Two Decades of Terrestrial Water Storage Changes in the Tibetan Plateau and Its Surroundings Revealed through GRACE/GRACE-FO
"> Figure 1
<p>Map of the Tibetan Plateau and adjacent areas with topography based on Shuttle Radar Topography Mission (SRTM)’s digital elevation data [<a href="#B10-remotesensing-15-03505" class="html-bibr">10</a>]. Boundaries delineated by irregular shapes are glacier mascons and water basins based on the elevation basemap in this figure, provided by Xiang et al. [<a href="#B9-remotesensing-15-03505" class="html-bibr">9</a>]. White pixels denote glaciers taken from the Randolph Glacier Inventory 6.0 [<a href="#B11-remotesensing-15-03505" class="html-bibr">11</a>]. The glacier areas are divided into 14 mascons (mass-concentration blocks, black lines with black numbers): mascon 1, Nyainqentanglha; mascons 2 and 3, Eastern Himalayas; mascons 4 and 5, Western Himalayas; mascon 6, Karakoram; mascon 7, Hindukush; mascon 8, Pamir; mascons 9 to 12, Tien Shan; mascon 13, West Kunlun; and mascon 14, Qilian Mountains. Gray lines delimit water basins. ENDR is the endorheic region of the Tibetan Plateau (TP). White numbers mark river sources: (1) Yellow River, (2) Yangtze River, (3) Mekong River, (4) Salween River, and (5) Yarlung Zangbo River. Lakes are blue.</p> "> Figure 2
<p>Mass-change trends of SH solutions (in EWT, mm a<sup>−1</sup>) from April 2002 to December 2021. Destriping filters Duan P4M8, S&W P3M8, and S&W P2M8 were used for the ITSG SH solutions (<b>a</b>,<b>c</b>,<b>e</b>); Duan P4M8 and S&W P3M8 were used for the CSR SH solutions (<b>b</b>,<b>d</b>). Note that the SH solutions were truncated at d/o 60, and the 14 mascons, together with the dashed lines, delimit TP and Tien Shan. The numbers 1–14 in subfigure (<b>a</b>) indicate the 14 mascons as defined in <a href="#remotesensing-15-03505-f001" class="html-fig">Figure 1</a>. The gray lines are the 0 contours.</p> "> Figure 3
<p>Mass-change trends from mascon inverted solutions (in EWT, mm a<sup>−1</sup>) during April 2002 and December 2021, derived from 20 combinations of solutions, filters and regularization methods (see text for description). Note that the SH solutions up to d/o 60 and a Gaussian smoothing filter with 340 km averaging radius were used when implementing mascon inversion. The numbers 1–14 in subfigure (<b>a</b>) indicate the 14 mascons and (1)–(5) mark river sources as defined in <a href="#remotesensing-15-03505-f001" class="html-fig">Figure 1</a>.</p> "> Figure 4
<p>Mascon inverted monthly mass changes at 14 glacier mascons in EWT from 2002 to 2021. The results are derived from the ITSG+Duan P4M8 solution-filter combination using RIA and Tikhonov regularization methods with SEDI and SADI. Note that the SH solutions up to d/o 60 and a 340-km-radius Gaussian smoothing filter were used when implementing mascon inversion methods.</p> "> Figure 5
<p>As in <a href="#remotesensing-15-03505-f004" class="html-fig">Figure 4</a>, but for 10 selected water basins. NWIA: Northwest India; BBN: Bengal basin; TRM: Tarim basin; QDM: Qaidam basin; ENDR: endorheic region of the TP; YLRS: Yellow River source region; YZRS: Yangtze River source region; MKRS: Mekong River source region; SWRS: Salween River source region; YZBR: Yarlung Zangbo River basin.</p> "> Figure 6
<p>Average monthly mass changes and the season-averaged anomalies in 14 glacier mascons from mascon inverted solutions from April 2002 to December 2021. The changes in net precipitation, snowfall, and air temperature (Temp., in <math display="inline"><semantics><mrow><mo>°</mo><mi mathvariant="normal">C</mi></mrow></semantics></math>) from GLDAS-Noah [<a href="#B30-remotesensing-15-03505" class="html-bibr">30</a>] are also shown. Note the different scales at the <span class="html-italic">y</span>-axes.</p> "> Figure 7
<p>The 20-year average glacier-mass changes for 12 individual months in one year in 14 glacier mascons, in comparison to corresponding changes in snowfall, net precipitation, and air temperature (Temp., in <math display="inline"><semantics><mrow><mo>°</mo><mi mathvariant="normal">C</mi></mrow></semantics></math>). Note the different scale of the <span class="html-italic">y</span>-axes.</p> "> Figure 8
<p>As in <a href="#remotesensing-15-03505-f006" class="html-fig">Figure 6</a>, but for 10 selected water basins.</p> "> Figure 9
<p>As in <a href="#remotesensing-15-03505-f007" class="html-fig">Figure 7</a>, but for 10 selected water basins.</p> "> Figure A1
<p>Mascon inverted monthly mass changes at 14 glacier mascons in EWT from 2002 to 2021 derived from five different solution-filter combinations using RIA regularization method with SEDI. Note that the SH solutions up to d/o 60 and a 340km-radius Gaussian filter are used in inversion.</p> "> Figure A2
<p>As in <a href="#remotesensing-15-03505-f0A1" class="html-fig">Figure A1</a>, but for 10 selected water basins.</p> "> Figure A3
<p>Monthly mass changes of 20 selected cases at 14 mascons from 2002 to 2021. We do not provide a legend as the correlation better than 0.9 is obvious.</p> "> Figure A4
<p>As in <a href="#remotesensing-15-03505-f0A3" class="html-fig">Figure A3</a>, but for 10 selected water basins.</p> "> Figure A5
