [CrossRef] [Green Version]
- Pesaresi, M.; Ehrlich, D.; Ferri, S.; Florczyk, A.; Carneiro Freire, S.M.; Halkia, S.; Julea, A.M.; Kemper, T.; Soille, P.; Syrris, V. Operating Procedure for the Production of the Global Human Settlement Layer from Landsat Data of the Epochs 1975, 1990, 2000, and 2014; Technical Report EUR 27741; Joint Research Centre: Brussels, Belgium, 2016. [Google Scholar] [CrossRef]
- Esch, T.; Brzoska, E.; Dech, S.; Leutner, B.; Palacios-Lopez, D.; Metz-Marconcini, A.; Marconcini, M.; Roth, A.; Zeidler, J. World Settlement Footprint 3D—A First Three-Dimensional Survey of the Global Building Stock. Remote Sens. Environ. 2022, 270, 112877. [Google Scholar] [CrossRef]
- Souza, C.M.; Shimbo, J.Z.; Rosa, M.R.; Parente, L.L.; Alencar, A.A.; Rudorff, B.F.T.; Hasenack, H.; Matsumoto, M.; Ferreira, L.G.; Souza-Filho, P.W.M.; et al. Reconstructing Three Decades of Land Use and Land Cover Changes in Brazilian Biomes with Landsat Archive and Earth Engine. Remote Sens. 2020, 12, 2735. [Google Scholar] [CrossRef]
- Mapbiomas Brasil. Accuracy Statistics. Available online: https://mapbiomas.org/en/accuracy-statistics?cama_set_language=en (accessed on 14 June 2023).
- Lesiv, M.; See, L.; Mora, B.; Pietsch, S.; Fritz, S.; Bun, H.; Sendabo, S.; Kibuchi, S.; Okemwa, J.; Derrik, O.; et al. Accuracy Assessment of the ESA CCI 20m Land Cover Map: Kenya, Gabon, Ivory Coast and South Africa, 2019. Place: Laxenburg, Austria Publisher: WP-19-009. Available online: https://iiasa.dev.local (accessed on 14 June 2023).
- Bartsch, A.; Widhalm, B. DUE Globpermafrost Product Documentation: Land Cover Prototype V1.0, 2017. Available online: https://doi.org/10.13140/RG.2.2.30661.76007 (accessed on 14 June 2023).
- Bartsch, A.; Widhalm, B.; Pointner, G.; Ermokhina, K.A.; Leibman, M.; Heim, B. Landcover Derived from Sentinel-1 and Sentinel-2 Satellite Data (2015–2018) for Subarctic and Arctic Environments, 2019. [CrossRef]
- Tuia, D.; Munoz-Mari, J. Learning User’s Confidence for Active Learning. IEEE Trans. Geosci. Remote Sens. 2012, 51, 872–880. [Google Scholar] [CrossRef]
- Python Software Foundation. Python 3.10; Python Software Foundation: Wilmington, DE, USA, 2022; Available online: https://www.python.org (accessed on 23 June 2023).
- GRASS Development Team. Geographic Resources Analysis Support System (GRASS GIS) Software, Version 8.2; Open Source Geospatial Foundation: Beaverton, DE, USA 2003–2023. Available online: https://grass.osgeo.org (accessed on 23 June 2023).
- Stehman, S.V. Selecting and interpreting measures of thematic classification accuracy. Remote Sens. Environ. 1997, 62, 77–89. [Google Scholar] [CrossRef]
- Cochran, W.G. Sampling Techniques, 3rd ed.; Wiley Series in Probability and Mathematical Statistics; Wiley: New York, NY, USA, 1977. [Google Scholar]
- Open Foris. Open Foris; FAO: Rome, Italy, 2022; Available online: https://www.openforis.org (accessed on 23 June 2023).
