VIIRS Edition 1 Cloud Properties for CERES, Part 1: Algorithm Adjustments and Results
<p>Spectral response functions for CERES channels (<b>a</b>) 1 and (<b>b</b>) 3 used in cloud detection and retrieval algorithms.</p> "> Figure 2
<p>Mean 2013 cloud fractions from CV1S for (<b>a</b>) day and (<b>b</b>) night with the differences between CV1S and CM4 for (<b>c</b>) day and (<b>d</b>) night.</p> "> Figure 3
<p>Time series of 12-month running mean cloud amount during daytime (<b>left</b>) and at night (<b>right</b>) over nonpolar (<b>top</b>), polar areas (<b>middle</b> row), and the globe (<b>bottom</b>) for Aqua Ed4 (blue) and SNPP Ed1a (green). Note the scale differences among the plots.</p> "> Figure 4
<p>Mean 2013 global cloud fractions as a function of VZA for Aqua CM4 and CV1S.</p> "> Figure 5
<p>Mean 2013 liquid cloud amounts from CV1S for (<b>a</b>) day and (<b>b</b>) night and the differences between CV1S and CM4A for (<b>c</b>) day and (<b>d</b>) night. The table lists the average liquid and ice cloud amounts for the globe and polar regions only.</p> "> Figure 6
<p>Global 12-month running mean liquid water (<b>left</b>) and ice (<b>right</b>) cloud fractions of total cloud amount from CM4A (blue) and CV1S (green).</p> "> Figure 7
<p>Mean 2013 daytime water cloud effective heights from SNPP Ed1a during (<b>a</b>) day and (<b>b</b>) night, and from CM4A for (<b>c</b>) day and (<b>d</b>) night.</p> "> Figure 8
<p>Mean 2013 ice cloud effective heights from CV1S during (<b>a</b>) day and (<b>b</b>) night, and the CV1S minus CM4A differences for (<b>c</b>) day and (<b>d</b>) night.</p> "> Figure 9
<p>Same as <a href="#remotesensing-15-00578-f006" class="html-fig">Figure 6</a>, except for the mean liquid (<b>top</b>) and ice (<b>bottom</b>) cloud effective height for day (<b>left</b>) and night (<b>right</b>).</p> "> Figure 10
<p>Mean 2013 daytime cloud (<b>a</b>) CV1S liquid cloud optical depth and (<b>b</b>) difference in the optical depth, <span class="html-italic">CODw</span>(V) − <span class="html-italic">CODw</span>(M), for liquid clouds, (<b>c</b>) CV1S ice cloud optical depth and (<b>d</b>) difference in the optical depth for ice clouds.</p> "> Figure 11
<p>Nonpolar 12-month running mean daytime cloud optical depth from CM4A and CV1S for (<b>a</b>) water and (<b>b</b>) ice clouds.</p> "> Figure 12
<p>Same as <a href="#remotesensing-15-00578-f010" class="html-fig">Figure 10</a>, except for the daytime cloud hydrometeor effective radii.</p> "> Figure 13
<p>Global mean cloud microphysical properties from CM4A (denoted by M) and CV1S (denoted by V) for 2013. (<b>a</b>) cloud optical depth, (<b>b</b>) Cloud hydrometeor effective radius, and (<b>c</b>) cloud water path.</p> "> Figure 14
<p>Mean 2013 cloud-top heights from (<b>a</b>) Aqua CM4 MCAT, (<b>b</b>) CV1S BTM, and (<b>c</b>) CV1S standard retrieval for ice clouds.</p> "> Figure 15
<p>SNPP VIIRS Ed1a 2013 mean <span class="html-italic">CER</span> for liquid water clouds at (<b>a</b>) 1.24 µm and (<b>b</b>) 1.62 µm, and for ice clouds at (<b>c</b>) 1.24 µm and (<b>d</b>) 1.62 µm, 2013.</p> "> Figure 16
<p>Same as <a href="#remotesensing-15-00578-f011" class="html-fig">Figure 11</a>, except for the <span class="html-italic">CER</span> retrieved using the 1.24-µm channel for (<b>a</b>) liquid, <span class="html-italic">CER7w</span>, and (<b>b</b>) ice clouds, <span class="html-italic">CER7i</span>, and (<b>c</b>) 2.1 or 1.6-µm for liquid clouds, <span class="html-italic">CER2w</span>.</p> "> Figure 17
