Flood Frequency Analysis Using Mixture Distributions in Light of Prior Flood Type Classification in Norway
<p>Schematic diagram of the rainfall–runoff process. <math display="inline"><semantics> <mrow> <msub> <mi>V</mi> <mi>r</mi> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>V</mi> <mi>q</mi> </msub> </mrow> </semantics></math> are the rainfall volume and runoff volume for the period before flood peak, respectively.</p> "> Figure 2
<p>The location map of the 34 basins throughout Norway.</p> "> Figure 3
<p>Classification results of FGMs using the rainfall–flood ratio indicators. The flood events are classified by rainfall–flood ratio, indicated by 1/3 and 2/3 lines. Pink dots represent floods caused by rainfall, blue dots represent the interaction of rainfall and snowmelt, and red dots represent floods induced by snowmelt.</p> "> Figure 4
<p>Results of classification of flood types. The yellow rectangle represents the rainfall floods (Prec), the green rectangle is rain-on-snow induced floods (Prec+Sm), and the blue rectangle is the snowmelt flood (Sm).</p> "> Figure 5
<p>The API values associated with each flood event and flood types. The yellow triangle represents API value of rainfall floods (Prec), red dot represents API value of rain-on-snow floods (Prec + Sm), and diamond represents snowmelt flood (Sm).</p> "> Figure 6
<p>Box-plot of the API for different FGMs. The thick black line in the middle of the box is the API median of a certain flood type. The black dots are outliers.</p> "> Figure 7
<p>Relationship between API median and identified flood types. (<b>a</b>) box-plot of the API for different FGMs averaged by all stations; (<b>b</b>) relationship between API median and its geographical location for each FGM.</p> "> Figure 8
<p>The AIC values of the single distribution model and mixture distributions, namely TCMD-T and TCMD-RF, with various component distributions.</p> "> Figure 9
<p>Histogram of floods and probability density function of TCMD-T, TCMD-RF and single distribution.</p> "> Figure 10
<p>Design values and associated uncertainties using TCMD-T (blue line) and TCMD-RF (red line) with LN-LN mixture type.</p> ">
Abstract
:1. Introduction
2. Methodologies
2.1. Flood Classification
2.2. Two-Component Mixture Distributions Based on Rainfall–Flood Ratio
2.2.1. Selection of Component Distributions for Mixture Distributions
2.2.2. Parameters Estimation
2.2.3. Goodness-of-Fitting Test
2.3. Calculation of Antecedent Precipitation Index
3. Study Area and Data
4. Results and Discussions
4.1. Classification of Flood Types
4.2. Relationship between Classified FGMs and API
4.3. Mixture Distributions Modeling
4.4. Estimation of Design Flood Using Mixture Distributions
4.5. Discussions
5. Conclusions
- (1)
- The RF method is a simple and practical method to classify flood types. This method combines both the meteorological information and flood process, and the flood events of the selected 12 stations can be clearly divided into three flood types, namely snowmelt-induced floods, rainfall-induced floods and rain-on-snow floods. Most of the stations are dominated by two of the three flood types.
- (2)
- Mixture distributions simulation is an effective way to analyze flood frequency. TCMD-T model has the best performance, which can flexibly model various skewness and tail behaviors, and can better capture the double peaks or single peaks of flood probability density, but at the expense of some physical basis of flood generation.