- Rolnick, D.; Veit, A.; Belongie, S.; Shavit, N. Deep Learning Is Robust to Massive Label Noise. arXiv 2018, arXiv:1705.10694. [Google Scholar] [CrossRef]
Existing HRLC | Baseline Year | Coverage | Resolution | CRS | Type |
---|---|---|---|---|---|
FROM-GLC | 2017 | Africa, Amazon, Siberia | 10 m | WGS84 | General |
GL30 | 2020 | Africa, Amazon, Siberia | 30 m | UTM | General |
GHS BU S1NODSM | 2016 | Africa, Amazon, Siberia | 20 m | Web Mercator | Thematic built-up |
WSF | 2019 | Africa, Amazon, Siberia | 10 m | WGS84 | Thematic built-up |
FNF | 2018 | Africa, Amazon, Siberia | 25 m | WGS84 | Thematic forest |
GSW | 2019 | Africa, Amazon, Siberia | 30 m | WGS84 | Thematic water |
MapBiomas | 2019 | Amazon | 30 m | WGS84 | General |
CCI Africa Prototype | 2016 | Africa | 20 m | WGS84 | General |
ESA DUE GlobPermafrost | 2016 | Siberia | 20 m | UTM | General |
Siberia | Amazon | Africa | ||||
---|---|---|---|---|---|---|
# Pixels | # Maps | # Pixels | # Maps | # Pixels | # Maps | |
Bareland | 70,522,207 | 3 * | 10,974,208 | 3 | 17,527,789,276 | 3 |
Built-up | 11,954,315 | 4 | 64,772,162 | 5 | 10,054,752 | 5 |
Cropland | 3,045,996,831 | 2 | 4,740,455,996 | 3 | 4,142,663,163 | 3 |
Forest | 15,748,595,107 | 4 * | 26,141,725,251 | 4 | 13,429,492,002 | 4 |
Grassland | 5,725,978,494 | 3 * | 5,468,110,102 | 3 | 4,493,491,684 | 3 |
Permanent ice and snow | 78,840,342 | 2 | 0 | 0 | ||
Shrubland | 1,763,096 | 3 * | 4,109,823,259 | 3 | 2,174,109,509 | 3 |
Water | 5,424,855,889 | 5 * | 1,718,120,337 | 5 | 2,550,708,631 | 5 |
Wetland | 393,196,640 | 3 * | 82,520,517 | 3 | 5,369,604 | 3 |
Total # pixels | 30,501,702,921 | 42,336,501,832 | 44,206,814,559 | |||
Proportion of MOLCA in region of interest | 43% | 52% | 40% |
Bareland | Built-Up | Cropland | Forest | Grassland | Shrubland | Water | |
---|---|---|---|---|---|---|---|
Bareland | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Built-up | 0 | 210 | 0 | 0 | 0 | 0 | 0 |
Cropland | 0 | 3 | 76 | 5 | 18 | 2 | 0 |
Forest | 0 | 0 | 0 | 184 | 0 | 0 | 0 |
Grassland | 3 | 4 | 4 | 2 | 158 | 3 | 0 |
Shrubland | 0 | 0 | 0 | 0 | 1 | 191 | 0 |
Water | 0 | 0 | 0 | 0 | 0 | 0 | 186 |
UA | 0% | 100% | 73% | 100% | 91% | 99% | 100% |
PA | 0% | 97% | 95% | 96% | 89% | 97% | 100% |
F1 score | 0% | 98% | 83% | 98% | 90% | 98% | 100% |
OA | 96% | ||||||
Kappa | 95% | ||||||
FDR | 4% |
MOLCA Code | MOLCA Class | LCCS Code | LCCS Description |
---|---|---|---|
8 | Cropland | A11 | Primarily non-vegetated, Terrestrial, Bare areas |
20 | Forest | A12, A11 | Primarily vegetated, Terrestrial, Cultivated and managed areas |
7 | Grassland | A12, A11 | Primarily vegetated, Terrestrial, Semi-natural vegetation, and Cultivated and managed areas |
5 | Shrubland | A12, A11 | Primarily vegetated, Terrestrial, Semi-natural vegetation, and Cultivated and managed areas |
9 | Wetland | A24, A22 | Primarily non-vegetated, Terrestrial, Artificial surfaces |
13 | Built-up | B15 | Primarily vegetated, Terrestrial, Semi-natural vegetation, and Cultivated and managed areas |
12 | Bareland | B16 | Primarily non-vegetated, Aquatic or regularly flooded, Natural waterbodies, snow and ice, and Artificial waterbodies, snow and ice |
16 | Permanent ice and snow | B28, B27 | Primarily non-vegetated, Aquatic or regularly flooded, Natural waterbodies, snow and ice, and Artificial waterbodies, snow and ice |
15 | Water | B28, B27 | Primarily vegetated, Aquatic or regularly flooded, Semi-natural vegetation, and Cultivated and managed areas |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bratic, G.; Oxoli, D.; Brovelli, M.A. Map of Land Cover Agreement: Ensambling Existing Datasets for Large-Scale Training Data Provision. Remote Sens. 2023, 15, 3774. https://doi.org/10.3390/rs15153774
Bratic G, Oxoli D, Brovelli MA. Map of Land Cover Agreement: Ensambling Existing Datasets for Large-Scale Training Data Provision. Remote Sensing. 2023; 15(15):3774. https://doi.org/10.3390/rs15153774
Chicago/Turabian StyleBratic, Gorica, Daniele Oxoli, and Maria Antonia Brovelli. 2023. "Map of Land Cover Agreement: Ensambling Existing Datasets for Large-Scale Training Data Provision" Remote Sensing 15, no. 15: 3774. https://doi.org/10.3390/rs15153774
APA StyleBratic, G., Oxoli, D., & Brovelli, M. A. (2023). Map of Land Cover Agreement: Ensambling Existing Datasets for Large-Scale Training Data Provision. Remote Sensing, 15(15), 3774. https://doi.org/10.3390/rs15153774