Cotton Fiber Quality Estimation Based on Machine Learning Using Time Series UAV Remote Sensing Data
<p>Test site location.</p> "> Figure 2
<p>Overall flow chart.</p> "> Figure 3
<p>Sample collection and processing. (<b>a</b>) A wire frame used to define a boundary; (<b>b</b>) sample data; (<b>c</b>) cotton ginning; and (<b>d</b>) a sample area example.</p> "> Figure 3 Cont.
<p>Sample collection and processing. (<b>a</b>) A wire frame used to define a boundary; (<b>b</b>) sample data; (<b>c</b>) cotton ginning; and (<b>d</b>) a sample area example.</p> "> Figure 4
<p>(<b>a</b>) UAVs for collecting remote sensing data and (<b>b</b>) calibration.</p> "> Figure 5
<p>Schematic diagram of the data fusion effect. (<b>a</b>) Time-series data fusion and (<b>b</b>) RGB and multispectral data fusion.</p> "> Figure 5 Cont.
<p>Schematic diagram of the data fusion effect. (<b>a</b>) Time-series data fusion and (<b>b</b>) RGB and multispectral data fusion.</p> "> Figure 6
<p>Network structure. (<b>a</b>) U-Net model structure and (<b>b</b>) overlap tile.</p> "> Figure 6 Cont.
<p>Network structure. (<b>a</b>) U-Net model structure and (<b>b</b>) overlap tile.</p> "> Figure 7
<p>Label making. (<b>a</b>) A drawn ROI in the image and (<b>b</b>) a labeled-binary image.</p> "> Figure 8
<p>BOP calculation process.</p> "> Figure 9
<p>BP neural network model structure.</p> "> Figure 10
<p>Spectral index and its required band range.</p> "> Figure 11
<p>Connect all-time series eigenvectors.</p> "> Figure 12
<p>Loss function.</p> "> Figure 13
<p>Ten-fold cross-validation results—least squares modeling.</p> "> Figure 14
<p>The relationship between the number of hidden layer neurons and network performance.</p> "> Figure 15
<p>Ten-fold cross-validation results—BP neural network.</p> "> Figure 16
<p>Distribution map of cotton fiber quality parameters. (<b>a</b>) Upper-half mean length distribution; (<b>b</b>) uniformity index distribution; (<b>c</b>) breaking tenacity distribution; and (<b>d</b>) micronaire value distribution.</p> "> Figure 16 Cont.
<p>Distribution map of cotton fiber quality parameters. (<b>a</b>) Upper-half mean length distribution; (<b>b</b>) uniformity index distribution; (<b>c</b>) breaking tenacity distribution; and (<b>d</b>) micronaire value distribution.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Area
2.2. Field Sample Collection
2.3. Data Acquisition Equipment
2.4. Pixel-Level Fusion of Time Series RGB and Multispectral Data
2.5. Cotton Boll Pixel Recognition Based on Deep Learning
2.5.1. Network Structure
2.5.2. Training Model
2.5.3. Cotton Boll Opening Pixel Percentage
2.6. Establishment of a Prediction Model
2.6.1. Bayesian Regularized BP Neural Network
2.6.2. Training Model
3. Results
3.1. Cotton Boll Extraction
3.2. All Parameters Participate in Modeling
3.2.1. Least Squares Modeling
3.2.2. BP Neural Networks Modeling
3.2.3. Comparison of Results
3.3. Remove Redundant Variables
3.4. Summary of Cotton Fiber Quality Parameter Prediction Models
3.5. Visualization of Quality Prediction
4. Discussion
4.1. Correlation between Reflectivity and Quality Parameters of Cotton Fiber
