A Uniformity Index for Precipitation Particle Axis Ratios Derived from Radar Polarimetric Parameters for the Identification and Analysis of Raindrop Areas
<p>Dielectric property parameters: (<b>a</b>) <span class="html-italic">m<sub>r</sub></span> and (<b>b</b>) <span class="html-italic">m<sub>r</sub></span><sup>−1</sup> of hydrometeors at different phases and temperatures.</p> "> Figure 2
<p>Variation of <span class="html-italic">η<sub>dr</sub></span> with the spherical equivalent diameter <span class="html-italic">D</span> for a single ellipsoid water particle with an axial ratio <span class="html-italic">r</span> = 2 under different phase conditions. (<b>a</b>): S-band, (<b>b</b>): X-band. <span class="html-italic">η<sub>dr</sub></span> represents the <span class="html-italic">Z<sub>dr</sub></span> of a single particle.</p> "> Figure 3
<p>Variation of <span class="html-italic">η<sub>dr</sub></span> with <span class="html-italic">m<sub>r</sub></span><sup>−1</sup> for a single ellipsoidal water particle with different axial ratios (colors of the lines) when <span class="html-italic">D</span> = 1 mm. (<b>a</b>) S-band, (<b>b</b>) X-band.</p> "> Figure 4
<p>Linear approximation between <span class="html-italic">m<sub>r</sub></span>, <span class="html-italic">η<sub>dr</sub></span> and <span class="html-italic">r</span> of a single ellipsoidal particle. (<span class="html-italic">R</span><sup>2</sup> is the goodness of fit, and <span class="html-italic">P</span> is the significance of the linear fit. (<b>a</b>) S-band, (<b>b</b>) X-band.</p> "> Figure 5
<p>Relationships between approximate <span class="html-italic">ρ<sub>hv</sub></span> in this study and ideal <span class="html-italic">ρ<sub>hv</sub></span> in raindrops. (The values of <span class="html-italic">D</span><sub>0</sub> are from 0.1 mm to <span class="html-italic">D<sub>max</sub></span> in 0.1 mm intervals. The values of μ range from −0.8 to 16 in intervals of 0.2. R is the correlation coefficient between the approximate <span class="html-italic">ρ<sub>hv</sub></span> and ideal <span class="html-italic">ρ<sub>hv</sub></span> enumerated samples, and <span class="html-italic">P</span> is the significance of R. MAE is the mean absolute error, and MRE is the mean relative error. See <a href="#app1-remotesensing-15-00534" class="html-app">Appendix</a>). (<b>a</b>) S-band and <span class="html-italic">D<sub>max</sub></span> = 6 mm, (<b>b</b>) X-band and <span class="html-italic">D<sub>max</sub></span> = 6 mm, (<b>c</b>) S-band and <span class="html-italic">D<sub>max</sub></span> = 10 mm, (<b>d</b>) X-band and <span class="html-italic">D<sub>max</sub></span> = 10 mm.</p> "> Figure 6
<p>Distribution of <span class="html-italic">U<sub>ar</sub></span> within the enumeration range of the RSD parameters. (The values of <span class="html-italic">D</span><sub>0</sub> and <span class="html-italic">μ</span> are the same as those in <a href="#remotesensing-15-00534-f005" class="html-fig">Figure 5</a>).</p> "> Figure 7
