Dictionary Learning for Few-Shot Remote Sensing Scene Classification
<p>The t-distributed stochastic neighbor embedding (t-SNE) visualization; (<b>a</b>,<b>b</b>) indicate the training features and the test features of the NWPU-RESISC45 dataset, respectively; (<b>c</b>,<b>d</b>) represent the training features and test features of the RSD46-WHU dataset, respectively.</p> "> Figure 2
<p>The framework of the proposed DL method consists of two stages: (1) the pre-training stage uses the tiered-ImageNet dataset to train a feature extractor, and then employs a remote sensing dataset to fine-tune the extractor. (2) The meta-test stage inputs the support set and the query set samples into the trained feature extractor to obtain the embedding features. We use the support features to train the kernel space classifier and predict the category of the query sample.</p> "> Figure 3
<p>Example samples of the five datasets used in this paper. (<b>a</b>) tiered-ImageNet, (<b>b</b>) NWPU-RESISC45, (<b>c</b>) RSD46-WHU, (<b>d</b>) UC Merced, (<b>e</b>) WHU-RS19.</p> "> Figure 4
<p>Schematic diagram of ResNet-12.</p> "> Figure 5
<p>Influences of the pre-trained feature extractor.</p> "> Figure 6
<p>Influence of different fine-tuning strategies.</p> "> Figure 7
<p>The influence of objective function reconstruction error.</p> "> Figure 8
<p>Comparison of different shots for the meta-test on four datasets: (<b>a</b>) NWPU-RESISC45 (<b>b</b>) RSD46-WHU (<b>c</b>) UC Merced (<b>d</b>) WHU-RS19.</p> ">
Abstract
:1. Introduction
- We designed a kernel space classifier for the few-shot remote sensing scene classification task, which introduces the kernel space into dictionary learning and improves the classification performance.
- We propose a dual form of dictionary learning and embed label information into dictionary learning, improving feature discrimination. Further experiments show that the proposed method can effectively solve the problem of “negative transfer”.
- The proposed method was evaluated on four remote sensing datasets—NWPU-RESISC45, RSD46-WHU, UC Merced, and WHU-RS19. It demonstrated satisfactory performance compared with the state-of-the-art methods.
2. Related Work
2.1. Remote Sensing Scene Classification
2.2. Few-Shot Remote Sensing Scene Classification
2.3. Negative Transfer
3. Problem Setup
3.1. Problem Definition
3.2. Kernel Space Classifier
Algorithm 1 Dictionary learning |
|
4. Experiments and Results
4.1. Datasets
4.2. Implementation Details
4.3. Experimental Results
4.4. Ablation Studies
4.4.1. Analysis of Pre-Trained Feature Extractor
4.4.2. Performance Analysis of Different Classifiers
4.4.3. Influences of Different Fine-Tuning Strategies
4.4.4. Influence of the Objective Function Reconstruction Error
4.4.5. Influence of Meta-Test Shot
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
FSRSSC | few-shot remote sensing scene classification |
RSSC | remote sensing scene classification |
FSL | few-shot learning |
HOG | histograms of oriented gradients |
SIFT | scale-invariant feature transform |
LBP | local binary pattern |
BovW | bag-of-visual-words |
LR | logistic regression |
SVM | support vector machine |
DL | dictionary learning |
References
- Johnson, B.A.; Jozdani, S.E. Local Climate Zone (LCZ) Map Accuracy Assessments Should Account for Land Cover Physical Characteristics that Affect the Local Thermal Environment. Remote Sens. 2019, 11, 2420. [Google Scholar] [CrossRef] [Green Version]
- Pham, H.M.; Yamaguchi, Y.; Bui, T.Q. A case study on the relation between city planning and urban growth using remote sensing and spatial metrics. Landsc. Urban Plan. 2011, 100, 223–230. [Google Scholar] [CrossRef]