<p>Probability distributions of CV1S liquid water droplet effective radii from (<b>a</b>,<b>b</b>) 1.24 µm, (<b>c</b>,<b>d</b>) 1.60 µm, and (<b>e</b>,<b>f</b>) 3.74 µm for optical depth, τ, ranges; left: 0–6 and right: 6–150, April 2013.</p> "> Figure 18
<p>Same as <a href="#remotesensing-15-00578-f017" class="html-fig">Figure 17</a>, except for the ice clouds.</p> "> Figure 19
<p>Model liquid water cloud NIR reflectance versus VIS reflectance from CV1S LUTs at SZA = 45.6°, VZA = 31.8° for range of <span class="html-italic">COD</span>, and <span class="html-italic">CERw</span>, denoted as τ and <span class="html-italic">R<sub>e</sub></span>, respectively. (<b>a</b>–<b>c</b>) 1.24-µm and (<b>d</b>–<b>f</b>) 1.61-µm reflectances for RAZ = 45° (left column), RAZ = 85° (center column), and RAZ = 135° (right column).</p> "> Figure 20
<p>Same as <a href="#remotesensing-15-00578-f019" class="html-fig">Figure 19</a>, except for the ice clouds.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.1.1. VIIRS Radiances
2.1.2. Ancillary Input
2.2. Changes to the CM4 Algorithms for Application to VIIRS, CV1S
2.2.1. Cloud Mask Changes
2.2.2. Cloud Retrieval Changes
2.2.3. Liquid Cloud Reflectance LUTs
2.2.4. Infrared Cirrus Cloud Height
2.2.5. Multi-Layer Cloud Retrievals
3. Results
3.1. Cloud Amount
3.2. Cloud Phase
3.3. Standard Cloud Height, Pressure, and Temperature
3.4. Standard Daytime Cloud Optical Depth, Effective Hydrometeor Size Based on a 3.74-µm Channel
3.5. Alternative Products
3.5.1. Alternate Cloud-Top Height
3.5.2. Alternative Cloud Hydrometeor Sizes
3.5.3. Multilayer Cloud Fraction and Layer Properties
4. Discussion
4.1. Calibration
4.2. Cloud Fraction and Phase
4.3. Cloud Heights
4.4. Cloud Optical Depth, Effective Hydrometeor Size, and Water Path
4.5. Hydrometeor Size Estimates from Alternate Wavelengths
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wielicki, B.A.; Barkstrom, B.R.; Harrison, E.F.; Lee, R.B., III; Smith, G.L.; Cooper, J.E. Clouds and the Earth’s Radiant Energy System (CERES): An Earth Observing System Experiment. Bull. Am. Meteorol. Soc. 1996, 77, 853–868. [Google Scholar] [CrossRef]
- Priestley, K.J.; Smith, G.L.; Thomas, S.; Cooper, D.; Lee, R.B.; Walikainen, D.; Hess, P.; Szewcyk, P.; Wilson, R. Radiometric performance of the CERES Earth radiation budget climate record sensors on the EOS Aqua and Terra spacecraft through April 2007. J. Atmos. Ocean. Technol. 2011, 28, 3–21. [Google Scholar] [CrossRef]
- Barnes, W.L.; Pagano, T.S.; Salomonson, V.V. Prelaunch characteristics of the Moderate Resolution Imaging Spectroradiometer (MODIS) on EOS-AM1. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1088–1100. [Google Scholar] [CrossRef] [Green Version]
- Minnis, P.; Harrison, E.F. Diurnal variability of regional cloud and clear-sky radiative parameters derived from GOES data, Part II: November 1978 cloud distributions. J. Clim. Appl. Meteorol. 1984, 23, 1012–1031. [Google Scholar] [CrossRef]
- Minnis, P.; Harrison, E.F. Diurnal variability of regional cloud and clear-sky radiative parameters derived from GOES data, Part III: November 1978 radiative parameters. J. Clim. Appl. Meteorol. 1984, 23, 1032–1052. [Google Scholar] [CrossRef]
- Brooks, D.R.; Harrison, E.F.; Minnis, P.; Suttles, J.T.; Kandel, R.S. Development of algorithms for understanding the temporal and spatial variability of the Earth’s radiation balance. Rev. Geophys. 1986, 24, 422–438. [Google Scholar] [CrossRef]