<p>Relationships of <span class="html-italic">U<sub>ar</sub></span> versus <span class="html-italic">D</span><sub>0</sub> and μ when <span class="html-italic">D<sub>max</sub></span>=10 mm. (<span class="html-italic">D<sub>max</sub></span> = 10 mm. The values of <span class="html-italic">D</span><sub>0</sub> and <span class="html-italic">μ</span> are the same as those in <a href="#remotesensing-15-00534-f005" class="html-fig">Figure 5</a>). (<b>a</b>) S-band, (<b>b</b>) X-band.</p> "> Figure 8
<p>Sample PPI observations of <span class="html-italic">Z<sub>H</sub></span>. (The elevation of the PPI is 4°. The azimuth of the dashed line in <a href="#remotesensing-15-00534-f008" class="html-fig">Figure 8</a>b is 212°. The data collection time is 7 September 2016). (<b>a</b>) 18:26 LST, (<b>b</b>) 18:45 LST.</p> "> Figure 9
<p>Sample RHI observations and retrievals of the convective system from the X-band dual polarization weather radar. (The time is 18:46:30 LST. The azimuth is the same as the dashed line in <a href="#remotesensing-15-00534-f008" class="html-fig">Figure 8</a>b. The maximum elevation is 44°). (<b>a</b>) <span class="html-italic">Z<sub>H</sub></span>, (<b>b</b>) <span class="html-italic">Z<sub>DR</sub></span>, (<b>c</b>) <span class="html-italic">ρ</span><sub>hv</sub>, (<b>d</b>) V<sub>R</sub>, (<b>f</b>) HC, (<b>e</b>) <span class="html-italic">U<sub>ar</sub></span>.</p> "> Figure 10
<p>Mean vertical profile in area A. (Statistics by data points with <span class="html-italic">Z<sub>H</sub></span> > 0 dBZ).</p> "> Figure 11
<p>Proportions of <span class="html-italic">U<sub>ar</sub></span> values in the warm layer (below 2.37 km, warmer than 9 °C) of area A: (<b>a</b>) points with <span class="html-italic">Z<sub>H</sub></span> > 0 dBZ and (<b>b</b>) points with <span class="html-italic">Z<sub>H</sub></span> > 20 dBZ. The bars are the proportions within given ranges, and the black lines are the accumulated proportions.</p> "> Figure 12
<p>Variables in area B with the <span class="html-italic">Z<sub>DR</sub></span> column. (<b>a</b>) <span class="html-italic">Z<sub>H</sub></span>, (<b>b</b>) <span class="html-italic">Z<sub>DR</sub></span>, (<b>c</b>) dV<sub>R</sub>/ds, (<b>d</b>) <span class="html-italic">U<sub>ar</sub></span>.</p> "> Figure 13
<p>PPI and RHI of <span class="html-italic">Z<sub>H</sub></span> at subsequent time intervals. (<b>a</b>) PPI at 18:53 LST, (<b>b</b>) RHI at 18:55.</p> "> Figure 14
<p>Variables after the <span class="html-italic">Z<sub>DR</sub></span> column disappeared. (<b>a</b>) <span class="html-italic">Z<sub>H</sub></span>, (<b>b</b>) <span class="html-italic">Z<sub>DR</sub></span>, (<b>c</b>) dV<sub>R</sub>/ds, (<b>d</b>) <span class="html-italic">U<sub>ar</sub></span>.</p> "> Figure 15
<p>Sample PPI observations with BB from the S-band dual polarization weather radar. (The data time is 17 May 2020 23:51 LST. The elevation is 2.4°, which is the third level of a volume scan). (<b>a</b>) <span class="html-italic">Z<sub>H</sub></span>, (<b>b</b>) <span class="html-italic">Z<sub>DR</sub></span>, (<b>c</b>) <span class="html-italic">ρ</span><sub>hv</sub>, (<b>d</b>) <span class="html-italic">U<sub>ar</sub></span>.</p> "> Figure 16