<p>The average air temperature values for all months (<b>a</b>), summer months (<b>b</b>) and winter months (<b>c</b>) during 2002 and 2021 using GLDAS-Noah data [<a href="#B30-remotesensing-15-03505" class="html-bibr">30</a>]. Note that the gray lines are the contours. The numbers 1–14 in subfigure (<b>a</b>) indicate the 14 mascons as defined in <a href="#remotesensing-15-03505-f001" class="html-fig">Figure 1</a>.</p> ">
Abstract
:1. Introduction
2. Data and Methodology
2.1. GRACE Data
2.2. GLDAS Data
2.3. Gap Filling within GRACE Missions
2.4. Destriping Filters
2.5. Computation of Mass Changes
2.5.1. Calculation of SHCs-Derived TWS Change
2.5.2. Mascon Inverted Solution
2.6. Uncertainty Calculation
3. Results
3.1. Effects of Destriping Filters and GRACE Data on SH Synthetic-Mass Changes
3.2. Effects of Inversion Processing on Mascon Inverted Mass Changes
3.3. Improved Mass Changes in Mascon Inverted Solutions
4. Discussion
4.1. Comparison with Previous Studies
Mascon | Glacier Mass Change Trend Rates (Gt a−1) | |||||||
---|---|---|---|---|---|---|---|---|
ICESat | ASTER | ICESat | GRACE | |||||
2003–2008 | 2003–2009 | 2000–2016 | 2003–2019 | 2003–2008 | 2003–2009 | 2002–2016 | 2003–2019 | |
1 | −8.1 ± 1.9 | −4.5 ± 3.3 | −4.9 ± 1.8 | −7.1 ± 1.4 | −6.63 ± 3.60 | −7.11 ± 2.54 | −5.45 ± 0.76 | −5.47 ± 0.64 |
2 | −3.1 ± 0.8 | −5.5 ± 1.6 | −1.2 ± 0.6 | −2.4 ± 0.5 | −2.39 ± 1.06 | −6.47 ± 1.18 | −2.34 ± 0.30 | −2.03 ± 0.28 |
3 | −3.1 ± 1.0 | −1.9 ± 1.2 | −3.0 ± 1.0 | −3.55 ± 1.04 | −2.79 ± 0.34 | −2.57 ± 0.24 | ||
4 | −3.2 ± 1.1 | −3.1 ± 1.8 | −1.9 ± 0.5 | −3.0 ± 1.0 | −1.59 ± 1.44 | −1.91 ± 1.06 | −1.84 ± 0.36 | −1.92 ± 0.34 |
5 | −4.6 ± 1.6 | −4.4 ± 1.6 | −2.9 ± 0.7 | −3.8 ± 1.4 | −0.59 ± 2.70 | −0.63 ± 1.84 | −0.43 ± 0.60 | −0.03 ± 0.38 |
6 | −2.1 ± 2.2 | −2.6 ± 4.4 | −0.7 ± 1.5 | −3.0 ± 3.9 | 1.71 ± 4.28 | 1.82 ± 4.24 | 1.39 ± 0.76 | 1.17 ± 0.52 |
7 | −2.7 ± 1.7 | −1.2 ± 0.7 | −2.0 ± 1.8 | −0.41 ± 4.42 | 0.15 ± 0.70 | 0.05 ± 0.50 | ||
8 | −3.1 ± 2.3 | −2.1 ± 4.1 | −0.7 ± 0.7 | −1.9 ± 1.7 | −3.48 ± 4.70 | −3.22 ± 3.24 | −1.60 ± 0.96 | −1.72 ± 0.74 |
9 + 10 + 11 + 12 | −5.33 ± 4.36 | −7.5 ± 3.4 | −4.0 ± 2.9 | −5.4 ± 2.5 | −9.64 ± 1.86 | −8.54 ± 1.74 | −5.27 ± 0.84 | −4.57 ± 0.78 |
13 | 0.6 ± 1.4 | 1.5 ± 1.7 | 1.6 ± 0.9 | 1.6 ± 2.1 | 0.57 ± 1.14 | 0.50 ± 0.78 | 0.84 ± 0.24 | 0.74 ± 0.16 |
14 | −0.6 ± 0.8 | −0.16 ± 0.17 | ||||||
Source | * Kääb et al. [67] | Gardner et al. [47] | * Brun et al. [7] | Wang et al. [51] | This study |
4.2. Other Factors Introducing Uncertainty
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Complementary Figures and Tables
PCC | a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p | q | r | s | t |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
a | 1.00 | 0.98 | 1.00 | 0.99 | 0.98 | 0.96 | 0.98 | 0.98 | 0.97 | 0.95 | 0.97 | 0.97 | 0.99 | 0.96 | 0.99 | 0.98 | 0.97 | 0.94 | 0.97 | 0.96 |
b | 1.00 | 0.97 | 0.99 | 0.96 | 0.98 | 0.95 | 0.97 | 0.94 | 0.97 | 0.94 | 0.95 | 0.97 | 0.99 | 0.96 | 0.97 | 0.95 | 0.97 | 0.94 | 0.96 | |
c | 1.00 | 0.99 | 0.98 | 0.95 | 0.98 | 0.97 | 0.97 | 0.94 | 0.97 | 0.96 | 0.99 | 0.95 | 0.99 | 0.97 | 0.97 | 0.94 | 0.98 | 0.96 | ||
d | 1.00 | 0.98 | 0.97 | 0.97 | 0.98 | 0.96 | 0.95 | 0.95 | 0.97 | 0.99 | 0.97 | 0.98 | 0.98 | 0.97 | 0.95 | 0.96 | 0.97 | |||
e | 1.00 | 0.98 | 1.00 | 0.99 | 0.99 | 0.96 | 0.98 | 0.98 | 0.97 | 0.94 | 0.97 | 0.96 | 0.99 | 0.96 | 0.99 | 0.98 | ||||
f | 1.00 | 0.97 | 0.99 | 0.96 | 0.99 | 0.95 | 0.97 | 0.95 | 0.97 | 0.95 | 0.96 | 0.97 | 0.99 | 0.96 | 0.97 | |||||
g | 1.00 | 0.99 | 0.98 | 0.96 | 0.99 | 0.98 | 0.97 | 0.93 | 0.98 | 0.95 | 0.99 | 0.95 | 0.99 | 0.97 | ||||||
h | 1.00 | 0.98 | 0.97 | 0.97 | 0.98 | 0.97 | 0.95 | 0.97 | 0.97 | 0.99 | 0.97 | 0.98 | 0.98 | |||||||
i | 1.00 | 0.98 | 1.00 | 0.99 | 0.96 | 0.93 | 0.96 | 0.95 | 0.98 | 0.94 | 0.98 | 0.96 | ||||||||
j | 1.00 | 0.97 | 0.98 | 0.94 | 0.96 | 0.94 | 0.95 | 0.96 | 0.97 | 0.95 | 0.96 | |||||||||
k | 1.00 | 0.99 | 0.96 | 0.92 | 0.97 | 0.94 | 0.98 | 0.94 | 0.98 | 0.96 | ||||||||||
l | 1.00 | 0.96 | 0.94 | 0.96 | 0.95 | 0.98 | 0.95 | 0.97 | 0.97 | |||||||||||
m | 1.00 | 0.97 | 1.00 | 0.99 | 0.98 | 0.96 | 0.98 | 0.97 | ||||||||||||
n | 1.00 | 0.96 | 0.99 | 0.96 | 0.98 | 0.95 | 0.97 | |||||||||||||
o | 1.00 | 0.98 | 0.98 | 0.95 | 0.98 | 0.97 | ||||||||||||||
p | 1.00 | 0.97 | 0.97 | 0.96 | 0.98 | |||||||||||||||
q | 1.00 | 0.97 | 1.00 | 0.99 | ||||||||||||||||
r | 1.00 | 0.96 | 0.99 | |||||||||||||||||
s | 1.00 | 0.98 | ||||||||||||||||||
t | 1.00 |
Glacier Mascons | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PCC | 0.60 | 0.83 | 0.90 | 0.76 | 0.75 | 0.77 | 0.86 | 0.87 | 0.52 | 0.78 | 0.45 | 0.71 | 0.48 | 0.06 |
Water basins | NWIA | BBN | TRM | QDM | ENDR | YLRS | YZRS | MKRS | SWRS | YZBR | - | - | - | - |
PCC | 0.89 | 0.91 | 0.42 | −0.04 | 0.82 | 0.24 | 0.60 | 0.69 | 0.74 | 0.77 | - | - | - | - |
References
- Bhattacharya, A.; Bolch, T.; Mukherjee, K.; King, O.; Menounos, B.; Kapitsa, V.; Neckel, N.; Yang, W.; Yao, T. High Mountain Asian glacier response to climate revealed by multi-temporal satellite observations since the 1960s. Nat. Commun. 2021, 12, 4133. [Google Scholar] [CrossRef] [PubMed]
- Yao, T.; Thompson, L.; Yang, W.; Yu, W.; Gao, Y.; Guo, X.; Yang, X.; Duan, K.; Zhao, H.; Xu, B.; et al. Different glacier status with atmospheric circulations in Tibetan plateau and surroundings. Nat. Clim. Chang. 2012, 2, 663–667. [Google Scholar] [CrossRef]