4.2. Limitations and Prospects
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maimaitijiang, M.; Sagan, V.; Sidike, P.; Hartling, S.; Esposito, F.; Fritschi, F.B. Soybean yield prediction from UAV using multimodal data fusion and deep learning. Remote Sens. Environ. 2020, 237, 111599. [Google Scholar] [CrossRef]
- McBratney, A.; Whelan, B.; Ancev, T. Future Directions of Precision Agriculturew. Precis. Agric. 2005, 6, 7–23. [Google Scholar] [CrossRef]
- Panda, S.S.; Ames, D.P.; Panigrahi, S. Application of Vegetation Indices for Agricultural Crop Yield Prediction Using Neural Network Techniques. Remote Sens. 2010, 2, 673–696. [Google Scholar] [CrossRef] [Green Version]
- Kothari, N.; Hague, S.; Hinze, L.; Dever, J. Boll sampling protocols and their impact on measurements of cotton fiber quality. Ind. Crops Prod. 2017, 109, 248–254. [Google Scholar] [CrossRef]
- Zhang, H.; Li, D. Applications of computer vision techniques to cotton foreign matter inspection: A review. Comput. Electron. Agric. 2014, 109, 59–70. [Google Scholar] [CrossRef]
- Gunaydin, G.K.; Soydan, A.S.; Palamutcu, S. Evaluation of Cotton Fibre Properties in Compact Yarn Spinning Processes and Investigation of Fibre and Yarn Properties. Fibres Text. East. Eur. 2018, 26, 23–34. [Google Scholar] [CrossRef] [Green Version]
- Koo, H.J.; Suh, M.W. Effects of spinning processes on HVI fiber characteristics and spun yarn properties. Fiber. Polym. 2005, 6, 42–48. [Google Scholar] [CrossRef]
- Sonobe, R.; Sano, T.; Horie, H. Using spectral reflectance to estimate leaf chlorophyll content of tea with shading treatments. Biosyst. Eng. 2018, 175, 168–182. [Google Scholar] [CrossRef]
- Xu, D.; Li, X.; Dou, Y.; Liu, M.; Yang, Y.; Niu, J. Estimation of the chlorophyll contents of tobacco infected by the mosaic virus based on canopy hyperspectral characteristics. J. Anim. Plant Sci. 2015, 251, 158–164. [Google Scholar]
- Lu, J.; Yang, T.; Su, X.; Qi, H.; Yao, X.; Cheng, T.; Zhu, Y.; Cao, W.; Tian, Y. Monitoring leaf potassium content using hyperspectral vegetation indices in rice leaves. Precis. Agric. 2020, 21, 324–348. [Google Scholar] [CrossRef]
- Zhang, S.; Zhao, G.; Lang, K.; Su, B.; Chen, X.; Xi, X.; Zhang, H. Integrated Satellite, Unmanned Aerial Vehicle (UAV) and Ground Inversion of the SPAD of Winter Wheat in the Reviving Stage. Sensors 2019, 19, 1485. [Google Scholar] [CrossRef] [PubMed]
- Thorp, K.R.; Gore, M.A.; Andrade-Sanchez, P.; Carmo-Silva, A.E.; Welch, S.M.; White, J.W.; French, A.N. Proximal hyperspectral sensing and data analysis approaches for field-based plant phenomics. Comput. Electron. Agric. 2015, 118, 225–236. [Google Scholar] [CrossRef] [Green Version]
- Yuan, M.; Burjel, J.C.; Isermann, J.; Goeser, N.J.; Pittelkow, C.M. Unmanned aerial vehicle-based assessment of cover crop biomass and nitrogen uptake variability. J. Soil Water Conserv. 2019, 74, 350–359. [Google Scholar] [CrossRef] [Green Version]
- Weiss, M.; Jacob, F.; Duveiller, G. Remote sensing for agricultural applications: A meta-review. Remote Sens. Environ. 2020, 236, 111402. [Google Scholar] [CrossRef]
