Resolving Ambiguities in SHARAD Data Analysis Using High-Resolution Digital Terrain Models
<p>Single echo of SHARAD data compared to an echo of the simulation. The largest peaks of SHARAD data are well matched to the simulation.</p> "> Figure 2
<p>(<b>a</b>) Output of the simulation of a 150 km portion of the SHARAD dataset n°5128501 in Terra Cimmeria using a MOLA DTM. (<b>b</b>) Same profile after SAR synthesis. Parabolas in the simulation are the result of the trajectory of the spacecraft relative to each reflector.</p> "> Figure 3
<p>(<b>a</b>) A 40 km long portion of the SHARAD profile n°0806502 sounding Deuteronilus Mensae; (<b>b</b>) corresponding simulation using a MOLA DTM; (<b>c</b>) HRSC image of the terrain at nadir in the area where the radargram was taken. The two reflectors circled in white are present in the SHARAD data, but not in the simulation, meaning that they probably originate from the subsurface. Note that the two top echoes (left and right of the radargram) are off-nadir echoes originating from plateaus, thus arriving before the stronger nadir echo.</p> "> Figure 4
<p>(<b>a</b>) A 40 km portion of the SHARAD radargram n°01708401 sounding Hellas Planitia; (<b>b</b>) corresponding simulation using a MOLA DTM. (<b>c</b>) CTX image of the terrain at the nadir on the area where the radargram was acquired. In areas where the roughness is higher, we can see that the identification of subsurface echoes is much harder with MOLA, as the faintest reflectors are not reproduced by the simulation.</p> "> Figure 5
<p>(<b>a</b>) A 65 km portion of the SHARAD profile n°5128501; (<b>b</b>) corresponding simulation using a MOLA DTM. The reflector circled in white is present in the SHARAD data but not in the MOLA simulation.</p> "> Figure 6
<p>(<b>a</b>) MOLA DTM on Tarq crater at a 463 m per pixel resolution. (<b>b</b>) The corresponding HRSC DTM at 50 m per pixel.</p> "> Figure 7
<p>(<b>a</b>) A 12 km portion of the SHARAD dataset n°5128501 on Terra Cimmeria. (<b>b</b>) Simulation using a HRSC DTM. (<b>c</b>) Simulation using a MOLA DTM. Finer details are reproduced by HRSC, but a higher level of artifacts is present. The reflector circled in white is not visible in either of the simulations presented on the two rightmost images.</p> "> Figure 8
<p>Visual comparison of the reconstruction of the edge of Tarq crater (southern midlatitudes) with a HRSC DTM at 50 m per pixel (<b>left</b>) and a CTX DTM at 12 m per pixel (<b>right</b>).</p> "> Figure 9
<p>Comparison between a 40 km portion of the SHARAD dataset n°5128501 and the simulation of it using different DTMs. The results using the downsampled CTX DTM (<b>d</b>) at 100 m per pixel represents the echoes more accurately than the simulation using the HRSC DTM at 50 m per pixel (finer details visible and lower level of artifacts). Parabolas on the right images highlight the echoes that are most significatively improved by the CTX simulation, as the left images are there to visualize the echoes without figures on top.</p> "> Figure 10
<p>Mapping the identified echo on a HRSC DTM with a CTX image mapped onto it. The area of origin of the echo is materialized by the white dotted area in the center. If the echo came from the surface, it would come from the edge of a plateau.</p> "> Figure 11