- Jiang, W.; Yuan, P.; Chen, H.; Cai, J.; Li, Z.; Chao, N.; Sneeuw, N. Annual variations of monsoon and drought detected by GPS: A case study in Yunnan, China. Sci. Rep. 2017, 7, 5874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, G.Q.; Yao, T.D.; Shum, C.K.; Yi, S.; Yang, K.; Xie, H.J.; Feng, W.; Bolch, T.; Wang, L.; Behrangi, A.; et al. Lake volume and groundwater storage variations in Tibetan Plateau’s endorheic basin. Geophys. Res. Lett. 2017, 44, 5550–5560. [Google Scholar] [CrossRef]
- Song, C.Q.; Huang, B.; Ke, L.H. Modeling and analysis of lake water storage changes on the Tibetan Plateau using multi-mission satellite data. Remote Sens. Environ. 2013, 135, 25–35. [Google Scholar] [CrossRef]
- Neckel, N.; Kropáček, J.; Bolch, T.; Hochschild, V. Glacier mass changes on the Tibetan Plateau 2003-2009 derived from ICESat laser altimetry measurements. Environ. Res. Lett. 2014, 9, 014009. [Google Scholar] [CrossRef]
- Brun, F.; Berthier, E.; Wagnon, P.; Kääb, A.; Treichler, D. A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016. Nat. Geosci. 2017, 10, 668–673. [Google Scholar] [CrossRef] [Green Version]
- Qin, Y.; Wu, T.; Zhao, L.; Wu, X.; Li, R.; Xie, C.; Pang, Q.; Hu, G.; Qiao, Y.; Zhao, G.; et al. Numerical modeling of the active layer thickness and permafrost thermal state across Qinghai-Tibetan Plateau. J. Geophys. Res. Atmos. 2017, 122, 11604–11620. [Google Scholar] [CrossRef]
- Xiang, L.; Wang, H.; Steffen, H.; Wu, P.; Jia, L.; Jiang, L.; Shen, Q. Groundwater storage changes in the Tibetan Plateau and adjacent areas revealed from GRACE satellite gravity data. Earth Planet. Sci. Lett. 2016, 449, 228–239. [Google Scholar] [CrossRef] [Green Version]
- Jarvis, A.; Reuter, H.I.; Nelson, A.; Guevara, E. Hole-Filled SRTM for the Globe Version 4, Available from the CGIAR-CSI SRTM 90 m Database. 2008. Available online: http://srtm.csi.cgiar.org (accessed on 3 August 2015).
- RGI Consortium. Randolph Glacier Inventory (RGI)—A Dataset of Global Glacier Outlines: Version 6.0; Technical Report; Global Land Ice Measurement from Space; NSIDC: Boulder, CO, USA, 2017. [Google Scholar] [CrossRef]
- Wahr, J.; Molenaar, M.; Bryan, F. Time variability of the Earth’ s gravity field: Hydrological and oceanic effects and their possible detection using GRACE. J. Geophys. Res. Solid Earth 1998, 103, 30205–30229. [Google Scholar] [CrossRef]
- Jing, W.; Zhang, P.; Zhao, X. A comparison of different GRACE solutions in terrestrial water storage trend estimation over Tibetan Plateau. Sci. Rep. 2019, 9, 1765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiang, L.; Wang, H.; Steffen, H.; Qiao, B.; Feng, W.; Jia, L.; Gao, P. Determination of Weak Terrestrial Water Storage Changes from GRACE in the Interior of the Tibetan Plateau. Remote Sens. 2022, 14, 544. [Google Scholar] [CrossRef]
- Jiao, J.J.; Zhang, X.; Liu, Y.; Kuang, X. Increased water storage in the Qaidam Basin, the North Tibet Plateau from GRACE gravity data. PLoS ONE 2015, 10, e0141442. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Long, D.; Hong, Y.; Zeng, C.; Yan, D. Improved modeling of snow and glacier melting by a progressive two-stage calibration strategy with GRACE and multisource data: How snow and glacier meltwater contributes to the runoff of the Upper Brahmaputra River basin? Water Resour. Res. 2017, 53, 2431–2466. [Google Scholar] [CrossRef]
- Deng, H.; Pepin, N.C.; Liu, Q.; Chen, Y. Understanding the spatial differences in terrestrial water storage variations in the Tibetan Plateau from 2002 to 2016. Clim. Chang. 2018, 151, 379–393. [Google Scholar] [CrossRef] [Green Version]
- Feng, W.; Shum, C.K.; Zhong, M.; Pan, Y. Groundwater Storage Changes in China from Satellite Gravity: An Overview. Remote Sens. 2018, 10, 674. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Liu, S.; Yi, Y.; Qi, M.; Li, W.; Saifullah, M.; Zhang, S.; Wu, K. Spatio-temporal variations in terrestrial water storage and its controlling factors in the Eastern Qinghai-Tibet Plateau. Hydrol. Res. 2021, 52, 323–338. [Google Scholar] [CrossRef]
- Forootan, E.; Schumacher, M.; Mehrnegar, N.; Bezděk, A.; Talpe, M.J.; Farzaneh, S.; Zhang, C.; Zhang, Y.; Shum, C.K. An iterative ICA-based reconstruction method to produce consistent time-variable total water storage fields using GRACE and Swarm satellite data. Remote Sens. 2020, 12, 1639. [Google Scholar] [CrossRef]
- Sun, A.Y.; Scanlon, B.R.; Save, H.; Rateb, A. Reconstruction of GRACE total water storage through automated machine learning. Water Resour. Res. 2021, 57, e2020WR028666. [Google Scholar] [CrossRef]
- Wang, F.; Shen, Y.; Chen, Q.; Wang, W. Bridging the gap between GRACE and GRACE follow-on monthly gravity field solutions using improved multichannel singular spectrum analysis. J. Hydrol. 2021, 594, 125972. [Google Scholar] [CrossRef]
- Yi, S.; Sneeuw, N. Filling the data gaps within GRACE missions using singular spectrum analysis. J. Geophys. Res. Solid Earth 2021, 126, e2020JB021227. [Google Scholar] [CrossRef]
- Mo, S.; Zhong, Y.; Forootan, E.; Mehrnegar, N.; Yin, X.; Wu, J.; Feng, W.; Shi, X. Bayesian convolutional neural networks for predicting the terrestrial water storage anomalies during GRACE and GRACE-FO gap. J. Hydrol. 2022, 604, 127244. [Google Scholar] [CrossRef]
- Mayer-Gürr, T.; Behzadpour, S.; Ellmer, M.; Kvas, A.; Klinger, B.; Zehentner, N. ITSG-Grace2016-Monthly and Daily Gravity Field Solutions from GRACE, GFZ Data Services. 2016. Available online: https://dataservices.gfz-potsdam.de/icgem/showshort.php?id=escidoc:1697893 (accessed on 19 April 2022).