- (3)
- Although the performance of TCMD-RF model is not as good as TCMD-T model, TCMD-RF can reduce the uncertainties of design flood quantiles by about 20%. The advantage of TCMD-RF model can be attributed to its clear classification of flood types; thus, the weighting coefficients of mixture distributions can be determined before the optimization.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tarasova, L.; Merz, R.; Kiss, A.; Basso, S.; Blöschl, G.; Merz, B.; Viglione, A.; Plötner, S.; Guse, B.; Schumann, A. Causative classification of river flood events. Wiley Interdisc. Rev. Water 2019, 6, e1353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tarasova, L.; Basso, S.; Wendi, D.; Viglione, A.; Kumar, R.; Merz, R. A process—based framework to characterize and classify runoff events: The event typology of Germany. Water Res. Res. 2020, 56, e2019WR026951. [Google Scholar] [CrossRef]
- Yan, L.; Xiong, L.; Ruan, G.; Xu, C.-Y.; Yan, P.; Liu, P. Reducing uncertainty of design floods of two-component mixture distributions by utilizing flood timescale to classify flood types in seasonally snow-covered region. J. Hydrol. 2019, 574, 588–608. [Google Scholar] [CrossRef]
- Sultana, T.; Aslam, M.; Raftab, M. Bayesian estimation of 3-component mixture of Gumbel type-Ⅱdistributions under non-informative and informative priors. J. Nat. Sci. Found. Sri Lanka 2017, 45, 287–306. [Google Scholar] [CrossRef]
- Rulfová, Z.; Buishand, A.; Roth, M.; Kysely, J. A two-component generalized extreme value distribution for precipitation frequency analysis. J. Hydrol. 2016, 534, 659–668. [Google Scholar] [CrossRef]
- Bardsley, W.E. Cautionary note on multicomponent flood distributions for annual maxima. Hydrol. Process. 2016, 30, 3730–3732. [Google Scholar] [CrossRef] [Green Version]
- Fischer, S.; Schumann, A.; Schulte, M. Characterisation of seasonal flood types according to timescales in mixture probability distributions. J. Hydrol. 2016, 539, 38–56. [Google Scholar] [CrossRef]
- Brunner, M.I.; Viviroli, D.; Sikorska, A.E.; Vannier, O.; Favre, A.C.; Seibert, J. Flood type specific construction of synthetic design hydrographs. Water Resour. Res. 2017, 53, 1390–1406. [Google Scholar] [CrossRef] [Green Version]
- Alila, Y.; Mtiraoui, A. Implications of heterogeneous flood-frequency distributions on traditional stream-discharge prediction techniques. Hydrol. Process. 2002, 16, 1065–1084. [Google Scholar] [CrossRef]
- Qu, C.; Li, J.; Yan, L.; Yan, P.; Cheng, F.; Lu, D. Non-stationary flood frequency analysis using cubic B-spline-based GAMLSS model. Water 2020, 12, 1867. [Google Scholar] [CrossRef]
- Jiang, C.; Xiong, L.; Yan, L.; Dong, J.; Xu, C.-Y. Multivariate hydrologic design methods under nonstationary conditions and application to engineering practice. Hydrol. Earth Syst. Sci. 2019, 23, 1683–1704. [Google Scholar] [CrossRef] [Green Version]
- Xiong, L.; Yan, L.; Du, T.; Yan, P.; Li, L.; Xu, W. Impacts of climate change on urban extreme rainfall and drainage infrastructure performance: A case study in Wuhan City, China. Irrig. Drain. 2019, 68, 152–164. [Google Scholar] [CrossRef]
- Milly, P.C.D.; Betancourt, J.; Falkenmark, M.; Hirsch, R.M.; Kundzewicz, Z.W.; Lettenmaier, D.P.; Stouffer, R.J.; Dettinger, M.D.; Krysanova, V. On critiques of “Stationarity is Dead: Whither Water Management?”. Water Resour. Res. 2015, 51, 7785–7789. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.; Jiang, C.; Yan, L.; Li, L.; Liu, S. An adaptive Metropolis-Hastings optimization algorithm of Bayesian estimation in non-stationary flood frequency analysis. Water Resour. Manag. 2018, 32, 1343–1366. [Google Scholar] [CrossRef]