- Minnis, P.; Nguyen, L.; Palikonda, R.; Heck, P.W.; Spangenberg, D.A.; Doelling, D.R.; Ayers, J.K.; Smith, W.L., Jr.; Khaiyer, M.M.; Trepte, Q.Z.; et al. Near-real time cloud retrievals from operational and research meteorological satellites. In Remote Sensing of Clouds and the Atmosphere XIII, Proceedings of the SPIE, Cardiff, UK, 15–18 September 2008; SPIE: London, UK, 2008; Volume 7107, pp. 19–26. [Google Scholar] [CrossRef] [Green Version]
- Doelling, D.R.; Loeb, N.G.; Keyes, D.F.; Nordeen, M.L.; Morstad, D.; Nguyen, C.; Wielicki, B.A.; Young, D.F.; Sun, M. Geostationary enhanced temporal interpolation for CERES flux products. J. Atmos. Ocean. Technol. 2013, 30, 1072–1090. [Google Scholar] [CrossRef]
- Young, D.F.; Minnis, P.; Gibson, G.G.; Doelling, D.R.; Wong, T. Temporal interpolation methods for the clouds and Earth’s Radiant Energy System (CERES) Experiment. J. Appl. Meteorol. 1998, 37, 572–590. [Google Scholar] [CrossRef]
- Doelling, D.R.; Sun, M.; Nguyen, L.T.; Nordeen, M.L.; Haney, C.O.; Keyes, D.F.; Mlynczak, P.E. Advances in geostationary-derived longwave fluxes for the CERES synoptic (SYN1deg) product. J. Atmos. Ocean. Technol. 2016, 33, 503–521. [Google Scholar] [CrossRef]
- Hillger, D.; Kopp, T.; Lee, T.; Lindsey, D.; Seaman, C.; Miller, S.; Solberg, J.; Kidder, S.; Bachmeier, S.; Jasmin, T.; et al. First-light imagery from Suomi NPP VIIRS. Bull. Am. Meteorol. Soc. 2013, 93, 1019–1029. [Google Scholar] [CrossRef]
- Szewczyk, P.; Walikainen, D.R.; Smith, N.; Thomas, S.; Priestley, K.J. Improving consistency of the ERB record measured by CERES scanners aboard Terra/Aqua/S-NPP satellites. In Remote Sensing of Clouds and the Atmosphere XXII; SPIE: London, UK, 2017; Volume 10424, p. 1042401. [Google Scholar] [CrossRef]
- Smith, N.; Thomas, S.; Shankar, M.; Priestley, K.; Loeb, N.; Walikainen, D. Assessment of on-orbit variations of the Clouds and the Earths Radiant Energy System (CERES) FM5 instrument. In Earth Observing Missions and Sensors: Development, Implementation, and Characterization V; SPIE: London, UK, 2018; Volume 1078119. [Google Scholar] [CrossRef]
- Su, W.; Liang, L.; Miller, W.F.; Sothcott, V.E. The effects of different footprint sizes and cloud algorithms on the top-of-atmosphere radiative flux calculation from the Clouds and the Earth’s Radiant Energy System (CERES) instrument on Suomi National Polar-orbiting Partnership (NPP). Atmos. Meas. Tech. 2017, 10, 4001–4011. [Google Scholar] [CrossRef] [Green Version]
- Wielicki, B.A.; Barkstrom, B.R.; Baum, B.A.; Charlock, T.P.; Green, R.N.; Kratz, D.P.; Lee, R.B.; Minnis, P.; Smith, G.L.; Young, D.F.; et al. Clouds and the Earth’s Radiant Energy System (CERES): Algorithm overview. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1127–1141. [Google Scholar] [CrossRef] [Green Version]
- Minnis, P.; Sun-Mack, S.; Yost, C.R.; Chen, Y.; Smith, W.L., Jr.; Chang, F.-L.; Heck, P.W.; Arduini, R.F.; Trepte, Q.Z.; Ayers, K.; et al. CERES MODIS cloud product retrievals for Edition 4, Part I: Algorithm changes to CERES MODIS. IEEE Trans. Geosci. Remote Sens. 2021, 58, 2744–2780. [Google Scholar] [CrossRef]
- Trepte, Q.Z.; Minnis, P.; Sun-Mack, S.; Yost, C.R.; Chen, Y.; Jin, Z.; Chang, F.-L.; Smith, W.L., Jr.; Bedka, K.M.; Chee, T.L. Global cloud detection for CERES Edition 4 using Terra and Aqua MODIS data. IEEE Trans. Geosci. Remote Sens. 2019, 57, 9410–9449. [Google Scholar] [CrossRef]
- Yost, C.R.; Minnis, P.; Sun-Mack, S.; Smith, W.L., Jr.; Trepte, Q.Z. VIIRS Edition 1 cloud properties for CERES. Part 2: Evaluation with CALIPSO. Remote Sens. 2022. submitted. Available online: https://satcorps.larc.nasa.gov/projects/PMinnis/ (accessed on 11 December 2022).