- Bettadpur, S. UTCSR Level-2 Processing Standards Document for Level-2 Product Release 0005; GRACE 327-742, CSR-GR-12-xx; Center for Space Research University: Austin, TX, USA, 2012; p. 17. [Google Scholar]
- Swenson, S.; Chambers, D.; Wahr, J. Estimating geocenter variations from a combination of GRACE and ocean model output. J. Geophys. Res. Solid Earth 2008, 113, B08410. [Google Scholar] [CrossRef] [Green Version]
- Loomis, B.D.; Rachlin, K.E.; Wiese, D.N.; Landerer, F.W.; Luthcke, S.B. Replacing GRACE/GRACE-FO C30 With Satellite Laser Ranging: Impacts on Antarctic Ice Sheet Mass Change. Geophys. Res. Lett. 2020, 47, e2019GL085488. [Google Scholar] [CrossRef]
- Peltier, W.R.; Argus, D.F.; Drummond, R. Space geodesy constrains ice-age terminal deglaciation: The global ICE-6G_C (VM5a) model. J. Geophys. Res. Solid Earth 2015, 120, 450–487. [Google Scholar] [CrossRef] [Green Version]
- Rodell, M.; Houser, P.R.; Jambor, U.E.A.; Gottschalck, J.; Mitchell, K.; Meng, C.J.; Arsenault, K.; Cosgrove, B.; Radakovich, J.; Bosilovich, M.; et al. The global land data assimilation system. Bull. Am. Meteorol. Soc. 2004, 85, 381–394. [Google Scholar] [CrossRef] [Green Version]
- Duan, X.J.; Guo, J.Y.; Shum, C.K.; van der Wal, W. On the Post processing Removal of Correlated Errors in GRACE Temporal Gravity Field Solutions. J. Geod. 2009, 83, 1095–1106. [Google Scholar] [CrossRef] [Green Version]
- Swenson, S.; Wahr, J. Post-Processing Removal of Correlated Errors in GRACE Data. Geophys. Res. Lett. 2006, 33, L08402. [Google Scholar] [CrossRef]
- Jekeli, C. Alternative methods to smooth the Earth’s gravity field. In Reports of the Department of Geodetic Science and Surveying; Report No. 327; Ohio State University: Columbus, OH, USA, 1981. [Google Scholar]
- Jacob, T.; Wahr, J.; Pfeffer, W.T.; Swenson, S. Recent contributions of glaciers and ice caps to sea level rise. Nature 2012, 482, 514–518. [Google Scholar] [CrossRef]
- Yi, S.; Sun, W. Evaluation of glacier changes in high-mountain Asia based on 10 year GRACE RL05 models. J. Geophys. Res. Solid Earth 2014, 119, 2504–2517. [Google Scholar] [CrossRef]
- Li, P.F.; Tong, X.F.; Li, P.J. A Regularized Iterative Algorithm for Solving over-determined Ill-conditioned Linear Equations. Comput. Digit. Eng. 2018, 46, 1501–1504. [Google Scholar]
- Mao, X.J.; Yang, L.Y. A simple iteration algorithm for morbid state linear equation group. Comput. Tech. Geophys. Geochem. Explor. 1999, 21, 14–18. [Google Scholar]
- Hansen, P.C. Regularization Tools: A Matlab package for analysis and solution of discrete ill-posed problems. Numer. Algorithms 2007, 46, 189–194. [Google Scholar] [CrossRef]
- Farinotti, D.; Longuevergne, L.; Moholdt, G.; Duethmann, D.; Mölg, T.; Bolch, T.; Voro-gushyn, S.; Güntner, A. Substantial glacier mass loss in the Tien Shan over the past 50 years. Nat. Geosci. 2015, 8, 716–722. [Google Scholar] [CrossRef]
- Rodell, M.; Velicogna, I.; Famiglietti, J.S. Satellite-based estimates of groundwater depletion in India. Nature 2009, 460, 999–1002. [Google Scholar] [CrossRef] [Green Version]
- Long, D.; Chen, X.; Scanlon, B.R.; Wada, Y.; Hong, Y.; Singh, V.P.; Yang, W. Have GRACE satellites overestimated groundwater depletion in the Northwest India Aquifer? Sci. Rep. 2016, 6, 24398. [Google Scholar] [CrossRef] [Green Version]
- Gardelle, J.; Berthier, E.; Arnaud, Y. Slight mass gain of Karakoram glaciers in the early twenty-first century. Nat. Geosci. 2012, 5, 322–325. [Google Scholar] [CrossRef]
- Gardelle, J.; Berthier, E.; Arnaud, Y.; Kääb, A. Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999–2011. Cryosphere 2013, 7, 1263–1286. [Google Scholar] [CrossRef] [Green Version]
- Farinotti, D.; Immerzeel, W.W.; de Kok, R.J.; Quincey, D.J.; Dehecq, A. Manifestations and mechanisms of the Karakoram glacier Anomaly. Nat. Geosci. 2020, 13, 8–16. [Google Scholar] [CrossRef]
- Shen, C.; Jia, L.; Ren, S. Inter-and Intra-Annual Glacier Elevation Change in High Mountain Asia Region Based on ICESat-1&2 Data Using Elevation-Aspect Bin Analysis Method. Remote Sens. 2022, 14, 1630. [Google Scholar]
- Liang, Q.; Wang, N.; Yang, X.; Chen, A.; Hua, T.; Li, Z.; Yang, D. The eastern limit of ‘Kunlun-Pamir-Karakoram Anomaly’ reflected by changes in glacier area and surface elevation. J. Glaciol. 2022, 68, 1167–1176. [Google Scholar] [CrossRef]