- Yan, L.; Xiong, L.; Liu, D.; Hu, T.; Xu, C.-Y. Frequency analysis of nonstationary annual maximum flood series using the time-varying two-component mixture distributions. Hydrol. Process. 2017, 31, 69–89. [Google Scholar] [CrossRef]
- Yan, L.; Li, L.; Yan, P.; He, H.; Li, J.; Lu, D. Nonstationary flood hazard analysis in response to climate change and population growth. Water. 2019, 11, 1811. [Google Scholar] [CrossRef] [Green Version]
- Vogel, R.M.; Yaindl, C.; Walter, M. Nonstationarity: Flood magnification and recurrence reduction factors in the United States 1. J. Amer.Water Res. Assoc. 2011, 47, 464–474. [Google Scholar] [CrossRef]
- Yang, L.; Wang, L.; Li, X.; Gao, J. On the flood peak distributions over China. Hydrol. Earth Syst. Sci. 2019, 23, 5133–5149. [Google Scholar] [CrossRef] [Green Version]
- Barth, N.A.; Villarini, G.; Nayak, M.A.; White, K. Mixed populations and annual flood frequency estimates in the western United States: The role of atmospheric rivers. Water Resour. Res. 2017, 53, 257–269. [Google Scholar] [CrossRef]
- Barth, N.A.; Villarini, G.; White, K. Accounting for mixed populations in flood frequency analysis: Bulletin 17C perspective. J. Hydrol. Eng. 2019, 24, 04019002. [Google Scholar] [CrossRef]
- Hundecha, Y.; Parajka, J.; Viglione, A. Flood type classification and assessment of their past changes across Europe. Hydrol. Earth Syst. Sci. Discuss. 2017. [Google Scholar] [CrossRef] [Green Version]
- Vormoor, K.; Lawrence, D.; Heistermann, M.; Bronstert, A. Climate change impacts on the seasonality and generation processes of floods–projections and uncertainties for catchments with mixture snowmelt/rainfall regimes. Hydrol. Earth Syst. Sci. 2015, 19, 913–931. [Google Scholar] [CrossRef] [Green Version]
- Vormoor, K.; Lawrence, D.; Schlichting, L.; Wilson, D.; Wong, W.K. Evidence for changes in the magnitude and frequency of observed rainfall vs. snowmelt driven floods in Norway. J. Hydrol. 2016, 538, 33–48. [Google Scholar] [CrossRef]
- Wyżga, B.; Kundzewicz, Z.W.; Zawiejska, V.R.V.J. Flood generation mechanisms and changes in principal drivers. In Flood Risk in the Upper Vistula Basin; Springer Cham: New York, NY, USA, 2016; pp. 55–75. [Google Scholar]
- Smith, J.A.; Villarini, G.; Baeck, M.L. Mixture distributions and the hydroclimatology of extreme rainfall and flooding in the eastern United States. J. Hydrometeorol. 2011, 12, 294–309. [Google Scholar] [CrossRef]
- Jiang, C.; Xiong, L.; Xu, C.-Y.; Yan, L. A river network—based hierarchical model for deriving flood frequency distributions and its application to the Upper Yangtze Basin. Water Resour. Res. 2021, 57, e2020WR029374. [Google Scholar] [CrossRef]
- Li, J.; Zheng, Y.; Wang, Y.; Zhang, T. Improved mixture distribution model considering historical extraordinary floods under changing environment. Water 2018, 10, 1016. [Google Scholar] [CrossRef] [Green Version]
- Zeng, H.; Feng, P.; Li, X. Reservoir flood routing considering the non-stationarity of flood series in north China. Water Resour. Manag. 2014, 28, 4273–4287. [Google Scholar] [CrossRef]
- McLachlan, G.J.; Lee, S.X.; Rathnayake, S.I. Finite mixture models. Annu. Rev. Stat. Appl. 2019, 6, 355–378. [Google Scholar] [CrossRef]
- Singh, K.P.; Sinclair, R.A. Two-distribution method for flood frequency analysis. J. Hydraul. Division 1972, 98, 28–44. [Google Scholar] [CrossRef]
- Grego, J.M.; Yates, P.A. Point and standard error estimation for quantiles of mixed flood distributions. J. Hydrol. 2010, 391, 289–301. [Google Scholar] [CrossRef]
- Kuang, Y.; Xiong, L.; Yu, K.X.; Liu, P.; Xu, C.-Y.; Yan, L. Comparison of first-order and second-order derived moment approaches in estimating annual runoff distribution. J. Hydrol. Eng. 2018, 23, 04018034. [Google Scholar] [CrossRef]