<p>Comparison between vertical exaggeration of topographies (exaggeration factor of 20) for the HRSC DTM with a CTX image mapped on it (<b>a</b>) and the HCPC DTM (<b>b</b>). The edge of the circled plateau was straightened by photoclinometry.</p> "> Figure 12
<p>Data-processing flowchart for photoclinometry using the HRSC DTM and the CTX image.</p> "> Figure 13
<p>(<b>a</b>,<b>b</b>) Comparison of the angles between the facets and the spacecraft for the original HRSC DTM (<b>a</b>) and for the HCPC DTM (<b>b</b>). (<b>c</b>) Outlines of the two areas used for statistical comparison on the northern (cyan) and southern (yellow) plateaus. The southern plateau area geometry was chosen to match the calculations of the potential origin of the reflector (<a href="#remotesensing-15-00764-f010" class="html-fig">Figure 10</a>). Both areas are about 1.5 km<sup>2</sup>. (<b>d</b>) CTX image for context. The angles are shallower in the refined DTM in the area where the reflector is thought to come from (circled in green).</p> "> Figure 14
<p>Comparison between a 18 km portion of the SHARAD dataset n°5128501 (<b>a</b>) and simulations using the corrected DTM with photoclinometry. The simulation in (<b>b</b>) was performed with the original DTM refined by photoclinometry at 6m. We do not see the surface on the simulated radargrams due to the DTM not covering the nadir part of the trajectory. (<b>c</b>) Wavelet-transformed DTM filtered at 320 m. (<b>d</b>) RGB composition with the SHARAD radargram on the red channel, and the simulation using the filtered DTM refined by photoclinometry on the cyan channel. The reflector that we are looking for is circled in white.</p> "> Figure 15
<p>(<b>a</b>–<b>c</b>) Mapping of the across-track round-trip distance between the points of the DTMs and the spacecraft. The slant range was mapped modulo lambda using a cyclic color scale that can be directly linked to the evolution of the signal’s phase across track. The plateau that we want to correct by photoclinometry is located in the white circle. The areas where the phase is stationary are the areas where the radar signal reflects on, and the larger the area, the brighter the echo. (<b>a</b>) Range map in the MOLA DTM. (<b>b</b>) Range map in the 6m HCPC DTM. (<b>c</b>) Range map of the 320 m scale wavelet-transform of the HCPC DTM. (<b>d</b>) HCPC-shaded DTM to visualize the terrain details.</p> ">
Abstract
:1. Introduction
2. SHARAD Data Analysis with MOLA
2.1. SPRATS: A Toolset for Radar Simulation and Processing
2.2. Region of Interest
2.3. Simulations with MOLA DTMs
2.4. Limits of MOLA DTMs for Shallow Subsurface Interpretations
3. Extending the Radar Analysis Further with HRSC DTMs
3.1. HRSC as an Upgrade of MOLA DTMs
3.2. Artifacts on DTMs Due to Photogrammetry
4. CTX as an Optimal DTM for SHARAD Data Interpretation
4.1. CTX Echo Reconstruction on a Rough Surface
4.1.1. Resolution Higher Than the Radar Wavelength for a Quasi-Perfect Reconstruction of the Signal
4.1.2. Impact of the Resolution Reduction on CTX DTMs
4.2. Results in the Terra Cimmeria Region of Interest
4.2.1. Overcoming the Lack of CTX Coverage with Photoclinometry
4.2.2. High Sensitivity to Small-Scale Features for Radar Simulations
4.3. Detection of DTM Errors with Radar Simulation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mouginot, J.; Kofman, W.; Safaeinili, A.; Grima, C.; Herique, A.; Plaut, J.J. MARSIS Surface Reflectivity of the South Residual Cap of Mars. Icarus 2009, 201, 454–459. [Google Scholar] [CrossRef] [Green Version]