- Gardner, A.S.; Moholdt, G.; Cogley, J.G.; Wouters, B.; Arendt, A.A.; Wahr, J.; Berthier, E.; Hock, R.; Tad Pfeffer, W.; Kaser, G.; et al. A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science 2013, 340, 852–857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bao, W.J.; Liu, S.Y.; Wei, J.F.; Guo, W.Q. Glacier changes during the past 40 years in the West Kunlun Shan. J. Mt. Sci. 2015, 12, 344–357. [Google Scholar] [CrossRef]
- Yasuda, T.; Furuya, M. Dynamics of surge-type glaciers in West Kunlun Shan, northwestern Tibet. J. Geophys. Res. Earth Surf. 2015, 120, 2393–2405. [Google Scholar] [CrossRef] [Green Version]
- Muhammad, S.; Tian, L. Mass balance and a glacier surge of Guliya ice cap in the western Kunlun Shan between 2005 and 2015. Remote Sens. Environ. 2020, 244, 111832. [Google Scholar] [CrossRef]
- Wang, Q.; Yi, S.; Sun, W. Continuous estimates of glacier mass balance in high mountain Asia based on ICESat-1, 2 and GRACE/GRACE follow-on data. Geophys. Res. Lett. 2021, 48, e2020GL090954. [Google Scholar] [CrossRef]
- Shamsudduha, M.; Taylor, R.G.; Longuevergne, L. Monitoring groundwater storage changes in the highly seasonal humid tropics: Validation of GRACE measurements in the Bengal Basin. Water Resour. Res. 2012, 48, W02508. [Google Scholar] [CrossRef] [Green Version]
- Wei, L.; Jiang, S.; Ren, L.; Tan, H.; Ta, W.; Liu, Y.; Yang, X.; Zhang, L.; Duan, Z. Spatiotemporal changes of terrestrial water storage and possible causes in the closed Qaidam Basin, China using GRACE and GRACE Follow-On data. J. Hydrol. 2021, 598, 126274. [Google Scholar] [CrossRef]
- Xu, M.; Kang, S.; Chen, X.; Wu, H.; Wang, X.; Su, Z. Detection of hydrological variations and their impacts on vegetation from multiple satellite observations in the Three-River Source Region of the Tibetan Plateau. Sci. Total Environ. 2018, 639, 1220–1232. [Google Scholar] [CrossRef]
- Bibi, S.; Song, Q.; Zhang, Y.; Liu, Y.; Kamran, M.A.; Sha, L.; Zhou, W.; Wang, S.; Gnanamoorthy, P. Effects of climate change on terrestrial water storage and basin discharge in the Lancang River Basin. J. Hydrol. Reg. Stud. 2021, 37, 100896. [Google Scholar] [CrossRef]
- Yang, B.; Li, Y.; Tao, C.; Cui, C.; Hu, F.; Cui, Q.; Meng, L.; Zhang, W. Variations and drivers of terrestrial water storage in ten basins of China. J. Hydrol. Reg. Stud. 2023, 45, 101286. [Google Scholar] [CrossRef]
- Rao, W.; Sun, W. Uplift of the Tibetan Plateau: How to Accurately Compute the Hydrological Load Effect? J. Geophys. Res. Solid Earth 2022, 127, e2021JB022475. [Google Scholar] [CrossRef]
- Ouyang, L.; Yang, K.; Qin, J.; Wang, Y.; Lu, H. Advances and Perspectives in Precipitation Research for Himalayan Mountains. Plateau Meteorol. 2017, 36, 1165–1175. [Google Scholar]
- Cannon, F.; Carvalho, L.; Jones, C.; Norris, J. Winter westerly disturbance dynamics and precipitation in the western Himalaya and Karakoram: A wave-tracking approach. Theor. Appl. Climatol. 2016, 125, 27–44. [Google Scholar] [CrossRef] [Green Version]
- Bajracharya, S.R.; Maharjan, S.B.; Shrestha, F.; Guo, W.; Liu, S.; Immerzeel, W.; Shrestha, B. The glaciers of the Hindu Kush Himalayas: Current status and observed changes from the 1980s to 2010. Int. J. Water Resour. Dev. 2015, 31, 161–173. [Google Scholar] [CrossRef] [Green Version]
- Hewitt, K. The Karakoram anomaly? Glacier expansion and the ‘elevation effect’, Karakoram Himalaya. Mt. Res. Dev. 2005, 25, 332–340. [Google Scholar] [CrossRef] [Green Version]
- Bhambri, R.; Hewitt, K.; Kawishwar, P.; Pratap, B. Surge-type and surge-modified glaciers in the Karakoram. Sci. Rep. 2017, 7, 15391. [Google Scholar] [CrossRef] [Green Version]
- Scherler, D.; Bookhagen, B.; Strecker, M.R. Spatially variable response of Himalayan glaciers to climate change affected by debris cover. Nat. Geosci. 2011, 4, 156–159. [Google Scholar] [CrossRef]
- Bashir, F.; Zeng, X.; Gupta, H.; Hazenberg, P. A hydrometeorological perspective on the Karakoram anomaly using unique valley-based synoptic weather observations. Geophys. Res. Lett. 2017, 44, 10470–10478. [Google Scholar] [CrossRef] [Green Version]
- Forsythe, N.; Fowler, H.; Li, X.F.; Blenkinsop, S.; Pritchard, D. Karakoram temperature and glacial melt driven by regional atmospheric circulation variability. Nat. Clim. Chang. 2017, 7, 664–670. [Google Scholar] [CrossRef] [Green Version]
- Chao, N.; Wang, Z.; Lo, M.H.; Wei, J.; Hwang, C.; Wu, T.Y. The Contribution of Middle East Irrigation to the Growth of the Karakoram Glacier. 2022. Available online: https://www.researchsquare.com/article/rs-2302100/v1 (accessed on 5 March 2023).