- Xiong, X.; Butler, J.; Chiang, K.; Efremova, B.; Fulbright, J.; Lei, N.; McIntire, J.; Oudrari, H.; Sun, J.; Wang, Z.; et al. VIIRS on-orbit calibration methodology and performance. J. Geophys. Res. Atmos. 2014, 119, 5065–5078. [Google Scholar] [CrossRef]
- Doelling, D.R.; Wu, A.; Xiong, X.; Scarino, B.R.; Bhatt, R.; Haney, C.O.; Morstad, D.; Gopalan, A. The radiometric stability and scaling of Collection 6 Terra- and Aqua-MODIS VIS, NIR, and SWIR spectral bands. IEEE Trans. Geosci. Remote Sens. 2015, 53, 4520–4535. [Google Scholar] [CrossRef]
- Lee, T.E.; Miller, S.D.; Schueler, C.; Miller, S. NASA MODIS previews NPOEES VIIRS capabilities. Weather Forecast. 2006, 21, 649–655. [Google Scholar] [CrossRef]
- Rienecker, M.M.; Suarez, M.J.; Todling, R.; Bacmeister, S.; Takacs, L.; Liu, H.-C.; Gu, W.; Sienkiewicz, M.; Koster, R.D.; Gelaro, R.; et al. The GEOS-5 Data Assimilation System—Documentation of Versions 5.0.1, 5.1.0, and 5.2.0; Technical Report Series on Global Modeling and Data Assimilation; NASA/TM-2008-104606; NASA Goddard Space Flight Center: Greenbelt, MD, USA, 2008; Volume 27, p. 118.
- Alishouse, J.C.; Snyder, S.A.; Vongsathorn, J.; Ferraro, R.R. Determination of oceanic total precipitable water from the SSM/I. IEEE Trans. Geosci. Remote Sens. 1990, 28, 811–816. [Google Scholar] [CrossRef]
- Minnis, P.; Sun-Mack, S.; Young, D.F.; Heck, P.W.; Garber, D.P.; Chen, Y.; Spangenberg, D.A.; Arduini, R.F.; Trepte, Q.Z.; Smith, W.L., Jr.; et al. CERES Edition-2 cloud property retrievals using TRMM VIRS and Terra and Aqua MODIS data, Part I: Algorithms. IEEE Trans. Geosci. Remote Sens. 2011, 49, 4374–4400. [Google Scholar] [CrossRef]
- Chen, Y.; Minnis, P.; Sun-Mack, S.; Arduini, R.F.; Trepte, Q.Z. Clear-sky and surface narrowband albedo datasets derived from MODIS data. In Proceedings of the 13th Conference on Atmospheric Radiation, Portland, OR, USA, 27 June–2 July 2010; p. 9. Available online: https://ams.confex.com/ams/13CldPhy13AtRad/webprogram/Paper170890.html (accessed on 11 December 2022).