- Zhu, Q.; Zhong, Y.; Zhao, B.; Xia, G.-S.; Zhang, L. Bag-of-Visual-Words Scene Classifier with Local and Global Features for High Spatial Resolution Remote Sensing Imagery. IEEE Geosci. Remote Sens. Lett. 2016, 13, 747–751. [Google Scholar] [CrossRef]
- Manfreda, S.; McCabe, M.F.; Miller, P.E.; Lucas, R.; Pajuelo Madrigal, V.; Mallinis, G.; Ben Dor, E.; Helman, D.; Estes, L.; Ciraolo, G.; et al. On the Use of Unmanned Aerial Systems for Environmental Monitoring. Remote Sens. 2018, 10, 641. [Google Scholar] [CrossRef] [Green Version]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.; Zhao, X.; Zhang, Z.; Cai, W.; Yang, N.; Zhan, Y. Semi-supervised locality preserving dense graph neural network with ARMA filters and context-aware learning for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5511812. [Google Scholar] [CrossRef]
- Ding, Y.; Zhao, X.; Zhang, Z.; Cai, W.; Yang, N. Multiscale graph sample and aggregate network with context-aware learning for hyperspectral image classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 4561–4572. [Google Scholar] [CrossRef]
- Ding, Y.; Zhao, X.; Zhang, Z.; Cai, W.; Yang, N. Graph sample and aggregate-attention network for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 2021, 19, 5504205. [Google Scholar] [CrossRef]
- Ding, Y.; Zhang, Z.; Zhao, X.; Cai, W.; He, F.; Cai, Y.; Cai, W. Deep hybrid: Multi-Graph neural network collaboration for hyperspectral image classification. Def. Technol. 2022, in press. [Google Scholar] [CrossRef]
- Snell, J.; Swersky, K.; Zemel, R.S. Prototypical Networks for Few-shot Learning. arXiv 2017, arXiv:1703.05175. [Google Scholar]
- Shao, S.; Xing, L.; Xu, R.; Liu, W. MDFM: Multi-Decision Fusing Model for Few-Shot Learning. IEEE Trans. Circuits Syst. Video Technol. 2021, 32, 5151–5162. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, C.; Liu, C.; Zhang, L.; Fu, Y. Instance Credibility Inference for Few-Shot Learning. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 12833–12842. [Google Scholar]
- Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–25 June 2005; Volume 1, pp. 886–893. [Google Scholar]
- Lowe, D.G. Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [Google Scholar] [CrossRef]
- Ojala, T.; Pietikainen, M.; Maenpaa, T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 971–987. [Google Scholar] [CrossRef]
- Yang, Y.; Newsam, S. Bag-of-Visual-Words and Spatial Extensions for Land-Use Classification. In Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems. Association for Computing Machinery, San Jose, CA, USA, 2–5 November 2010; pp. 270–279. [Google Scholar]
- Ding, Y.; Zhang, Z.; Zhao, X.; Hong, D.; Cai, W.; Yu, C.; Yang, N.; Cai, W. Multi-feature Fusion: Graph Neural Network and CNN Combining for Hyperspectral Image Classification. Neurocomputing 2022, 501, 246–257. [Google Scholar] [CrossRef]
- Ding, Y.; Zhang, Z.; Zhao, X.; Hong, D.; Li, W.; Cai, W.; Zhan, Y. AF2GNN: Graph convolution with adaptive filters and aggregator fusion for hyperspectral image classification. Inf. Sci. 2022, 602, 201–219. [Google Scholar] [CrossRef]
- Ding, Y.; Zhang, Z.; Zhao, X.; Cai, Y.; Li, S.; Deng, B.; Cai, W. Self-supervised locality preserving low-pass graph convolutional embedding for large-scale hyperspectral image clustering. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5536016. [Google Scholar] [CrossRef]
- Ding, Y.; Zhang, Z.; Zhao, X.; Cai, W.; Yang, N.; Hu, H.; Huang, X.; Cao, Y.; Cai, W. Unsupervised self-correlated learning smoothy enhanced locality preserving graph convolution embedding clustering for hyperspectral images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5536716. [Google Scholar] [CrossRef]