- Plaut, J.J.; Picardi, G.; Safaeinili, A.; Ivanov, A.B.; Milkovich, S.M.; Cicchetti, A.; Kofman, W.; Mouginot, J.; Farrell, W.M.; Phillips, R.J.; et al. Subsurface Radar Sounding of the South Polar Layered Deposits of Mars. Science 2007, 316, 92–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holt, J.W.; Safaeinili, A.; Plaut, J.J.; Head, J.W.; Phillips, R.J.; Seu, R.; Kempf, S.D.; Choudhary, P.; Young, D.A.; Putzig, N.E.; et al. Radar Sounding Evidence for Buried Glaciers in the Southern Mid-Latitudes of Mars. Science 2008, 322, 1235–1238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morgan, G.A.; Putzig, N.E.; Perry, M.R.; Sizemore, H.G.; Bramson, A.M.; Petersen, E.I.; Bain, Z.M.; Baker, D.M.H.; Mastrogiuseppe, M.; Hoover, R.H.; et al. Availability of Subsurface Water-Ice Resources in the Northern Mid-Latitudes of Mars. Nat. Astron. 2021, 5, 230–236. [Google Scholar] [CrossRef]
- Laskar, J.; Correia, A.C.M.; Gastineau, M.; Joutel, F.; Levrard, B.; Robutel, P. Long Term Evolution and Chaotic Diffusion of the Insolation Quantities of Mars. Icarus 2004, 170, 343–364. [Google Scholar] [CrossRef] [Green Version]
- Nouvel, J.-F.; Herique, A.; Kofman, W.; Safaeinili, A. Radar Signal Simulation: Surface Modeling with the Facet Method: RADAR SIGNAL SIMULATION. Radio Sci. 2004, 39, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Seu, R.; Phillips, R.J.; Biccari, D.; Orosei, R.; Masdea, A.; Picardi, G.; Safaeinili, A.; Campbell, B.A.; Plaut, J.J.; Marinangeli, L.; et al. SHARAD Sounding Radar on the Mars Reconnaissance Orbiter. J. Geophys. Res. 2007, 112, E05S05. [Google Scholar] [CrossRef]
- Gassot, O.; Hérique, A.; Rogez, Y.; Kofman, W.; Zine, S.; Ludimbulu, P.-P. SPRATS: A Versatile Simulation and Processing RAdar ToolS for Planetary Missions. In Proceedings of the 2020 IEEE Radar Conference (RadarConf20), Florence, Italy, 21–25 September 2020; pp. 1–5. [Google Scholar]
- Berquin, Y.; Herique, A.; Kofman, W.; Heggy, E. Computing Low-Frequency Radar Surface Echoes for Planetary Radar Using Huygens-Fresnel’s Principle: COMPUTING RADAR SURFACE ECHOES. Radio Sci. 2015, 50, 1097–1109. [Google Scholar] [CrossRef] [Green Version]
- Adeli, S.; Hauber, E.; Michael, G.G.; Fawdon, P.; Smith, I.B.; Jaumann, R. Geomorphological Evidence of Localized Stagnant Ice Deposits in Terra Cimmeria, Mars. J. Geophys. Res. Planets 2019, 124, 1525–1541. [Google Scholar] [CrossRef] [Green Version]
- Zuber, M.T.; Smith, D.E.; Solomon, S.C.; Muhleman, D.O.; Head, J.W.; Garvin, J.B.; Abshire, J.B.; Bufton, J.L. The Mars Observer Laser Altimeter Investigation. J. Geophys. Res. 1992, 97, 7781. [Google Scholar] [CrossRef]
- Neumann, G.A. Mars Orbiter Laser Altimeter Pulse Width Measurements and Footprint-Scale Roughness. Geophys. Res. Lett. 2003, 30, 1561. [Google Scholar] [CrossRef]
- Carter, L.M.; Campbell, B.A.; Watters, T.R.; Phillips, R.J.; Putzig, N.E.; Safaeinili, A.; Plaut, J.J.; Okubo, C.H.; Egan, A.F.; Seu, R.; et al. Shallow Radar (SHARAD) Sounding Observations of the Medusae Fossae Formation, Mars. Icarus 2009, 199, 295–302. [Google Scholar] [CrossRef]
- Nunes, D.C.; Smrekar, S.E.; Safaeinili, A.; Holt, J.; Phillips, R.J.; Seu, R.; Campbell, B. Examination of Gully Sites on Mars with the Shallow Radar. J. Geophys. Res. 2010, 115, E10004. [Google Scholar] [CrossRef] [Green Version]