- Kääb, A.; Treichler, D.; Nuth, C.; Berthier, E. Brief Communication: Contending estimates of 2003–2008 glacier mass balance over the Pamir–Karakoram–Himalaya. Cryosphere 2015, 9, 557–564. [Google Scholar] [CrossRef] [Green Version]
- Jia, Y.; Lei, H.; Yang, H.; Hu, Q. Terrestrial water storage change retrieved by GRACE and its implication in the Tibetan Plateau: Estimating areal precipitation in Ungauged Region. Remote Sens. 2020, 12, 3129. [Google Scholar] [CrossRef]
- Qiao, B.; Nie, B.; Liang, C.; Xiang, L.; Zhu, L. Spatial difference of terrestrial water storage change and lake water storage change in the Inner Tibetan Plateau. Remote Sens. 2021, 13, 1984. [Google Scholar] [CrossRef]
- Meng, F.; Su, F.; Li, Y.; Tong, K. Changes in terrestrial water storage during 2003–2014 and possible causes in Tibetan Plateau. J. Geophys. Res. Atmos. 2019, 124, 2909–2931. [Google Scholar] [CrossRef]
- Chen, T.; Kusche, J.; Shen, Y.; Chen, Q. A combined use of TSVD and Tikhonov regularization for mass flux solution in Tibetan plateau. Remote Sens. 2020, 12, 2045. [Google Scholar] [CrossRef]
- Li, X.Y.; Long, D.; Scanlon, B.R.; Mann, M.E.; Li, X.D.; Tian, F.; Sun, Z.; Wang, G. Climate change threatens terrestrial water storage over the Tibetan Plateau. Nat. Clim. Chang. 2022, 12, 801–807. [Google Scholar] [CrossRef]
- Wang, G.; He, Y.; Huang, J.; Guan, X.; Wang, X.; Hu, H.; Wang, S.; Xie, Y. The influence of precipitation phase changes on the recharge process of terrestrial water storage in the cold season over the Tibetan Plateau. J. Geophys. Res. Atmos. 2022, 127, e2021JD035824. [Google Scholar] [CrossRef]
- Beveridge, A.K.; Harig, C.; Simons, F.J. The changing mass of glaciers on the Tibetan Plateau, 2002–2016, using time-variable gravity from the GRACE satellite mission. J. Geod. Sci. 2018, 8, 83–97. [Google Scholar] [CrossRef]
- Wang, J.; Chen, X.; Hu, Q.; Liu, J. Responses of terrestrial water storage to climate variation in the Tibetan Plateau. J. Hydrol. 2020, 584, 124652. [Google Scholar] [CrossRef]
- Zhao, K.; Li, X. Estimating terrestrial water storage changes in the Tarim River Basin using GRACE data. Geophys. J. Int. 2017, 211, 1449–1460. [Google Scholar] [CrossRef]
- Yang, P.; Xia, J.; Zhan, C.; Qiao, Y.; Wang, Y. Monitoring the spatio-temporal changes of terrestrial water storage using GRACE data in the Tarim River basin between 2002 and 2015. Sci. Total Environ. 2017, 595, 218–228. [Google Scholar] [CrossRef] [PubMed]
- Vissa, N.K.; Anandh, P.C.; Behera, M.M.; Mishra, S. ENSO-induced groundwater changes in India derived from GRACE and GLDAS. J. Earth Syst. Sci. 2019, 128, 115. [Google Scholar] [CrossRef] [Green Version]
- Zhong, S.; Zuber, M.T. Crustal compensation during mountain-building. Geophys. Res. Lett. 2000, 27, 3009–3012. [Google Scholar] [CrossRef]
No. | a | b | c | d | e | f | g | h | i | j | k | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Nyainqentanglha | −4.77 ± 1.44 | −4.73 ± 1.15 | −4.82 ± 1.43 | −4.73 ± 1.37 | −5.09 ± 1.44 | −5.05 ± 1.15 | −5.15 ± 1.44 | −5.05 ± 1.37 | −4.76 ± 1.44 | −4.74 ± 1.15 | −4.80 ± 1.43 |
2 | E. Himalayas | −2.21 ± 0.52 | −2.09 ± 0.22 | −2.24 ± 0.53 | −2.08 ± 0.55 | −1.89 ± 0.52 | −1.79 ± 0.22 | −1.92 ± 0.53 | −1.77 ± 0.55 | −1.72 ± 0.52 | −1.62 ± 0.23 | −1.75 ± 0.53 |
3 | −2.10 ± 1.23 | −2.16 ± 0.87 | −2.09 ± 1.24 | −2.18 ± 1.17 | −2.36 ± 1.23 | −2.46 ± 0.87 | −2.35 ± 1.24 | −2.48 ± 1.17 | −2.88 ± 1.23 | −2.95 ± 0.87 | −2.88 ± 1.24 | |
4 | W. Himalayas | −2.08 ± 0.90 | −1.96 ± 1.01 | −2.14 ± 0.90 | −1.93 ± 0.90 | −1.91 ± 0.90 | −1.79 ± 1.01 | −1.93 ± 0.90 | −1.79 ± 0.90 | −1.88 ± 0.91 | −1.77 ± 1.01 | −1.93 ± 0.90 |
5 | −0.45 ± 0.31 | −0.46 ± 0.23 | −0.43 ± 0.30 | −0.48 ± 0.26 | −0.26 ± 0.30 | −0.24 ± 0.23 | −0.24 ± 0.30 | −0.26 ± 0.26 | −0.16 ± 0.27 | −0.17 ± 0.24 | −0.14 ± 0.26 | |
6 | Karakoram | 1.09 ± 0.29 | 1.08 ± 0.30 | 1.07 ± 0.29 | 1.11 ± 0.27 | 0.97 ± 0.30 | 0.93 ± 0.30 | 1.30 ± 0.30 | 0.95 ± 0.27 | 1.41 ± 0.29 | 1.37 ± 0.31 | 1.41 ± 0.29 |
7 | Hindukush | 0.43 ± 0.41 | 0.53 ± 0.33 | 0.38 ± 0.42 | 0.54 ± 0.38 | −0.37 ± 0.42 | −0.37 ± 0.33 | −0.19 ± 0.43 | −0.38 ± 0.38 | 0.06 ± 0.40 | 0.16 ± 0.34 | −0.01 ± 0.41 |