<p>Composite RHI at 130° azimuth from the S-band dual polarization weather radar. (The data time is 17 May 2020 23:51 LST, the same as <a href="#remotesensing-15-00534-f015" class="html-fig">Figure 15</a>. The radial data are smoothed by 10-point median filtering, and triple linear interpolation is used to derive this composite result). (<b>a</b>) <span class="html-italic">Z<sub>H</sub></span>, (<b>b</b>) <span class="html-italic">Z<sub>DR</sub></span>, (<b>c</b>) <span class="html-italic">ρ</span><sub>hv</sub>, (<b>d</b>) <span class="html-italic">U<sub>ar</sub></span>.</p> "> Figure 17
<p>CR with different reflectivity masks. (The points are with <span class="html-italic">Z<sub>H</sub></span> > 20 dBZ. The time is the same as <a href="#remotesensing-15-00534-f015" class="html-fig">Figure 15</a>. (<b>a</b>) CR no mask, (<b>b</b>) CR masked by T < 5 °C, (<b>c</b>) CR masked by <span class="html-italic">U<sub>ar</sub></span> < 0.2, (<b>d</b>) CR masked by <span class="html-italic">U<sub>ar</sub></span> < 0.4.</p> "> Figure 18
<p>Sample of the impact on the <span class="html-italic">U<sub>ar</sub></span> calculation without data quality control and attenuation correction for <span class="html-italic">Z<sub>DR</sub></span> in the X-band. (<b>a</b>) <span class="html-italic">Z<sub>DR</sub></span> without QC, (<b>b</b>) <span class="html-italic">U<sub>ar</sub></span>.</p> "> Figure 19
<p>Sample of the impact on the <span class="html-italic">U<sub>ar</sub></span> calculation when there is a +0.3 dB systematic deviation in <span class="html-italic">Z<sub>DR</sub></span> at the X-band. (<b>a</b>) <span class="html-italic">Z<sub>DR</sub></span> with bias +0.3 dB, (<b>b</b>) <span class="html-italic">U<sub>ar</sub></span>.</p> ">
Abstract
:1. Introduction
2. Axis Ratio Uniformity Index
2.1. Approximate Relationship between the Reflectivity Ratio, Dielectric Properties and Axial Ratio
2.2. Approximate Relationship between ρhv and Reflectivity
2.3. Construction of the New Parameter
3. Performance of Uar on Real Observations
3.1. Typical Features of Vertical Structures of Uar on X-Band RHI Radar Data
3.1.1. Overview of RHI Data during a Convective Event
3.1.2. Analysis of the Stratiform Cloud Area
3.1.3. Analysis of a Convective Cloud Area in the Lower Levels
3.2. Performance of Uar on S-Band Volume Scans Radar Data
3.3. Identification Ratio of Raindrops in Stratiform Cloud Areas
3.4. Using Uar as a Mask to Compute Composite Reflectivity
4. Discussion on Limitations of Uar
5. Conclusions and Summary
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Bringi, V.N.; Chandrasekar, V. Polarimetric Doppler Weather Radar: Principles and Applications; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Zhang, G. Weather Radar Polarimetry; CRC Press, Inc.: Boca Raton, FL, USA, 2016. [Google Scholar]
- Ryzhkov, A.V.; Zrnic, D.S. Radar Polarimetry for Weather Observations; Springer Nature Switzerland AG: Cham, Switzerland, 2019. [Google Scholar]
- Seliga, T.A.; Bringi, V.N. Differential reflectivity and differential phase-shift-applications in radar meteorology. Radio Sci. 1978, 13, 271–275. [Google Scholar] [CrossRef]