- Yan, L.; Xiong, L.; Luan, Q.; Jiang, C.; Yu, K.; Xu, C.-Y. On the applicability of the expected waiting time method in nonstationary flood design. Water Resour. Manag. 2020, 34, 2585–2601. [Google Scholar] [CrossRef]
- Turkington, T.; Breinl, K.; Ettema, J.; Alkema, D.; Jetten, V. A new flood type classification method for use in climate change impact studies. Weather. Clim. Extrem. 2016, 14, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Gain, A.K.; Apel, H.; Renaud, F.G.; Giupponi, C. Thresholds of hydrologic flow regime of a river and investigation of climate change impact—The case of the Lower Brahmaputra River Basin. Clim. Chang. 2013, 120, 463–475. [Google Scholar] [CrossRef] [Green Version]
- Garner, G.; Van Loon, A.F.; Prudhomme, C.; Hannah, D.M. Hydroclimatology of extreme river flows. Freshw. Biol. 2015, 60, 2461–2476. [Google Scholar] [CrossRef]
- Sikorska, A.E.; Viviroli, D.; Seibert, J. Flood-type classification in mountainous catchments using crisp and fuzzy decision trees. Water Resources. Res. 2015, 51, 7959–7976. [Google Scholar] [CrossRef]
- Yan, L.; Xiong, L.; Wang, J. Analysis of storm runoff simulation in typical urban region of Wuhan based on SWMM. J. Water Resour. Res 2014, 3, 216–228. [Google Scholar] [CrossRef]
- Prudhomme, C.; Genevier, M. Can atmospheric circulation be linked to flooding in Europe. Hydrol. Process. 2011, 25, 1180–1990. [Google Scholar] [CrossRef] [Green Version]
- Merz, R.; Blöschl, G. A process typology of regional floods. Water Resour. Res. 2003, 39, 1340. [Google Scholar] [CrossRef]
- Duckstein, L.; Bárdossy, A.; Bogárdi, I. Linkage between the occurrence of daily atmospheric circulation patterns and floods: An Arizona case study. J. Hydrol. 1993, 143, 413–428. [Google Scholar] [CrossRef]
- Hirschboeck, K.K. Hydroclimatically-defined mixture distributions in partial duration flood series. In Proceedings of the International Symposium on Flood Frequency and Risk Analyses, Louisiana State University, Baton Rouge, LA, USA, 14–17 May 1986. [Google Scholar]
- Zhai, X.; Guo, L.; Zhang, Y. Flash flood type identification and simulation based on flash flood behavior indices in China. Sci. China Earth Sci. 2021, 64, 1140–1154. [Google Scholar] [CrossRef]
- Gaál, L.; Szolgay, J.; Kohnová, S.; Parajka, J.; Merz, R.; Viglione, A.; Blöschl, G. Flood timescales: Understanding the interplay of climate and catchment processes through comparative hydrology. Water Resour. Res. 2012, 48, W04511. [Google Scholar] [CrossRef]
- Lu, W.; Lei, H.; Yang, W.; Yang, J.; Yang, D. Comparison of floods driven by tropical cyclones and monsoons in the southeastern coastal region of China. J. Hydrometeorol. 2020, 21, 1589–1603. [Google Scholar] [CrossRef]
- Hanssen-Bauer, I.; Førland, E.J.; Haddeland, I.; Hisdal, H.; Mayer, S.; Nesje, A.; Nilsen, J.E.Ø.; Sandven, S.; Sandø, A.B.; Sorteberg, A.; et al. Climate in Norway 2100—A knowledge base for climate adaption. Nor. Cent. Clim. Serv. 2017, 48. [Google Scholar]
- Sikorska-Senoner, A.E.; Seibert, J. Flood-type trend analysis for alpine catchments. Hydrol. Sci. J. 2020, 65, 1281–1299. [Google Scholar] [CrossRef]
- Yan, L.; Xiong, L.; Guo, S.; Xu, C.-Y.; Xia, J.; Du, T. Comparison of four nonstationary hydrologic design methods for changing environment. J. Hydrol. 2017, 551, 132–150. [Google Scholar] [CrossRef]
- Heggen, J.R. Normalized antecedent precipitation index. J. Hydrol. Eng. 2001, 6, 377–381. [Google Scholar] [CrossRef]
- Froidevaux, P.; Schwanbeck, J.; Weingartner, R.; Chevalier, C.; Martius, O. Flood triggering in Switzerland: The role of daily to monthly preceding precipitation. Hydrol Earth Syst. Sci. 2015, 19, 3903–3924. [Google Scholar] [CrossRef] [Green Version]
- Woldemeskel, F.; Sharma, A. Should flood regimes change in a warming climate? The role of antecedent moisture conditions. Geophys. Res. Lett. 2016, 43, 7556–7563. [Google Scholar] [CrossRef]