- Finn, C.; Abbeel, P.; Levine, S. Model-agnostic meta-learning for fast adaptation of deep networks. In Proceedings of the ICML International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; pp. 1126–1135. [Google Scholar]
- Nichol, A.; Achiam, J.; Schulman, J. On First-Order Meta-Learning Algorithms. arXiv 2018, arXiv:1803.02999. [Google Scholar]
- Rusu, A.A.; Rao, D.; Sygnowski, J.; Vinyals, O.; Pascanu, R.; Osindero, S.; Hadsell, R. Meta-Learning with Latent Embedding Optimization. In Proceedings of the International Conference on Learning Representations, New Orleans, LA, USA, 6–9 May 2019. [Google Scholar]
- Alajaji, D.A.; Alhichri, H. Few Shot Scene Classification in Remote Sensing using Meta-Agnostic Machine. In Proceedings of the 2020 6th Conference on Data Science and Machine Learning Applications (CDMA), Riyadh, Saudi Arabia, 4–5 March 2020; pp. 77–80. [Google Scholar]
- Koch, G.; Zemel, R.; Salakhutdinov, R. Siamese neural networks for one-shot image recognition. In Proceedings of the 32nd International Conference on Machine Learning, Lille, France, 6–11 July 2015; Volume 2. [Google Scholar]
- Vinyals, O.; Blundell, C.; Lillicrap, T.; Wierstra, D. Matching networks for one shot learning. NeurIPS 2016, 29, 3630–3638. [Google Scholar]
- Sung, F.; Yang, Y.; Zhang, L.; Xiang, T.; Torr, P.H.; Hospedales, T.M. Learning to compare: Relation network for few-shot learning. In Proceedings of the CVPR IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 1199–1208. [Google Scholar]
- Li, L.; Han, J.; Yao, X.; Cheng, G.; Guo, L. DLA-MatchNet for Few-Shot Remote Sensing Image Scene Classification. IEEE Trans. Geosci. Remote Sens. 2021, 59, 7844–7853. [Google Scholar] [CrossRef]
- Alajaji, D.; Alhichri, H.S.; Ammour, N.; Alajlan, N. Few-shot learning for remote sensing scene classification. In Proceedings of the M2GARSS, 2020 Mediterranean and Middle-East Geoscience and Remote Sensing Symposium (M2GARSS), Tunis, Tunisia, 9–11 March 2020; IEEE: New York, NY, USA, 2020; pp. 81–84. [Google Scholar]
- Zhang, P.; Bai, Y.; Wang, D.; Bai, B.; Li, Y. Few-Shot Classification of Aerial Scene Images via Meta-Learning. Remote Sens. 2021, 13, 108. [Google Scholar] [CrossRef]
- Dvornik, N.; Schmid, C.; Mairal, J. Diversity with Cooperation: Ensemble Methods for Few-Shot Classification. arXiv 2019, arXiv:1903.11341. [Google Scholar]
- Yue, Z.; Zhang, H.; Sun, Q.; Hua, X.S. Interventional Few-Shot Learning. arXiv 2020, arXiv:2009.13000. [Google Scholar]
- Shao, S.; Xing, L.; Wang, Y.; Xu, R.; Zhao, C.; Wang, Y.; Liu, B. MHFC: Multi-Head Feature Collaboration for Few-Shot Learning. In Proceedings of the ACM MM, 29th ACM International Conference on Multimedia, Virtual Event, China, 20–24 October 2021; pp. 4193–4201. [Google Scholar]
- Lee, K.; Maji, S.; Ravichandran, A.; Soatto, S. Meta-learning with differentiable convex optimization. In Proceedings of the CVPR 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 10657–10665. [Google Scholar]
- Ren, M.; Ravi, S.; Triantafillou, E.; Snell, J.; Swersky, K.; Tenenbaum, J.B.; Larochelle, H.; Zemel, R.S. Meta-Learning for Semi-Supervised Few-Shot Classification. In Proceedings of the International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018. [Google Scholar]
- Cheng, G.; Han, J.; Lu, X. Remote Sensing Image Scene Classification: Benchmark and State of the Art. Proc. IEEE 2017, 105, 1865–1883. [Google Scholar] [CrossRef] [Green Version]
- Long, Y.; Gong, Y.; Xiao, Z.; Liu, Q. Accurate Object Localization in Remote Sensing Images Based on Convolutional Neural Networks. IEEE Trans. Geosci. Remote Sens. 2017, 55, 2486–2498. [Google Scholar] [CrossRef]