- Aydin, K.; Seliga, T.A.; Balaji, V. Remote-sensing of hail with a dual linear-polarization radar. J. Appl. Meteorol. Climatol. 1986, 25, 1475–1484. [Google Scholar] [CrossRef]
- Vivekanandan, J.; Zrnic, D.S.; Ellis, S.M.; Oye, R.; Ryzhkov, A.V.; Straka, J. Cloud microphysics retrieval using S-band dual-polarization radar measurements. Bull. Am. Meteorol. Soc. 1999, 80, 381–388. [Google Scholar] [CrossRef]
- Straka, J.M.; Zrnic, D.S.; Ryzhkov, A.V. Bulk hydrometeor classification and quantification using polarimetric radar data: Synthesis of relations. J. Appl. Meteorol. 2000, 39, 1341–1372. [Google Scholar] [CrossRef]
- Liu, H.P.; Chandrasekar, V. Classification of hydrometeors based on polarimetric radar measurements: Development of fuzzy logic and neuro-fuzzy systems, and in situ verification. J. Atmos. Oceanic Technol. 2000, 17, 140–164. [Google Scholar] [CrossRef]
- Zrnic, D.S.; Ryzhkov, A.; Straka, J.; Liu, Y.D.; Vivekanandan, J. Testing a procedure for automatic classification of hydrometeor types. J. Atmos. Oceanic Technol. 2001, 18, 892–913. [Google Scholar] [CrossRef]
- Park, H.; Ryzhkov, A.V.; Zrnic, D.S.; Kim, K.E. The Hydrometeor Classification Algorithm for the Polarimetric WSR-88D: Description and Application to an MCS. Weather Forecast. 2009, 24, 730–748. [Google Scholar] [CrossRef] [Green Version]
- Dolan, B.; Rutledge, S.A. A Theory-Based Hydrometeor Identification Algorithm for X-Band Polarimetric Radars. J. Atmos. Oceanic Technol. 2009, 26, 2071–2088. [Google Scholar] [CrossRef] [Green Version]
- Snyder, J.C.; Bluestein, H.B.; Zhang, G.F.; Frasier, S.J. Attenuation Correction and Hydrometeor Classification of High-Resolution, X-band, Dual-Polarized Mobile Radar Measurements in Severe Convective Storms. J. Atmos. Oceanic Technol. 2010, 27, 1979–2001. [Google Scholar] [CrossRef]
- Ryzhkov, A.V.; Kumjian, M.R.; Ganson, S.M.; Khain, A.P. Polarimetric Radar Characteristics of Melting Hail. Part I: Theoretical Simulations Using Spectral Microphysical Modeling. J. Appl. Meteorol. Climatol. 2013, 52, 2849–2870. [Google Scholar] [CrossRef]
- Ryzhkov, A.V.; Kumjian, M.R.; Ganson, S.M.; Zhang, P.F. Polarimetric Radar Characteristics of Melting Hail. Part II: Practical Implications. J. Appl. Meteorol. Climatol. 2013, 52, 2871–2886. [Google Scholar] [CrossRef]
- Ortega, K.L.; Krause, J.M.; Ryzhkov, A.V. Polarimetric Radar Characteristics of Melting Hail. Part III: Validation of the Algorithm for Hail Size Discrimination. J. Appl. Meteorol. Climatol. 2016, 55, 829–848. [Google Scholar] [CrossRef]
- Zhang, G.F.; Mahale, V.N.; Putnam, B.J.; Qi, Y.C.; Cao, Q.; Byrd, A.D.; Bukovcic, P.; Zrnic, D.S.; Gao, J.D.; Xue, M.; et al. Current Status and Future Challenges of Weather Radar Polarimetry: Bridging the Gap between Radar Meteorology/Hydrology/Engineering and Numerical Weather Prediction. Adv. Atmos. Sci. 2019, 36, 571–588. [Google Scholar] [CrossRef] [Green Version]
- White, A.B.; Gottas, D.J.; Strem, E.T.; Ralph, F.M.; Neiman, P.J. An automated brightband height detection algorithm for use with Doppler radar spectral moments. J. Atmos. Oceanic Technol. 2002, 19, 687–697. [Google Scholar] [CrossRef]