- Hegdahl, T.J.; Engeland, K.; Müller, M.; Sillmann, J. An Event-Based Approach to Explore Selected Present and Future Atmospheric River–Induced Floods in Western Norway. J. Hydrol. 2020, 21, 2003–2021. [Google Scholar] [CrossRef]
- Sorteberg, A.; Lawrence, D.; Dyrrdal, A.V.; Mayer, S.; Engeland, K. Climate changes in short duration extreme precipitation and rapid onset flooding—Implications for design values. Nor. Cent. Clim. Serv. 2018, 143. [Google Scholar]
- Efron, B. Bootstrap methods: Another Look at the Jackknife. Ann. Stat. 1979, 7, 1–26. [Google Scholar] [CrossRef]
Station ID | Name | Area (km2) | Data Period | |||
---|---|---|---|---|---|---|
2.268 | Akslen | 789.3 | 1934–2015 | 992.7 | 1195.6 | −3.18 |
2.279 | Kråkfoss | 435.2 | 1966–2015 | 613.0 | 1030.7 | 2.69 |
2.291 | Tora | 262.1 | 1967–2015 | 1511.1 | 1542.5 | −2.30 |
2.32 | Atnasjø | 463.3 | 1917–2015 | 705.4 | 859.0 | −2.10 |
2.614 | Rosten | 1833 | 1917–2015 | 558.6 | 884.3 | −1.31 |
12.228 | Kistefoss | 3703 | 1917–2015 | 502.3 | 1035.5 | 1.11 |
12.7 | Etna | 570.3 | 1920–2015 | 541.6 | 1177.0 | −0.58 |
15.21 | Jondalselv | 126 | 1920–2015 | 750.5 | 1212.8 | 2.26 |
16.23 | Kirkevollbru | 3845.4 | 1906–2015 | 755.2 | 1475.4 | −0.66 |
19.127 | Rygenetotal | 3946.4 | 1900–2015 | 930.8 | 1512.7 | 3.43 |
20.2 | Austenå | 276.4 | 1925–2015 | 1224.8 | 1872.1 | 2.42 |
22.4 | Kjæøemo | 1757.7 | 1897–2015 | 1490.2 | 2266.3 | 3.62 |
24.9 | Tingvatn | 272.2 | 1923–2015 | 1755.2 | 2628.5 | 3.56 |
27.24 | Helleland | 184.7 | 1897–2015 | 2338.0 | 3430.2 | 4.69 |
28.7 | Haugland | 139.4 | 1919–2015 | 1520.7 | 2082.9 | 6.31 |
41.1 | Stordalsvatn | 130.7 | 1913–2015 | 3093.8 | 4029.7 | 3.93 |
50.1 | Hølen | 232.7 | 1923–2015 | 1596.8 | 2671.5 | 0.33 |
72.5 | Brekkebru | 268.2 | 1944–2014 | 1940.4 | 2383.8 | −0.36 |
75.23 | Krokenelv | 45.9 | 1965–2015 | 1537.7 | 1976.3 | 0.70 |
76.5 | Nigardsbrevatn | 65.3 | 1963–2015 | 3082.0 | 3221.6 | −1.34 |
88.4 | Lovatn | 234.9 | 1900–2015 | 2148.7 | 2872.3 | 0.36 |
122.11 | Eggafoss | 655.2 | 1941–2015 | 833.5 | 1160.1 | −0.03 |
122.17 | Hugdalbru | 545.9 | 1973–2015 | 750.2 | 1136.6 | 1.45 |
122.9 | Gaulfoss | 3085.9 | 1958–2015 | 849.0 | 1182.3 | 0.78 |
123.31 | Kjeldstad | 143 | 1930–2015 | 1608.0 | 1441.7 | 2.21 |
133.7 | Krinsvatn | 206.6 | 1916–2015 | 1903.3 | 2337.0 | 3.80 |
152.4 | Fustvatn | 525.7 | 1909–2015 | 1933.0 | 2365.0 | 1.60 |
163.5 | Junkerdalselv | 422 | 1938–2015 | 1079.6 | 1294.2 | −1.44 |
191.2 | Øvrevatn | 526 | 1914–2015 | 1294.4 | 1642.6 | −0.70 |
223.1 | Stabburselv | 1067.3 | 1924–2015 | 641.1 | 697.7 | −1.82 |
224.1 | Skoganvarre | 940.7 | 1922–2014 | 504.0 | 598.2 | −2.33 |
234.18 | Polmak | 14161.4 | 1912–2015 | 379.1 | 527.9 | −3.01 |
247.3 | Karpelva | 128.9 | 1928–2015 | 556.9 | 668.5 | −0.76 |
311.6 | Nybergsund | 4424.9 | 1909–2015 | 493.2 | 894.3 | −0.90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, L.; Zhang, L.; Xiong, L.; Yan, P.; Jiang, C.; Xu, W.; Xiong, B.; Yu, K.; Ma, Q.; Xu, C.-Y. Flood Frequency Analysis Using Mixture Distributions in Light of Prior Flood Type Classification in Norway. Remote Sens. 2023, 15, 401. https://doi.org/10.3390/rs15020401
Yan L, Zhang L, Xiong L, Yan P, Jiang C, Xu W, Xiong B, Yu K, Ma Q, Xu C-Y. Flood Frequency Analysis Using Mixture Distributions in Light of Prior Flood Type Classification in Norway. Remote Sensing. 2023; 15(2):401. https://doi.org/10.3390/rs15020401
Chicago/Turabian StyleYan, Lei, Liying Zhang, Lihua Xiong, Pengtao Yan, Cong Jiang, Wentao Xu, Bin Xiong, Kunxia Yu, Qiumei Ma, and Chong-Yu Xu. 2023. "Flood Frequency Analysis Using Mixture Distributions in Light of Prior Flood Type Classification in Norway" Remote Sensing 15, no. 2: 401. https://doi.org/10.3390/rs15020401