- Xiao, Z.; Long, Y.; Li, D.; Wei, C.; Tang, G.; Liu, J. High-Resolution Remote Sensing Image Retrieval Based on CNNs from a Dimensional Perspective. Remote Sens. 2017, 9, 725. [Google Scholar] [CrossRef] [Green Version]
- Xia, G.S.; Yang, W.; Delon, J.; Gousseau, Y.; Sun, H.; Maitre, H. Structural high-resolution satellite image indexing. In Proceedings of the ISPRS TC VII Symposium—100 Years ISPRS, Vienna, Austria, 5–7 July 2010. [Google Scholar]
- Dai, D.; Yang, W. Satellite Image Classification via Two-Layer Sparse Coding With Biased Image Representation. IEEE Trans. Geosci. Remote Sens. 2011, 8, 173–176. [Google Scholar] [CrossRef] [Green Version]
- Zhai, M.; Liu, H.; Sun, F. Lifelong Learning for Scene Recognition in Remote Sensing Images. IEEE Geosci. Remote Sens. Lett. 2019, 16, 1472–1476. [Google Scholar] [CrossRef]
- Li, Z.; Zhou, F.; Chen, F.; Li, H. Meta-sgd: Learning to learn quickly for few-shot learning. arXiv 2017, arXiv:1707.09835. [Google Scholar]
- Oreshkin, B.N.; Rodriguez, P.; Lacoste, A. TADAM: Task dependent adaptive metric for improved few-shot learning. In Proceedings of the NeurIPS, 32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montreal, QC, Canada, 2–8 December 2018; pp. 719–729. [Google Scholar]
- Zhang, P.; Fan, G.; Wu, C.; Wang, D.; Li, Y. Task-Adaptive Embedding Learning with Dynamic Kernel Fusion for Few-Shot Remote Sensing Scene Classification. Remote Sens. 2021, 13, 4200. [Google Scholar] [CrossRef]
- Cheng, G.; Yang, C.; Yao, X.; Guo, L.; Han, J. When deep learning meets metric learning: Remote sensing image scene classification via learning discriminative CNNs. IEEE Trans. Geosci. Remote Sens. 2018, 56, 2811–2821. [Google Scholar] [CrossRef]
- Simon, C.; Koniusz, P.; Nock, R.; Harandi, M. Adaptive subspaces for few-shot learning. In Proceedings of the CVPR, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 4136–4145. [Google Scholar]
- Liu, Y.; Lee, J.; Park, M.; Kim, S.; Yang, E.; Hwang, S.J.; Yang, J. Learning to propagate labels: Transductive propagation network for few-shot learning. arXiv 2018, arXiv:1805.10002. [Google Scholar]
- Zhang, P.; Li, Y.; Wang, D.; Wang, J. RS-SSKD: Self-Supervision Equipped with Knowledge Distillation for Few-Shot Remote Sensing Scene Classification. Sensors 2021, 21, 1566. [Google Scholar] [CrossRef]
- Ye, H.J.; Hu, H.; Zhan, D.C.; Sha, F. Few-shot learning via embedding adaptation with set-to-set functions. In Proceedings of the CVPR, 2020 Conference on Computer Vision and Pattern Recognition, Virtual, 14–19 June 2020; pp. 8808–8817. [Google Scholar]
- Cui, Z.; Yang, W.; Chen, L.; Li, H. MKN: Metakernel networks for few shot remote sensing scene classification. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4705611. [Google Scholar] [CrossRef]
- Yuan, Z.; Huang, W. Multi-attention DeepEMD for Few-Shot Learning in Remote Sensing. In Proceedings of the ITAIC, 2020 IEEE 9th Joint International Information Technology and Artificial Intelligence Conference (ITAIC), Chongqing, China, 11–13 December 2020; IEEE: New York, NY, USA, 2020; Volume 9, pp. 1097–1102. [Google Scholar]
- Zhang, C.; Cai, Y.; Lin, G.; Shen, C. DeepEMD: Few-Shot Image Classification with Differentiable Earth Mover’s Distance and Structured Classifiers. In Proceedings of the CVPR, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020 2020; pp. 12203–12213. [Google Scholar]
- Li, H.; Cui, Z.; Zhu, Z.; Chen, L.; Zhu, J.; Huang, H.; Tao, C. RS-MetaNet: Deep meta metric learning for few-shot remote sensing scene classification. arXiv 2020, arXiv:2009.13364. [Google Scholar] [CrossRef]