8 | Pamir | −2.13 ± 0.53 | −2.29 ± 0.54 | −2.11 ± 0.54 | −2.20 ± 0.59 | −1.68 ± 0.53 | −1.82 ± 0.55 | −1.52 ± 0.54 | −1.71 ± 0.60 | −1.83 ± 0.54 | −2.03 ± 0.55 | −1.78 ± 0.54 |
9 | Tien Shan | −1.84 ± 0.35 | −1.81 ± 0.24 | −1.83 ± 0.34 | −1.78 ± 0.34 | −1.80 ± 0.36 | −1.74 ± 0.24 | −1.64 ± 0.35 | −1.72 ± 0.34 | −1.79 ± 0.37 | −1.76 ± 0.24 | −1.78 ± 0.37 |
10 | −0.52 ± 0.57 | −0.35 ± 0.51 | −0.54 ± 0.56 | −0.41 ± 0.52 | −0.85 ± 0.57 | −0.71 ± 0.51 | −0.25 ± 0.57 | −0.80 ± 0.52 | −0.45 ± 0.60 | −0.27 ± 0.51 | −0.48 ± 0.60 | |
11 | −2.45 ± 0.35 | −2.37 ± 0.08 | −2.50 ± 0.36 | −2.35 ± 0.16 | −2.49 ± 0.35 | −2.39 ± 0.08 | −2.52 ± 0.36 | −2.37 ± 0.16 | −2.52 ± 0.37 | −2.44 ± 0.08 | −2.58 ± 0.37 | |
12 | −0.24 ± 0.12 | −0.23 ± 0.06 | −0.23 ± 0.12 | −0.22 ± 0.03 | −0.17 ± 0.11 | −0.16 ± 0.06 | −0.16 ± 0.11 | −0.16 ± 0.03 | −0.18 ± 0.10 | −0.16 ± 0.06 | −0.17 ± 0.10 | |
13 | West Kunlun | 0.63 ± 0.16 | 0.64 ± 0.13 | 0.64 ± 0.16 | 0.60 ± 0.12 | 0.73 ± 0.17 | 0.80 ± 0.12 | 0.69 ± 0.17 | 0.77 ± 0.11 | 0.65 ± 0.16 | 0.69 ± 0.13 | 0.67 ± 0.15 |
14 | Qilian | 0.16 ± 0.05 | 0.13 ± 0.07 | 0.18 ± 0.05 | 0.10 ± 0.06 | −0.03 ± 0.05 | −0.03 ± 0.06 | 0.11 ± 0.05 | −0.06 ± 0.06 | 0.04 ± 0.06 | 0.03 ± 0.06 | 0.08 ± 0.07 |
No. | l | m | n | o | p | q | r | s | t | AVE | ||
1 | Nyainqentanglha | −4.74 ± 1.37 | −5.06 ± 1.44 | −4.93 ± 1.16 | −5.12 ± 1.43 | −4.91 ± 1.38 | −4.99 ± 1.43 | −4.91 ± 1.16 | −5.08 ± 1.43 | −4.90 ± 1.38 | −4.92 ± 1.38 | |
2 | E. Himalayas | −1.60 ± 0.55 | −2.12 ± 0.52 | −1.97 ± 0.23 | −2.18 ± 0.53 | −1.91 ± 0.55 | −1.66 ± 0.52 | −1.50 ± 0.23 | −1.69 ± 0.53 | −1.46 ± 0.55 | −1.86 ± 0.65 | |
3 | −2.95 ± 1.17 | −2.01 ± 1.24 | −2.13 ± 0.87 | −2.00 ± 1.24 | −2.16 ± 1.17 | −2.79 ± 1.24 | −2.92 ± 0.87 | −2.78 ± 1.24 | −2.94 ± 1.17 | −2.48 ± 1.33 | ||
4 | W. Himalayas | −1.76 ± 0.90 | −2.19 ± 0.90 | −1.99 ± 1.01 | −2.12 ± 0.90 | −2.00 ± 0.90 | −1.85 ± 0.90 | −1.81 ± 1.01 | −1.91 ± 0.90 | −1.82 ± 0.90 | −1.92 ± 0.96 | |
5 | −0.19 ± 0.26 | −0.42 ± 0.28 | −0.30 ± 0.25 | −0.28 ± 0.28 | −0.35 ± 0.27 | 0.03 ± 0.27 | −0.03 ± 0.25 | −0.08 ± 0.27 | −0.08 ± 0.27 | −0.24 ± 0.41 | ||
6 | Karakoram | 1.40 ± 0.28 | 1.19 ± 0.28 | 1.04 ± 0.31 | 1.03 ± 0.28 | 1.09 ± 0.28 | 1.40 ± 0.29 | 1.37 ± 0.31 | 1.40 ± 0.29 | 1.42 ± 0.28 | 1.18 ± 0.48 | |
7 | Hindukush | 0.18 ± 0.39 | 0.22 ± 0.41 | 0.53 ± 0.34 | 0.37 ± 0.42 | 0.54 ± 0.38 | 0.06 ± 0.42 | 0.16 ± 0.34 | −0.02 ± 0.42 | 0.19 ± 0.39 | 0.15 ± 0.76 | |
8 | Pamir | −1.94 ± 0.60 | −2.03 ± 0.54 | −2.35 ± 0.54 | −2.14 ± 0.54 | −2.26 ± 0.59 | −1.84 ± 0.54 | −2.06 ± 0.55 | −1.79 ± 0.54 | −1.99 ± 0.60 | −1.99 ± 0.70 | |
9 | Tien Shan | −1.73 ± 0.34 | −1.74 ± 0.35 | −1.76 ± 0.24 | −1.81 ± 0.35 | −1.69 ± 0.34 | −1.74 ± 0.36 | −1.68 ± 0.24 | −1.74 ± 0.35 | −1.63 ± 0.35 | −1.76 ± 0.35 | |
10 | −0.33 ± 0.52 | −0.65 ± 0.56 | −0.30 ± 0.51 | −0.52 ± 0.56 | −0.36 ± 0.52 | −0.42 ± 0.57 | −0.24 ± 0.51 | −0.47 ± 0.56 | −0.31 ± 0.52 | −0.48 ± 0.68 | ||
11 | −2.43 ± 0.16 | −2.64 ± 0.33 | −2.42 ± 0.09 | −2.53 ± 0.35 | −2.42 ± 0.17 | −2.57 ± 0.33 | −2.51 ± 0.08 | −2.62 ± 0.35 | −2.51 ± 0.17 | −2.47 ± 0.38 | ||
12 | −0.16 ± 0.03 | −0.23 ± 0.11 | −0.24 ± 0.06 | −0.25 ± 0.11 | −0.23 ± 0.03 | −0.19 ± 0.10 | −0.17 ± 0.06 | −0.19 ± 0.10 | −0.17 ± 0.03 | −0.20 ± 0.13 | ||
13 | West Kunlun | 0.65 ± 0.12 | 0.57 ± 0.15 | 0.61 ± 0.13 | 0.61 ± 0.15 | 0.54 ± 0.12 | 0.63 ± 0.16 | 0.65 ± 0.13 | 0.63 ± 0.16 | 0.60 ± 0.12 | 0.65 ± 0.21 | |
14 | Qilian | 0.04 ± 0.06 | 0.20 ± 0.05 | 0.16 ± 0.07 | 0.24 ± 0.06 | 0.13 ± 0.06 | 0.06 ± 0.05 | 0.03 ± 0.07 | 0.11 ± 0.06 | 0.01 ± 0.06 | 0.08 ± 0.17 |
Area | a | b | c | d | e | f | g | h | i | j | k |
---|---|---|---|---|---|---|---|---|---|---|---|
NWIA | −8.69 ± 0.47 | −8.73 ± 0.48 | −8.67 ± 0.47 | −8.72 ± 0.47 | −8.59 ± 0.48 | −8.67 ± 0.48 | −8.60 ± 0.48 | −8.62 ± 0.49 | −9.48 ± 0.48 | −9.56 ± 0.48 | −9.51 ± 0.48 |
BBN | −2.99 ± 0.35 | −3.00 ± 0.35 | −3.05 ± 0.35 | −2.99 ± 0.35 | −3.10 ± 0.33 | −3.09 ± 0.33 | −3.15 ± 0.33 | −3.07 ± 0.33 | −2.93 ± 0.37 | −2.93 ± 0.37 | −2.98 ± 0.37 |
TRM | −1.66 ± 0.73 | −1.71 ± 0.74 | −1.65 ± 0.73 | −1.77 ± 0.74 | −2.22 ± 0.70 | −2.27 ± 0.69 | −2.22 ± 0.70 | −2.32 ± 0.70 | −1.92 ± 0.69 | −1.92 ± 0.71 | −1.93 ± 0.69 |