- Minnis, P.; Garber, D.P.; Young, D.F.; Arduini, R.F.; Takano, Y. Parameterization of reflectance and effective emittance for satellite remote sensing of cloud properties. J. Atmos. Sci. 1998, 55, 3313–3339. [Google Scholar] [CrossRef]
- Hale, G.M.; Querry, M.R. Optical constants of water in the 200-nm to 200-µm wavelength region. Appl. Opt. 1973, 12, 555–563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warren, S.G. Optical constants of ice from ultraviolet to the microwave. Appl. Opt. 1984, 23, 1206–1225. [Google Scholar] [CrossRef]
- Yang, P.; Kattawar, G.W.; Hong, G.; Minnis, P.; Hu, Y.X. Uncertainties associated with the surface texture of ice particles in satellite-based retrieval of cirrus clouds: Part II. Effect of particle surface roughness on retrieved cloud optical thickness and effective particle size. IEEE Trans. Geosci. Remote Sens. 2008, 46, 1948–1957. [Google Scholar] [CrossRef]
- Chang, F.-L.; Minnis, P.; Lin, B.; Khaiyer, M.; Palikonda, R.; Spangenberg, D. A modified method for inferring cloud top height using GOES-12 imager 10.7- and 13.3-µm data. J. Geophys. Res. 2010, 115, D06208. [Google Scholar] [CrossRef] [Green Version]
- Chang, F.-L.; Minnis, P.; Ayers, J.K.; McGill, M.J.; Palikonda, R.; Spangenberg, D.A.; Smith, W.L., Jr.; Yost, C.R. Evaluation of satellite-based upper-troposphere cloud-top height retrievals in multilayer cloud conditions during TC4. J. Geophys. Res. 2010, 115, D00J05. [Google Scholar] [CrossRef]
- Chang, F.-L.; Minnis, P.; Sun-Mack, S.; Nyugen, L.; Chen, Y. On the satellite determination of multi-layered multi-phase cloud properties. In Proceedings of the 13th Conference on Atmospheric Radiation, Portland, OR, USA, 27 June–2 July 2010; p. 6. Available online: https://ams.confex.com/ams/pdfpapers/171180.pdf (accessed on 11 December 2022).
- CERES. CERES_SSF_Terra-Aqua_Edition4A Data Products Catalog. Available online: https://ceres.larc.nasa.gov/documents/DPC/DPC_current/pdfs/DPC_SSF-Ed4_R5V1.pdf (accessed on 17 June 2014).
- Minnis, P.; Yost, C.R.; Sun-Mack, S.; Chen, Y. Estimating the physical top altitude of optically thick ice clouds from thermal infrared satellite observations using CALIPSO data. Geophys. Res. Lett. 2008, 35, L12801. [Google Scholar] [CrossRef] [Green Version]
- Bennartz, R. Global assessment of marine boundary layer cloud droplet number concentration from satellite. J. Geophys. Res. 2007, 112, D02201. [Google Scholar] [CrossRef]
- Dong, X.; Minnis, P. Chapter 8: Stratus, stratocumulus, and remote sensing. In Fast Physics in Large Scale Atmospheric Models: Parameterization, Evaluation, and Observations; Liu, Y., Kollias, P., Donner, L., Eds.; AGU-Wiley Publ.: Hoboken, NJ, USA, 2022; in press. [Google Scholar]
- Minnis, P.; Bedka, K.; Trepte, Q.; Yost, C.R.; Bedka, S.T.; Scarino, B.; Khlopenkov, K.; Khaiyer, M.M. A Consistent Long-Term Cloud and Clear-Sky Radiation Property Dataset from the Advanced Very High Resolution Radiometer (AVHRR). Climate Algorithm Theoretical Basis Document (C-ATBD), CDRP-ATBD-0826 AVHRR Cloud Properties—NASA, NOAA CDR Program. 19 September 2016; 159p. Available online: https://www1.ncdc.noaa.gov/pub/data/sds/cdr/CDRs/AVHRR_Cloud_Properties_NASA/AlgorithmDescription_01B-30b.pdf (accessed on 11 December 2022).