Dataset | Pre-Training | Meta-Validation | Meta-Test |
---|---|---|---|
tiered-ImageNet | 351 | 97 | 160 |
NWPU-RESISC45 | 25 | 8 | 12 |
RSD46-WHU | 26 | 8 | 12 |
UC Merced | 10 | 6 | 5 |
WHU-RS19 | 9 | 6 | 5 |
Method | Backbone | 5-Way 5-Shot | 5-Way 1-Shot |
---|---|---|---|
LLSR [41] | ConV4 | ||
MatchingNet [26] | ConV5 | ||
DLA-MatchNet [28] | ConV5 | ||
Meta-SGD [42] | ConV5 | ||
ProtoNet [10] | ResNet12 | ||
MAML [21] | ResNet12 | ||
TADAM [43] | ResNet12 | ||
TAE-Net [44] | ResNet12 | ||
D-CNN [45] | ResNet12 | ||
DSN-MR [46] | ResNet12 | ||
MetaOptNet [34] | ResNet12 | ||
TPN [47] | ResNet12 | ||
MetaLearning [30] | ResNet12 | ||
RelationNet [27] | ResNet12 | ||
RS-SSKD [48] | ResNet12 | ||
FEAT [49] | ResNet12 | ||
Ours | ResNet12 |
Method | Backbone | 5-Way 5-Shot | 5-Way 1-Shot |
---|---|---|---|
RelationNet [27] | ConV4 | ||
ProtoNet [10] | ConV4 | ||
MAML [21] | ConV4 | ||
RelationNet [27] | ResNet12 | ||
MAML [21] | ResNet12 | ||
ProtoNet [10] | ResNet12 | ||
MetaOptNet [34] | ResNet12 | ||
DSN-MR [46] | ResNet12 | ||
D-CNN [45] | ResNet12 | ||
TADAM [43] | ResNet12 | ||
MetaLearning [30] | ResNet12 | ||
RS-SSKD [48] | ResNet12 | ||
FEAT [49] | ResNet12 | ||
Ours | ResNet12 |
Method | Backbone | 5-Way 5-Shot | 5-Way 1-Shot |
---|---|---|---|
LLSR [41] | ConV-4 | ||
ProtoNet [10] | ConV-5 | ||
MatchingNet [26] | ConV-5 | ||
MAML [21] | ConV-5 | ||
Meta-SGD [42] | ConV-5 | ||
RelationNet [27] | ConV-5 | ||
DLA-MatchNet [28] | ConV-5 | ||
TPN [47] | ResNet-12 | ||
TAE-Net [44] | ResNet-12 | ||
Ours | ResNet-12 |
Method | Backbone | 5-Way 5-Shot | 5-Way 1-Shot |
---|---|---|---|
MAML [21] | ConV-4 | ||
LLSR [41] | ConV-4 | ||
RelationNet [27] | ConV-5 | ||
MatchingNet [26] | ConV-5 | ||
ProtoNet [10] | ConV-5 | ||
DLA-MatchNet [28] | ConV-5 | ||
Meta-SGD [42] | ConV-5 | ||
ProtoNet [29] | SqueezeNet | ||
TPN [47] | ResNet-12 | ||
MKN [50] | ResNet-12 | ||
MA-deepEMD [51] | ResNet-12 | ||
deepEMD [52] | ResNet-12 | ||
RS-MetaNet [53] | ResNet-12 | ||
TAE-Net [44] | ResNet-12 | ||
Ours | ResNet-12 |
Method | Backbone | 5-Way 1-Shot | 5-Way 5-Shot |
---|---|---|---|
LR | ResNet-12 | ||
SVM | ResNet-12 | ||
Linear | ResNet-12 | ||
Poly | ResNet-12 | ||
RBF | ResNet-12 |
Method | Backbone | 5-Way 1-Shot | 5-Way 5-Shot |
---|---|---|---|
LR | ResNet-12 | ||
SVM | ResNet-12 | ||
Linear | ResNet-12 | ||
Poly | ResNet-12 | ||
RBF | ResNet-12 |
Method | Backbone | 5-Way 1-Shot | 5-Way 5-Shot |
---|---|---|---|
LR | ResNet-12 | ||
SVM | ResNet-12 | ||
Linear | ResNet-12 | ||
Poly | ResNet-12 | ||
RBF | ResNet-12 |
Method | Backbone | 5-Way 1-Shot | 5-Way 5-Shot |
---|---|---|---|
LR | ResNet-12 | ||
SVM | ResNet-12 | ||
Linear | ResNet-12 | ||
Poly | ResNet-12 | ||
RBF | ResNet-12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Y.; Meng, J.; Liu, B.; Sun, L.; Zhang, H.; Ren, P. Dictionary Learning for Few-Shot Remote Sensing Scene Classification. Remote Sens. 2023, 15, 773. https://doi.org/10.3390/rs15030773
Ma Y, Meng J, Liu B, Sun L, Zhang H, Ren P. Dictionary Learning for Few-Shot Remote Sensing Scene Classification. Remote Sensing. 2023; 15(3):773. https://doi.org/10.3390/rs15030773
Chicago/Turabian StyleMa, Yuteng, Junmin Meng, Baodi Liu, Lina Sun, Hao Zhang, and Peng Ren. 2023. "Dictionary Learning for Few-Shot Remote Sensing Scene Classification" Remote Sensing 15, no. 3: 773. https://doi.org/10.3390/rs15030773
APA StyleMa, Y., Meng, J., Liu, B., Sun, L., Zhang, H., & Ren, P. (2023). Dictionary Learning for Few-Shot Remote Sensing Scene Classification. Remote Sensing, 15(3), 773. https://doi.org/10.3390/rs15030773