- Xu, W.; Lan, Y.; Li, Y.; Luo, Y.; He, Z. Classification method of cultivated land based on UAV visible light remote sensing. Int. J. Agric. Biol. Eng. 2019, 12, 103–109. [Google Scholar] [CrossRef] [Green Version]
- Yang, D.; Lan, Y.; Li, W.; Hu, C.; Xu, H.; Miao, J.; Xiao, X.; Hu, L.; Gong, D.; Zhao, J. Extraction of maize vegetation coverage based on UAV multi-spectral remote sensing and pixel dichotomy. Int. J. Precis. Agric. Aviat. 2021, 2, 1–7. [Google Scholar] [CrossRef]
- Deng, L.; Mao, Z.; Li, X.; Hu, Z.; Duan, F.; Yan, Y. UAV-based multispectral remote sensing for precision agriculture: A comparison between different cameras. Isprs-J. Photogramm. Remote Sens. 2018, 146, 124–136. [Google Scholar] [CrossRef]
- Benincasa, P.; Antognelli, S.; Brunetti, L.; Fabbri, C.A.; Natale, A.; Sartoretti, V.; Modeo, G.; Guiducci, M.; Tei, F.; Vizzari, M. Reliability of NDVI derived by high resolution satellite and uav compared to in-field methods for the evaluation of early crop n status and grain yield in wheat. Exp. Agric. 2018, 54, 604–622. [Google Scholar] [CrossRef]
- Yang, W.; Xu, W.; Wu, C.; Zhu, B.; Chen, P.; Zhang, L.; Lan, Y. Cotton hail disaster classification based on drone multispectral images at the flowering and boll stage. Comput. Electron. Agric. 2021, 180, 105866. [Google Scholar] [CrossRef]
- Feng, A.; Zhou, J.; Vories, E.D.; Sudduth, K.A.; Zhang, M. Yield estimation in cotton using UAV-based multi-sensor imagery. Biosyst. Eng. 2020, 193, 101–114. [Google Scholar] [CrossRef]
- Duan, B.; Liu, Y.; Gong, Y.; Peng, Y.; Wu, X.; Zhu, R.; Fang, S. Remote estimation of rice LAI based on Fourier spectrum texture from UAV image. Plant Methods 2019, 15, 124. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Yu, J.; Lan, Y.; Kong, F.; Yi, L. Determination of application parameters for cotton defoliants in the Yellow River Basin. Int. J. Precis. Agric. Aviat. 2019, 1, 51–55. [Google Scholar] [CrossRef]
- Yi, L.; Lan, Y.; Kong, H.; Kong, F.; Huang, H.; Xin, H. Exploring the potential of UAV imagery for variable rate spraying in cotton defoliation application. Int. J. Precis. Agric. Aviat. 2019, 1, 42–45. [Google Scholar] [CrossRef]
- Percy, R.G.; Cantrell, R.G.; Zhang, J. Genetic variation for agronomic and fiber properties in an introgressed recombinant inbred population of cotton. Crop Sci. 2006, 46, 1311–1317. [Google Scholar] [CrossRef] [Green Version]
- Yeates, S.J.; Constable, G.A.; McCumstie, T. Irrigated cotton in the tropical dry season. I: Yield, its components and crop development. Field Crop. Res. 2010, 116, 278–289. [Google Scholar] [CrossRef]
- Tewolde, H.; Sistani, K.R.; Rowe, D.E.; Adeli, A.; Johnson, J.R. Lint yield and fiber quality of cotton fertilized with broiler litter. Agron. J. 2007, 99, 184–194. [Google Scholar] [CrossRef]
- Read, J.J.; Reddy, K.R.; Jenkins, J.N. Yield and fiber quality of Upland cotton as influenced by nitrogen and potassium nutrition. Eur. J. Agron. 2006, 24, 282–290. [Google Scholar] [CrossRef]
- Suarez, L.A.; Apan, A.; Werth, J. Hyperspectral sensing to detect the impact of herbicide drift on cotton growth and yield. Isprs-J. Photogramm. Remote Sens. 2016, 120, 65–76. [Google Scholar] [CrossRef]