- Painemal, D.; Minnis, P.; Sun-Mack, S. The impact of horizontal heterogeneities, cloud fraction, and cloud dynamics on warm cloud effective radii and liquid water path from CERES-like Aqua MODIS retrievals. Atmos. Chem. Phys. 2013, 13, 9997–10003. [Google Scholar] [CrossRef] [Green Version]
- Painemal, D.; Greenwald, T.; Cadeddu, M.; Minnis, P. First extended validation of satellite microwave liquid water path with ship-based observations of marine low clouds. Geophys. Res. Lett. 2016, 43, 6563–6570. [Google Scholar] [CrossRef]
- Yost, C.R.; Minnis, P.; Sun-Mack, S.; Chen, Y.; Smith, W.L., Jr. CERES MODIS cloud product retrievals for Edition 4, Part II: Comparisons to CloudSat and CALIPSO. IEEE Trans. Geosci. Remote Sens. 2021, 59, 3695–3724. [Google Scholar] [CrossRef]
- Sun-Mack, S.; Minnis, P.; Chen, Y.; Doelling, D.R.; Scarino, B.; Haney, C.O.; Smith, W.L., Jr. Calibration changes to Terra MODIS Collection-5 radiances for CERES Edition 4 cloud retrievals. IEEE Trans. Geosci. Remote Sens. 2018, 56, 6016–6032. [Google Scholar] [CrossRef] [PubMed]
- Frey, R.A.; Ackerman, S.A.; Holz, R.E.; Dutcher, S.; Griffith, Z. The Continuity MODIS-VIIRS Cloud Mask. Remote Sens. 2020, 12, 3334. [Google Scholar] [CrossRef]
- Platnick, S.; Meyer, K.; Wind, G.; Holz, R.E.; Amarasinghe, N.; Hubanks, P.A.; Marchant, B.; Dutcher, S.; Veglio, P. The NASA MODIS-VIIRS continuity cloud optical properties products. Remote Sens. 2021, 13, 2. [Google Scholar] [CrossRef]
- Stubenrauch, C.; Rossow, W.B.; Kinne, S.; Ackerman, S.; Cesana, G.; Chepfer, H.; Getzewich, B.; DiGirolamo, L.; Guignard, A.; Heidinger, A.; et al. Assessment of global cloud datasets from satellites: Project and database initiated by the GEWEX Radiation Panel. Bull. Am. Meteorol. Soc. 2013, 94, 1031–1049. [Google Scholar] [CrossRef]
- Minnis, P.; Sun-Mack, S.; Chen, Y.; Khaiyer, M.M.; Yi, Y.; Ayers, J.K.; Brown, R.R.; Dong, X.; Gibson, S.C.; Heck, P.W.; et al. CERES Edition-2 cloud property retrievals using TRMM VIRS and Terra and Aqua MODIS data, Part II: Examples of average results and comparisons with other data. IEEE Trans. Geosci. Remote Sens. 2011, 49, 4401–4430. [Google Scholar] [CrossRef]
- Xi, B.; Dong, X.; Minnis, P.; Sun-Mack, S. Comparison of marine boundary layer cloud properties from CERES-MODIS Edition 4 and DOE ARM AMF measurements at the Azores. J. Geophys. Res. 2014, 119, 9509–9529. [Google Scholar] [CrossRef]
- Dong, X.; Xi, B.; Qiu, S.; Minnis, P.; Sun-Mack, S.; Rose, F. A radiation closure study of Arctic stratus cloud microphysical properties using the collocated satellite-surface data and Fu-Liou radiative transfer model. J. Geophys. Res. 2016, 121, 10175–10198. [Google Scholar] [CrossRef]
- Painemal, D.; Spangenberg, D.; Smith, W.L., Jr.; Minnis, P.; Cairns, B.; Moore, R.H.; Crosbie, E.; Robinson, C.; Thornhill, K.L.; Winstead, E.L.; et al. Evaluation of satellite retrievals of liquid clouds from the GOES-13 imager and MODIS over the midlatitude North Atlantic during the NAAMES campaign. Atmos. Meas. Tech. 2021, 14, 6633–6646. [Google Scholar] [CrossRef]