- Sanchez-Diezma, R.; Zawadzki, I.; Sempere-Torres, D. Identification of the bright band through the analysis of volumetric radar data. J. Geophys. Res. Atmos. 2000, 105, 2225–2236. [Google Scholar] [CrossRef]
- Zhang, J.; Langston, C.; Howard, K. Brightband Identification Based on Vertical Profiles of Reflectivity from the WSR-88D. J. Atmos. Oceanic Technol. 2008, 25, 1859–1872. [Google Scholar] [CrossRef]
- Zhang, J.; Qi, Y.C. A Real-Time Algorithm for the Correction of Brightband Effects in Radar-Derived QPE. J. Hydrometeorol. 2010, 11, 1157–1171. [Google Scholar] [CrossRef]
- Matrosov, S.Y.; Clark, K.A.; Kingsmill, D.E. A polarimetric radar approach to identify rain, melting-layer, and snow regions for applying corrections to vertical profiles of reflectivity. J. Appl. Meteorol. Climatol. 2007, 46, 154–166. [Google Scholar] [CrossRef]
- Giangrande, S.E.; Krause, J.M.; Ryzhkov, A.V. Automatic designation of the melting layer with a polarimetric prototype of the WSR-88D radar. J. Appl. Meteorol. Climatol. 2008, 47, 1354–1364. [Google Scholar] [CrossRef]
- Boodoo, S.; Hudak, D.; Donaldson, N.; Leduc, M. Application of Dual-Polarization Radar Melting-Layer Detection Algorithm. J. Appl. Meteorol. Climatol. 2010, 49, 1779–1793. [Google Scholar] [CrossRef]
- Wolfensberger, D.; Scipion, D.; Berne, A. Detection and characterization of the melting layer based on polarimetric radar scans. Q. J. R. Meteorol. Soc. 2016, 142, 108–124. [Google Scholar] [CrossRef]
- Allabakash, S.; Lim, S.H.; Jang, B.J. Melting Layer Detection and Characterization based on Range Height Indicator-Quasi Vertical Profiles. Remote Sens. 2019, 11, 2848. [Google Scholar] [CrossRef] [Green Version]
- Brandes, E.A.; Ikeda, K. Freezing-level estimation with polarimetric radar. J. Appl. Meteorol. 2004, 43, 1541–1553. [Google Scholar] [CrossRef]
- Kumjian, M.R.; Mishra, S.; Giangrande, S.E.; Toto, T.; Ryzhkov, A.V.; Bansemer, A. Polarimetric radar and aircraft observations of saggy bright bands during MC3E. J. Geophys. Res. Atmos. 2016, 121, 3584–3607. [Google Scholar] [CrossRef] [Green Version]
- Ryzhkov, A.; Zhang, P.F.; Reeves, H.; Kumjian, M.; Tschallener, T.; Tromel, S.; Simmer, C. Quasi-Vertical Profiles-A New Way to Look at Polarimetric Radar Data. J. Atmos. Oceanic Technol. 2016, 33, 551–562. [Google Scholar] [CrossRef]
- Gorgucci, E.; Chandrasekar, V.; Bringi, V.N.; Scarchilli, G. Estimation of raindrop size distribution parameters from polarimetric radar measurements. J. Atmos. Sci. 2002, 59, 2373–2384. [Google Scholar] [CrossRef]
- Ray, P.S. Broad-band complex refractive indexes of ice and water. Appl. Opt. 1972, 11, 1836–1844. [Google Scholar] [CrossRef]
- Bohren, C.F.; Battan, L.J. Radar backscattering by inhomogeneous precipitation particles. J. Atmos. Sci. 1980, 37, 1821–1827. [Google Scholar] [CrossRef]
- Mishchenko, M.I. Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 2000, 39, 1026–1031. [Google Scholar] [CrossRef]
- Pruppach, H.; Beard, K.V. A wind tunnel investigation of internal circulation and shape of water drops falling at terminal velocity in air. Q. J. R. Meteorol. Soc. 1970, 96, 247–256. [Google Scholar] [CrossRef]