- Li, Y.A.; Cao, Z.G.; Xiao, Y.; Lu, H.; Zhu, Y.J. A Novel Denoising Autoencoder Assisted Segmentation Algorithm for Cotton Field; IEEE: New York, NY, USA, 2015; pp. 588–593. [Google Scholar]
- Xu, W.; Chen, P.; Zhan, Y.; Chen, S.; Zhang, L.; Lan, Y. Cotton yield estimation model based on machine learning using time series UAV remote sensing data. Int. J. Appl. Earth Obs. Geoinform. 2021, 104, 102511. [Google Scholar] [CrossRef]
- Zhang, X.; Li, D.; Yang, W.; Wang, J.; Liu, S. A fast segmentation method for high-resolution color images of foreign fibers in cotton. Comput. Electron. Agric. 2011, 78, 71–79. [Google Scholar] [CrossRef]
- Li, Y.; Cao, Z.; Lu, H.; Xiao, Y.; Zhu, Y.; Cremers, A.B. In-field cotton detection via region-based semantic image segmentation. Comput. Electron. Agric. 2016, 127, 475–486. [Google Scholar] [CrossRef]
- Falk, T.; Mai, D.; Bensch, R.; Cicek, O.; Abdulkadir, A.; Marrakchi, Y.; Bohm, A.; Deubner, J.; Jackel, Z.; Seiwald, K.; et al. U-Net: Deep learning for cell counting, detection, and morphometry. Nat. Methods 2019, 16, 67. [Google Scholar] [CrossRef]
- Xu, W.; Yang, W.; Chen, S.; Wu, C.; Chen, P.; Lan, Y. Establishing a model to predict the single boll weight of cotton in northern Xinjiang by using high resolution UAV remote sensing data. Comput. Electron. Agric. 2020, 179, 105762. [Google Scholar] [CrossRef]
- Zhang, L.Y.; Han, W.T.; Niu, Y.X.; Chavez, J.L.; Shao, G.M.; Zhang, H.H. Evaluating the sensitivity of water stressed maize chlorophyll and structure based on UAV derived vegetation indices. Comput. Electron. Agric. 2021, 185, 106174. [Google Scholar] [CrossRef]
- Albetis, J.; Jacquin, A.; Goulard, M.; Poilve, H.; Rousseau, J.; Clenet, H.; Dedieu, G.; Duthoit, S. On the Potentiality of UAV Multispectral Imagery to Detect Flavescence doree and Grapevine Trunk Diseases. Remote Sens. 2019, 11, 23. [Google Scholar] [CrossRef] [Green Version]
- Albetis, J.; Duthoit, S.; Guttler, F.; Jacquin, A.; Goulard, M.; Poilve, H.; Feret, J.B.; Dedieu, G. Detection of Flavescence doree Grapevine Disease Using Unmanned Aerial Vehicle (UAV) Multispectral Imagery. Remote Sens. 2017, 9, 308. [Google Scholar] [CrossRef] [Green Version]
- Xie, C.Q.; Yang, C. A review on plant high-throughput phenotyping traits using UAV-based sensors. Comput. Electron. Agric. 2020, 178, 105731. [Google Scholar] [CrossRef]
- Thompson, C.N.; Guo, W.X.; Sharma, B.; Ritchie, G.L. Using Normalized Difference Red Edge Index to Assess Maturity in Cotton. Crop Sci. 2019, 59, 2167–2177. [Google Scholar] [CrossRef]
- Zhou, Y.; Xu, H.R.; Ying, Y.B. NIR Analysis of Textile Natural Raw Material. Spectrosc. Spectr. Anal. 2008, 28, 2804–2807. [Google Scholar]
- Liu, Y.; Delhom, C.; Todd Campbell, B.; Martin, V. Application of near infrared spectroscopy in cotton fiber micronaire measurement. Inf. Process. Agric. 2016, 3, 30–35. [Google Scholar] [CrossRef]
Upper Half Mean Length/mm | Uniformity Index/% | Breaking Tenacity/cN•tex-1 | Micronaire Value | Elongation/% | |
---|---|---|---|---|---|