- Zhang, Z.; Dong, X.; Xi, B.; Song, H.; Ma, P.-L.; Ghan, S.; Platnick, S.; Minnis, P. Intercomparisons of marine boundary layer cloud properties from two MODIS products, ground-based retrievals, and a GCM over the ARM Azores site. J. Geophys. Res. 2017, 122, 2351–2365. [Google Scholar] [CrossRef] [Green Version]
- Dong, X.; Minnis, P.; Xi, B.; Sun-Mack, S.; Chen, Y. Comparison of CERES-MODIS stratus cloud properties with ground-based measurements at the DOE ARM Southern Great Plains site. J. Geophys. Res. 2008, 113, D03204. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Platnick, S. An assessment of differences between cloud effective particle radius for marine water clouds from three MODIS spectral bands. J. Geophys. Res. 2011, 116, D20215. [Google Scholar] [CrossRef] [Green Version]
- Chang, F.L.; Li, Z. Estimating the vertical variation of cloud droplet effective radius using multispectral near-infrared satellite measurements. J. Geophys. Res. 2002, 107, D15. [Google Scholar] [CrossRef]
CERES Channel | MODIS Channel | VIIRS Channel | MODIS Central Wavelength (µm) | VIIRS Central Wavelength (µm) | MODIS CM4 | VIIRS CV1S | Name |
---|---|---|---|---|---|---|---|
1 | 1 | I1 | 0.65 | 0.64 | 1, 2 | 1, 2 | VIS |
2a | 6 | I3 | 1.64 | 1.61 | - | 1, 2 | NIR |
2b | 7 | M11 | 2.13 | 2.26 | 1, 2 | - | NIR |
3 | 20 | I4 | 3.78 | 3.74 | 1, 2 | 1, 2 | SIR |
4 | 31 | M15 | 11 | 10.8 | 1, 2 | 1, 2 | IRW |
5 | 32 | M16 | 12 | 12 | 1, 2 | 1, 2 | SPW |
6 | 29 | M14 | 8.55 | 8.55 | 1, 2 | 1, 2 | IRP |
7 | 5 | M8 | 1.24 | 1.24 | 1, 2 | 1, 2 | SNI |
8 | 3 | M3 | 0.47 | 0.48 | 1 | 1 | |
9 | 26 | M9 | 1.38 | 1.38 | 1 | 1 | |
10 | 2 | M7 | 0.86 | 0.86 | 1 | 1 | VEG |
11 | 27 | 6.71 | N/A | 1 | N/A | WV | |
12 | 33 | 13.3 | N/A | 1, 2 | N/A | CO2 |
Ocean | Land | Ocean and Land | |||||||
---|---|---|---|---|---|---|---|---|---|
NP | Polar | Global | NP | Polar | Global | NP | Polar | Global | |
Day | |||||||||
Aqua | 0.69 | 0.847 | 0.703 | 0.535 | 0.627 | 0.551 | 0.65 | 0.748 | 0.66 |
SNPP | 0.674 | 0.836 | 0.687 | 0.521 | 0.621 | 0.538 | 0.634 | 0.74 | 0.645 |
Night | |||||||||
Aqua | 0.745 | 0.846 | 0.755 | 0.531 | 0.583 | 0.542 | 0.689 | 0.727 | 0.694 |
SNPP | 0.703 | 0.807 | 0.714 | 0.549 | 0.583 | 0.556 | 0.663 | 0.705 | 0.668 |
Ocean | Land | All Surfaces | |||||||
---|---|---|---|---|---|---|---|---|---|
NP | Polar | Global | NP | Polar | Global | NP | Polar | Global | |
Day | |||||||||
Aqua | 0.441 | 0.563 | 0.45 | 0.305 | 0.298 | 0.302 | 0.405 | 0.443 | 0.408 |
SNPP | 0.429 | 0.595 | 0.442 | 0.304 | 0.328 | 0.306 | 0.396 | 0.475 | 0.403 |
Night | |||||||||
Aqua | 0.436 | 0.414 | 0.434 | 0.207 | 0.158 | 0.197 | 0.376 | 0.299 | 0.366 |
SNPP | 0.413 | 0.4 | 0.412 | 0.228 | 0.152 | 0.212 | 0.365 | 0.289 | 0.355 |
Ocean | Land | Ocean and Land | |||||||
---|---|---|---|---|---|---|---|---|---|
NP | Polar | Global | NP | Polar | Global | NP | Polar | Global | |
Day, Water | |||||||||
CM4A | 2.23 | 1.99 | 2.2 | 3.48 | 2.42 | 3.32 | 2.48 | 2.13 | 2.44 |