- Brandes, E.A.; Zhang, G.F.; Vivekanandan, J. Experiments in rainfall estimation with a polarimetric radar in a subtropical environment. J. Appl. Meteorol. 2002, 41, 674–685. [Google Scholar] [CrossRef]
- Brandes, E.A.; Zhang, G.F.; Vivekanandan, J. Experiments in rainfall estimation with a polarimetric radar in a subtropical environment (Corrigendum). J. Appl. Meteorol. 2005, 44, 186. [Google Scholar] [CrossRef]
- Tang, Q.; Xiao, H.; Guo, C.W.; Feng, L. Characteristics of the raindrop size distributions and their retrieved polarimetric radar parameters in northern and southern China. Atmos. Res. 2014, 135, 59–75. [Google Scholar] [CrossRef]
- Liu, L.; Bringi, V.N.; Chandrasekar, V.; Mueller, E.A.; Mudukutore, A. Analysis of the copolar correlation-coefficient between horizontal and vertical polarizations. J. Atmos. Oceanic Technol. 1994, 11, 950–963. [Google Scholar] [CrossRef]
- Schuur, T.; Ryzhkov, A.V.; Heinselman, P.L.; Zrnic, D.S.; Scharfenberg, K.A. Observations and Classification of Echoes with the Polarimetric WSR-88D radar. In Proceedings of the Report of the National Severe Storms Laboratory, Norman, OK, USA, 1 October 2003. [Google Scholar]
- Ulbrich, C.W. Natural variations in the analytical form of the raindrop size distribution. J. Clim. Appl. Meteorol. 1983, 22, 1764–1775. [Google Scholar] [CrossRef]
- Brandes, E.A.; Zhang, G.F.; Vivekanandan, J. Comparison of polarimetric radar drop size distribution retrieval algorithms. J. Atmos. Oceanic Technol. 2004, 21, 584–598. [Google Scholar] [CrossRef]
- Anagnostou, M.N.; Anagnostou, E.N.; Vivekanandan, J.; Ogden, F.L. Comparison of two raindrop size distribution retrieval algorithms for X-band dual polarization observations. J. Hydrometeorol. 2008, 9, 589–600. [Google Scholar] [CrossRef]
- Feng, L.; Xiao, H.; Wen, G.; Li, Z.F.; Sun, Y.; Tang, Q.; Liu, Y.N. Rain Attenuation Correction of Reflectivity for X-Band Dual-Polarization Radar. Atmosphere 2016, 7, 164. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Xiao, H.; Yang, H.L.; Feng, L.; Chen, H.N.; Luo, L. An Inverse Mapping Table Method for Raindrop Size Distribution Parameters Retrieval Using X-band Dual-Polarization Radar Observations. IEEE Trans. Geosci. Remote Sens. 2020, 58, 7611–7632. [Google Scholar] [CrossRef]
- Hall, M.P.M.; Cherry, S.M.; Goddard, J.W.F.; Kennedy, G.R. Rain drop sizes and rainfall rate measured by dual-polarization radar. Nature 1980, 285, 195–198. [Google Scholar] [CrossRef]
- Feng, L.; Xiao, H.; Sun, Y. A Study on Hydrometeor Classification and Application Based on X-band Dual-polarization Radar Measurements. Clim. Environ. Res. 2018, 23, 366–386. (In Chinese) [Google Scholar]
- Conway, J.W.; Zrnic, D.S. A study of embryo production and hail growth using dual-doppler and multiparameter radars. Mon. Weather Rev. 1993, 121, 2511–2528. [Google Scholar] [CrossRef]
- Brandes, E.A.; Vivekanandan, J.; Tuttle, J.D.; Kessinger, C.J. A study of thunderstorm microphysics with multiparameter radar and aircraft observations. Mon. Weather Rev. 1995, 123, 3129–3143. [Google Scholar] [CrossRef]