Max | 29.6 | 85.1 | 30.4 | 5.4 | 6.8 |
Min | 26 | 80.4 | 25.5 | 4 | 6.6 |
Mean | 27.85 | 82.98 | 27.68 | 4.76 | 6.7 |
CV | 0.024 | 0.009 | 0.036 | 0.058 | 0.005 |
Phantom 4 RTK | Phantom 4 Multispectral | |
---|---|---|
CMOS pixel | 5472 × 3648 | 1600 × 1300 |
Field of View (FOV) | 84° | 62.7° |
Flight altitude | 100 m | 100 m |
Ground sampling distance | 2.74 cm/px | 5.29 cm/px |
Overlap rate | 70% | 70% |
Imaging band | Visible light | Red (650 nm ± 16 nm) |
Green (560 nm ± 16 nm) | ||
Blue (450 nm ± 16 nm) | ||
Red Edge (730 nm ± 16 nm) | ||
Near Infrared (840 nm ± 26 nm) |
Identification Type | Cotton Boll | Other Objects | Total | User’s Accuracy |
---|---|---|---|---|
Cotton boll | 371 | 10 | 381 | 97.35% |
Other objects | 14 | 105 | 119 | 88.23% |
Total | 385 | 115 | ||
Producer’s accuracy | 96.36% | 91.30% |
Max R2 | Average R2 | Minimum MSE | Average MSE | |
---|---|---|---|---|
Linear regression | 0.6404 | 0.5593 | 0.4012 | 0.212 |
BP neroun network | 0.9084 | 0.7952 | 0.0676 | 0.1094 |
BP neroun network (remove soil pixels) | 0.9098 | 0.8271 | 0.075 | 0.104 |
Parameter Removed | Training R2 | Training MSE | Whether Significant |
---|---|---|---|
VDVI | 0.811 | 129.686 | × |
NGRDI | 0.8221 | 92.938 | × |
VARI | 0.8193 | 122.695 | × |
ExG | 0.8268 | 97.148 | × |
DSI | 0.821 | 101.328 | × |
RSI | 0.7678 | 134.852 | √ |
NDVI | 0.796 | 118.739 | √ |
CI | 0.8098 | 107.188 | × |
MTCI | 0.7788 | 125.136 | √ |
EVI | 0.823 | 100.196 | × |
OSAVI | 0.7969 | 112.557 | √ |
BOP | 0.6381 | 121.079 | √ |
Cross Validation Maximum (Minimum) Value | Average | |
---|---|---|
Training R2 | 0.8702 | 0.825 |
Training MSE | 0.0735 | 0.1053 |
Validation R2 | 0.8061 | 0.7826 |
Validation MSE | 0.1025 | 0.1986 |
Training R2 | Validation R2 | Training MSE | Validation MSE | ||
---|---|---|---|---|---|
Upper half mean length/mm | Average | 0.825 | 0.7826 | 0.1053 | 0.1986 |
Maximum (minimum) value | 0.8702 | 0.8061 | 0.0735 | 0.1025 | |
Uniformity Index/% | Average | 0.8014 | 0.7523 | 0.1903 | 0.288 |
Maximum (minimum) value | 0.8591 | 0.7966 | 0.117 | 0.2195 | |
Breaking tenacity/cN•tex-1 | Average | 0.7264 | 0.6536 | 0.3132 | 0.2112 |
Maximum (minimum) value | 0.8212 | 0.7884 | 0.1591 | 0.2965 | |
Micronaire value | Average | 0.7722 | 0.7655 | 0.012 | 0.0167 |
Maximum (minimum) value | 0.8267 | 0.8142 | 0.0151 | 0.0126 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, W.; Yang, W.; Chen, P.; Zhan, Y.; Zhang, L.; Lan, Y. Cotton Fiber Quality Estimation Based on Machine Learning Using Time Series UAV Remote Sensing Data. Remote Sens. 2023, 15, 586. https://doi.org/10.3390/rs15030586
Xu W, Yang W, Chen P, Zhan Y, Zhang L, Lan Y. Cotton Fiber Quality Estimation Based on Machine Learning Using Time Series UAV Remote Sensing Data. Remote Sensing. 2023; 15(3):586. https://doi.org/10.3390/rs15030586
Chicago/Turabian StyleXu, Weicheng, Weiguang Yang, Pengchao Chen, Yilong Zhan, Lei Zhang, and Yubin Lan. 2023. "Cotton Fiber Quality Estimation Based on Machine Learning Using Time Series UAV Remote Sensing Data" Remote Sensing 15, no. 3: 586. https://doi.org/10.3390/rs15030586