CV1S | 2.35 | 2.14 | 2.33 | 3.75 | 2.63 | 3.56 | 2.63 | 2.3 | 2.59 |
Day, Ice | |||||||||
CM4A | 9.33 | 5.45 | 8.98 | 9.22 | 5.45 | 8.38 | 9.29 | 5.44 | 8.79 |
CV1S | 9.71 | 5.83 | 9.41 | 9.41 | 5.92 | 8.68 | 9.63 | 5.87 | 9.2 |
Night, Water | |||||||||
CM4A | 2.51 | 1.74 | 2.43 | 3.86 | 2.22 | 3.61 | 2.7 | 1.89 | 2.62 |
CV1S | 2.57 | 1.95 | 2.51 | 3.85 | 2.37 | 3.65 | 2.78 | 2.09 | 2.71 |
Night, Ice | |||||||||
CM4A | 10.19 | 5.13 | 9.5 | 10.57 | 5.44 | 9.27 | 10.29 | 5.27 | 9.43 |
CV1S | 9.94 | 5.57 | 9.35 | 10.47 | 5.83 | 9.28 | 10.08 | 5.68 | 9.32 |
Ocean | Land | Ocean and Land | |||||||
---|---|---|---|---|---|---|---|---|---|
NP | Polar | Global | NP | Polar | Global | NP | Polar | Global | |
Water Clouds | |||||||||
CM4A | 9.15 | 18.65 | 10.12 | 13.75 | 23.82 | 15.28 | 10.05 | 19.98 | 11.17 |
CV1S | 10.57 | 26.55 | 12.35 | 16.81 | 34.16 | 19.75 | 11.82 | 28.64 | 13.91 |
Ice Clouds | |||||||||
CM4A | 13.48 | 13.73 | 13.54 | 15.2 | 12.82 | 14.72 | 13.88 | 13.43 | 13.85 |
CV1S | 13.5 | 11.05 | 13.31 | 14.45 | 7.65 | 12.93 | 13.71 | 9.33 | 13.18 |
Ocean | Land | Ocean and Land | |||||||
---|---|---|---|---|---|---|---|---|---|
NP | Polar | Global | NP | Polar | Global | NP | Polar | Global | |
Water Clouds | |||||||||
CM4A | 14.5 | 12.5 | 14.3 | 11.6 | 11.9 | 11.7 | 13.9 | 12.3 | 13.8 |
CV1S | 13.3 | 12 | 13.2 | 10.9 | 12.2 | 11.1 | 12.8 | 12.1 | 12.7 |
Ice Clouds | |||||||||
CM4A | 26.8 | 34 | 27.4 | 26.9 | 35.1 | 28.8 | 26.8 | 34.5 | 27.8 |
CV1S | 25.9 | 31.7 | 26.3 | 27.5 | 33.8 | 28.9 | 26.3 | 32.8 | 27 |
Ocean | Land | Ocean and Land | |||||||
---|---|---|---|---|---|---|---|---|---|
NP | Polar | Global | NP | Polar | Global | NP | Polar | Global | |
Water Clouds | |||||||||
CM4A | 86.6 | 165.6 | 94.8 | 107.3 | 233.9 | 126.4 | 90.6 | 182.6 | 101.1 |
CV1S | 94 | 291.3 | 116.1 | 139.4 | 434.2 | 189.2 | 103.1 | 329.7 | 131.5 |
Ice Clouds | |||||||||
CM4A | 237.2 | 239.3 | 238.1 | 259.2 | 250.4 | 258.5 | 242.1 | 247.2 | 243.5 |
CV1S | 262.9 | 199.2 | 257.8 | 274.4 | 146.7 | 245.4 | 265.1 | 172 | 253.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Minnis, P.; Sun-Mack, S.; Smith, W.L., Jr.; Trepte, Q.Z.; Hong, G.; Chen, Y.; Yost, C.R.; Chang, F.-L.; Smith, R.A.; Heck, P.W.; et al. VIIRS Edition 1 Cloud Properties for CERES, Part 1: Algorithm Adjustments and Results. Remote Sens. 2023, 15, 578. https://doi.org/10.3390/rs15030578
Minnis P, Sun-Mack S, Smith WL Jr., Trepte QZ, Hong G, Chen Y, Yost CR, Chang F-L, Smith RA, Heck PW, et al. VIIRS Edition 1 Cloud Properties for CERES, Part 1: Algorithm Adjustments and Results. Remote Sensing. 2023; 15(3):578. https://doi.org/10.3390/rs15030578
Chicago/Turabian StyleMinnis, Patrick, Sunny Sun-Mack, William L. Smith, Jr., Qing Z. Trepte, Gang Hong, Yan Chen, Christopher R. Yost, Fu-Lung Chang, Rita A. Smith, Patrick W. Heck, and et al. 2023. "VIIRS Edition 1 Cloud Properties for CERES, Part 1: Algorithm Adjustments and Results" Remote Sensing 15, no. 3: 578. https://doi.org/10.3390/rs15030578