- Plaut, J.J.; Safaeinili, A.; Holt, J.W.; Phillips, R.J.; Head, J.W.; Seu, R.; Putzig, N.E.; Frigeri, A. Radar Evidence for Ice in Lobate Debris Aprons in the Mid-Northern Latitudes of Mars: Radar evidence for mid-latitude mars ice. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef] [Green Version]
- Cook, C.W.; Bramson, A.M.; Byrne, S.; Holt, J.W.; Christoffersen, M.S.; Viola, D.; Dundas, C.M.; Goudge, T.A. Sparse Subsurface Radar Reflectors in Hellas Planitia, Mars. Icarus 2020, 348, 113847. [Google Scholar] [CrossRef]
- Malin, M.C.; Bell, J.F.; Cantor, B.A.; Caplinger, M.A.; Calvin, W.M.; Clancy, R.T.; Edgett, K.S.; Edwards, L.; Haberle, R.M.; James, P.B.; et al. Context Camera Investigation on Board the Mars Reconnaissance Orbiter. J. Geophys. Res. 2007, 112, E05S04. [Google Scholar] [CrossRef] [Green Version]
- Quantin-Nataf, C.; Lozac’h, L.; Thollot, P.; Loizeau, D.; Bultel, B.; Fernando, J.; Allemand, P.; Dubuffet, F.; Poulet, F.; Ody, A.; et al. MarsSI: Martian Surface Data Processing Information System. Planet. Space Sci. 2018, 150, 157–170. [Google Scholar] [CrossRef]
- Doute, S.; Jiang, C. Small-Scale Topographical Characterization of the Martian Surface with In-Orbit Imagery. IEEE Trans. Geosci. Remote Sens. 2020, 58, 447–460. [Google Scholar] [CrossRef]
- Bayer, T.; Bittner, M.; Buffington, B.; Castet, J.-F.; Dubos, G.; Jackson, M.; Lee, G.; Lewis, K.; Kastner, J.; Schimmels, K.; et al. Europa Clipper Mission Update: Preliminary Design with Selected Instruments. In Proceedings of the 2018 IEEE Aerospace Conference, Big Sky, MT, USA, 3–10 March 2018; pp. 1–19. [Google Scholar]
- Grasset, O.; Dougherty, M.K.; Coustenis, A.; Bunce, E.J.; Erd, C.; Titov, D.; Blanc, M.; Coates, A.; Drossart, P.; Fletcher, L.N.; et al. JUpiter ICy Moons Explorer (JUICE): An ESA Mission to Orbit Ganymede and to Characterise the Jupiter System. Planet. Space Sci. 2013, 78, 1–21. [Google Scholar] [CrossRef]
Instrument | DTM Resolution (m/Pixel) |
---|---|
MOLA | 463 |
HRSC | 50–100 |
CTX | 12–18 |
HRSC DTM corrected by photoclinometry | 6 |
Instrument | Simultaneous Stereo Pair Acquisition | Convergence Angle (°) | Image Width at Closest Approach (km) |
---|---|---|---|
HRSC | Yes | 37.8 | 52 |
CTX | No | 0–60 | 30 |
Northern Plateau | Southern Plateau | |
---|---|---|
HCPC mean angle (°) | 1.05 | 1.31 |
HCPC angle rms (°) | 3.24 | 4.36 |
HCPC slant range rms (m) | 23.13 | 27.33 |
MOLA mean angle (°) | 1.34 | 4.26 |
MOLA angle rms (°) | 0.1 | 0.6 |
MOLA slant range rms (m) | 20.30 | 26.61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Desage, L.; Herique, A.; Douté, S.; Zine, S.; Kofman, W. Resolving Ambiguities in SHARAD Data Analysis Using High-Resolution Digital Terrain Models. Remote Sens. 2023, 15, 764. https://doi.org/10.3390/rs15030764
Desage L, Herique A, Douté S, Zine S, Kofman W. Resolving Ambiguities in SHARAD Data Analysis Using High-Resolution Digital Terrain Models. Remote Sensing. 2023; 15(3):764. https://doi.org/10.3390/rs15030764
Chicago/Turabian StyleDesage, Léopold, Alain Herique, Sylvain Douté, Sonia Zine, and Wlodek Kofman. 2023. "Resolving Ambiguities in SHARAD Data Analysis Using High-Resolution Digital Terrain Models" Remote Sensing 15, no. 3: 764. https://doi.org/10.3390/rs15030764
APA StyleDesage, L., Herique, A., Douté, S., Zine, S., & Kofman, W. (2023). Resolving Ambiguities in SHARAD Data Analysis Using High-Resolution Digital Terrain Models. Remote Sensing, 15(3), 764. https://doi.org/10.3390/rs15030764