- Bringi, V.N.; Knupp, K.; Detwiler, A.; Liu, L.; Caylor, I.J.; Black, R.A. Evolution of a Florida thunderstorm during the convection and precipitation/electrification experiment: The case of 9 August 1991. Mon. Weather Rev. 1997, 125, 2131–2160. [Google Scholar] [CrossRef]
- Kumjian, M.R.; Ganson, S.M.; Ryzhkov, A.V. Freezing of Raindrops in Deep Convective Updrafts: A Microphysical and Polarimetric Model. J. Atmos. Sci. 2012, 69, 3471–3490. [Google Scholar] [CrossRef]
- van Lier-Walqui, M.; Fridlind, A.M.; Ackerman, A.S.; Collis, S.; Helmus, J.; MacGorman, D.R.; North, K.; Kollias, P.; Posselt, D.J. On Polarimetric Radar Signatures of Deep Convection for Model Evaluation: Columns of Specific Differential Phase Observed during MC3E. Mon. Weather Rev. 2016, 144, 737–758. [Google Scholar] [CrossRef]
Attribute | Value | Attribute | Value |
---|---|---|---|
Antenna diameter | 2.4 m | Linear dynamic range | >90 dB |
Frequency | 9.37 GHz | Beam width | 1° |
Antenna gain | 41.6 dB | Radial resolution | 150 m |
Peak power | 80 kW | Observation range | 150 km |
Polarization | Horizontal/Vertical | Elevation resolution in RHI mode | 0.17° |
Pulse width | 0.5/1/2 µs |
Attribute | Value | Attribute | Value |
---|---|---|---|
Antenna diameter | 8.5 m | Pulse width | 1.57/4.57 µs |
Frequency | 2.88 GHz | Linear dynamic range | >85 dB |
Antenna gain | >45 dB | Beam width | 0.93° |
Peak power | 650 kW | Radial resolution | 250 m |
Polarization | Horizontal/Vertical | Observation range | 460 km |
Threshold of Uar | Case 1 | Case 2 | ||||
---|---|---|---|---|---|---|
Stotal | Srain | Snonrain | Stotal | Srain | Snonrain | |
0.1 | 0.88 | 1.00 | 0.79 | 0.90 | 0.98 | 0.88 |
0.2 | 0.95 | 1.00 | 0.91 | 0.95 | 0.93 | 0.96 |
0.3 | 0.96 | 0.97 | 0.95 | 0.93 | 0.73 | 0.99 |
0.4 | 0.95 | 0.91 | 0.98 | 0.86 | 0.38 | 1.00 |
0.5 | 0.88 | 0.74 | 0.99 | 0.78 | 0.03 | 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Xiao, H.; Yang, H.; Chen, H.; Feng, L.; Shu, W.; Yao, H. A Uniformity Index for Precipitation Particle Axis Ratios Derived from Radar Polarimetric Parameters for the Identification and Analysis of Raindrop Areas. Remote Sens. 2023, 15, 534. https://doi.org/10.3390/rs15020534
Sun Y, Xiao H, Yang H, Chen H, Feng L, Shu W, Yao H. A Uniformity Index for Precipitation Particle Axis Ratios Derived from Radar Polarimetric Parameters for the Identification and Analysis of Raindrop Areas. Remote Sensing. 2023; 15(2):534. https://doi.org/10.3390/rs15020534
Chicago/Turabian StyleSun, Yue, Hui Xiao, Huiling Yang, Haonan Chen, Liang Feng, Weixi Shu, and Han Yao. 2023. "A Uniformity Index for Precipitation Particle Axis Ratios Derived from Radar Polarimetric Parameters for the Identification and Analysis of Raindrop Areas" Remote Sensing 15, no. 2: 534. https://doi.org/10.3390/rs15020534
APA StyleSun, Y., Xiao, H., Yang, H., Chen, H., Feng, L., Shu, W., & Yao, H. (2023). A Uniformity Index for Precipitation Particle Axis Ratios Derived from Radar Polarimetric Parameters for the Identification and Analysis of Raindrop Areas. Remote Sensing, 15(2), 534. https://doi.org/10.3390/rs15020534