QDM | 2.00 ± 0.23 | 1.97 ± 0.21 | 1.99 ± 0.22 | 1.97 ± 0.22 | 2.08 ± 0.25 | 2.05 ± 0.24 | 2.07 ± 0.24 | 2.05 ± 0.24 | 1.85 ± 0.25 | 1.82 ± 0.22 | 1.84 ± 0.25 |
ENDR | 0.85 ± 0.45 | 0.64 ± 0.46 | 0.86 ± 0.45 | 0.68 ± 0.46 | 0.62 ± 0.42 | 0.44 ± 0.43 | 0.63 ± 0.42 | 0.49 ± 0.42 | 1.77 ± 0.40 | 1.60 ± 0.40 | 1.76 ± 0.39 |
YLRS | 0.66 ± 0.12 | 0.77 ± 0.13 | 0.65 ± 0.12 | 0.74 ± 0.12 | 0.77 ± 0.12 | 0.88 ± 0.12 | 0.75 ± 0.12 | 0.85 ± 0.13 | 0.77 ± 0.13 | 0.87 ± 0.14 | 0.76 ± 0.13 |
YZRS | 1.37 ± 0.12 | 1.38 ± 0.11 | 1.39 ± 0.12 | 1.37 ± 0.11 | 1.30 ± 0.11 | 1.31 ± 0.11 | 1.31 ± 0.11 | 1.30 ± 0.11 | 1.06 ± 0.10 | 1.06 ± 0.10 | 1.07 ± 0.10 |
MKRS | 0.17 ± 0.07 | 0.20 ± 0.08 | 0.16 ± 0.08 | 0.22 ± 0.07 | 0.19 ± 0.07 | 0.23 ± 0.07 | 0.19 ± 0.07 | 0.24 ± 0.08 | 0.13 ± 0.06 | 0.16 ± 0.06 | 0.12 ± 0.06 |
SWRS | −0.83 ± 0.12 | −0.84 ± 0.13 | −0.83 ± 0.12 | −0.84 ± 0.12 | −0.86 ± 0.11 | −0.87 ± 0.12 | −0.86 ± 0.11 | −0.87 ± 0.12 | −1.01 ± 0.11 | −1.02 ± 0.12 | −1.02 ± 0.10 |
YZBR | −4.03 ± 0.21 | −4.01 ± 0.21 | −4.08 ± 0.21 | −3.98 ± 0.22 | −3.99 ± 0.21 | −3.98 ± 0.21 | −4.03 ± 0.21 | −3.95 ± 0.21 | −3.95 ± 0.22 | −3.93 ± 0.21 | −4.00 ± 0.22 |
Area | l | m | n | o | p | q | r | s | t | AVE | |
NWIA | −9.50 ± 0.48 | −8.74 ± 0.47 | −8.85 ± 0.47 | −8.73 ± 0.47 | −8.84 ± 0.47 | −8.61 ± 0.47 | −8.72 ± 0.47 | −8.61 ± 0.47 | −8.70 ± 0.47 | −8.86 ± 0.82 | |
BBN | −2.91 ± 0.37 | −3.00 ± 0.36 | −3.01 ± 0.36 | −3.06 ± 0.35 | −3.00 ± 0.36 | −3.15 ± 0.34 | −3.16 ± 0.35 | −3.20 ± 0.34 | −3.15 ± 0.34 | −3.05 ± 0.38 | |
TRM | −2.00 ± 0.71 | −1.65 ± 0.80 | −1.69 ± 0.82 | −1.66 ± 0.81 | −1.75 ± 0.81 | −2.21 ± 0.77 | −2.23 ± 0.76 | −2.22 ± 0.77 | −2.29 ± 0.78 | −1.96 ± 0.89 | |
QDM | 1.82 ± 0.23 | 2.04 ± 0.20 | 1.99 ± 0.18 | 2.01 ± 0.19 | 1.97 ± 0.19 | 2.12 ± 0.21 | 2.08 ± 0.20 | 2.09 ± 0.21 | 2.06 ± 0.20 | 1.99 ± 0.29 | |
ENDR | 1.67 ± 0.39 | 0.91 ± 0.38 | 0.71 ± 0.40 | 0.91 ± 0.39 | 0.74 ± 0.39 | 0.69 ± 0.36 | 0.51 ± 0.36 | 0.69 ± 0.35 | 0.56 ± 0.36 | 0.89 ± 0.94 | |
YLRS | 0.84 ± 0.14 | 0.68 ± 0.13 | 0.81 ± 0.13 | 0.67 ± 0.13 | 0.78 ± 0.12 | 0.80 ± 0.13 | 0.93 ± 0.13 | 0.79 ± 0.13 | 0.90 ± 0.13 | 0.78 ± 0.20 | |
YZRS | 1.05 ± 0.10 | 1.47 ± 0.10 | 1.48 ± 0.09 | 1.52 ± 0.10 | 1.48 ± 0.10 | 1.41 ± 0.09 | 1.41 ± 0.09 | 1.45 ± 0.09 | 1.41 ± 0.09 | 1.33 ± 0.31 | |
MKRS | 0.18 ± 0.06 | 0.21 ± 0.06 | 0.22 ± 0.06 | 0.21 ± 0.07 | 0.24 ± 0.06 | 0.22 ± 0.06 | 0.22 ± 0.06 | 0.22 ± 0.06 | 0.24 ± 0.06 | 0.20 ± 0.09 | |
SWRS | −1.02 ± 0.11 | −0.86 ± 0.09 | −0.88 ± 0.10 | −0.86 ± 0.09 | −0.88 ± 0.09 | −0.87 ± 0.09 | −0.89 ± 0.09 | −0.87 ± 0.09 | −0.89 ± 0.09 | −0.89 ± 0.16 | |
YZBR | −3.90 ± 0.22 | −4.12 ± 0.21 | −4.07 ± 0.22 | −4.17 ± 0.21 | −4.04 ± 0.21 | −4.06 ± 0.20 | −4.03 ± 0.21 | −4.10 ± 0.20 | −4.00 ± 0.21 | −4.02 ± 0.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiang, L.; Wang, H.; Steffen, H.; Jiang, L.; Shen, Q.; Jia, L.; Su, Z.; Wang, W.; Deng, F.; Qiao, B.; et al. Two Decades of Terrestrial Water Storage Changes in the Tibetan Plateau and Its Surroundings Revealed through GRACE/GRACE-FO. Remote Sens. 2023, 15, 3505. https://doi.org/10.3390/rs15143505
Xiang L, Wang H, Steffen H, Jiang L, Shen Q, Jia L, Su Z, Wang W, Deng F, Qiao B, et al. Two Decades of Terrestrial Water Storage Changes in the Tibetan Plateau and Its Surroundings Revealed through GRACE/GRACE-FO. Remote Sensing. 2023; 15(14):3505. https://doi.org/10.3390/rs15143505
Chicago/Turabian StyleXiang, Longwei, Hansheng Wang, Holger Steffen, Liming Jiang, Qiang Shen, Lulu Jia, Zhenfeng Su, Wenliang Wang, Fan Deng, Baojin Qiao, and et al. 2023. "Two Decades of Terrestrial Water Storage Changes in the Tibetan Plateau and Its Surroundings Revealed through GRACE/GRACE-FO" Remote Sensing 15, no. 14: 3505. https://doi.org/10.3390/rs15143505
APA StyleXiang, L., Wang, H., Steffen, H., Jiang, L., Shen, Q., Jia, L., Su, Z., Wang, W., Deng, F., Qiao, B., Cui, H., & Gao, P. (2023). Two Decades of Terrestrial Water Storage Changes in the Tibetan Plateau and Its Surroundings Revealed through GRACE/GRACE-FO. Remote Sensing, 15(14), 3505. https://doi.org/10.3390/rs15143505