The Benefits of Continental-Scale High-Resolution Hydrological Modeling in the Detection of Extreme Hydrological Events in China
<p>Distribution of VIC model inputs and validation stations.</p> "> Figure 2
<p>The long-term average daily (<b>a</b>) ET, (<b>b</b>) SM, (<b>c</b>) surface runoff, and (<b>d</b>) baseflow with a 0.0625° resolution simulated by the VIC model for the period of 1970–2015.</p> "> Figure 3
<p>The CDFs for the daily (<b>a</b>) ET, (<b>b</b>) SM, (<b>c</b>) surface runoff, and (<b>d</b>) baseflow in response to 1970–1990 and 1995–2015. CDF, cumulative frequency distributions.</p> "> Figure 4
<p>Simulated runoff in the Beijing 2012 flooding event: (<b>a</b>) at 0.0625° resolution, (<b>b</b>) at 0.25° resolution, and (<b>c</b>) at 1° resolution from GLDAS.</p> "> Figure 5
<p>Descriptive statistics of the grid numbers with different precipitation and runoff levels.</p> "> Figure 6
<p>Soil moisture anomalies for China (<b>a</b>,<b>c</b>,<b>e</b>) and Hai River Basin (<b>b</b>,<b>d</b>,<b>f</b>) at three resolutions: 0.0625° (<b>a</b>,<b>b</b>), 0.25° (<b>c</b>,<b>d</b>), and 1° (<b>e</b>,<b>f</b>). (<b>g</b>) The variability of the SM anomaly in the Hai River Basin (mean, media, standard deviation, and maximum–minimum); and (<b>h</b>) the drought-attacked area.</p> "> Figure 7
<p>Monthly SM anomaly and drought duration as a percentage of each year from 1970 to 2015 in the Hai River Basin.</p> "> Figure 8
<p>Comparison of total water storage changes from GRACE and VIC.</p> "> Figure 9
<p>The groundwater storage changes over China with 0.0625° resolution from 2003 to 2015.</p> ">
Abstract
:1. Introduction
2. Data and Methods
2.1. High-Resolution Hydrological Modeling
2.2. Extreme Hydrologic Events Detection
2.3. Total Water Storage Changes
3. Results
3.1. High-Resolution Hydrological Dataset
3.2. The 2012 Flood Event in Beijing
3.3. The 2009/10 Drought Event in North China
3.4. Total Water Storage Changes
4. Discussion
4.1. Potential Applications
4.2. Uncertainties and Future Studies
5. Conclusions
- (1)
- For the 2012 Beijing flood event, the runoff depth showed an SW–NE zonal distribution in both the 0.0625° and 0.25° models. Meanwhile, the GLDAS dataset failed to capture this same spatial distribution pattern. The maximum rainfall intensity was recorded to be 287 mm over 24 h, which was considered to be under a strong rainstorm. The mean runoff yield was ~26 mm, with a maximum of 172 mm.
- (2)
- The three simulations showed an SW–NE zonal distribution pattern for the 2009/10 drought in China. However, the 0.0625° simulation presented larger drought areas. In the HRB, the magnitude of the SM anomaly in the 0.0625° simulation was larger than that in the 0.25° and 1° simulations. The three also yielded different drought-stricken areas with 53.79% (0.0625°), 48.13% (0.25°), and 25% (1°), respectively.
- (3)
- Based on the VIC simulation, the regional TWSC in China showed a decreasing trend with 0.017 mm/year, which was smaller than that of the GRACE dataset. The groundwater storage changes in northern China were also calculated and were found to significantly decrease by > 10 mm/year—mainly attributable to human activities.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, M.; Yin, Y.; Wang, X.; Ma, X.; Chen, Y.; Chen, W. More frequent, long-lasting, extreme and postponed compound drought and hot events in eastern China. J. Hydrol. 2022, 614, 128499. [Google Scholar] [CrossRef]
- Venkatappa, M.; Sasaki, N.; Han, P.; Abe, I. Impacts of droughts and floods on croplands and crop production in southeast Asia—An application of google earth engine. Sci. Total Environ. 2021, 795, 148829. [Google Scholar] [CrossRef] [PubMed]
- Dai, A. Increasing drought under global warming in observations and models. Nat. Clim. Change 2012, 3, 52–58. [Google Scholar] [CrossRef]
- Wan Mohtar, W.H.M.; Abdullah, J.; Abdul Maulud, K.N.; Muhammad, N.S. Urban flash flood index based on historical rainfall events. Sustain. Cities Soc. 2020, 56, 102088. [Google Scholar] [CrossRef]
- Zhang, Q.; Gu, X.; Singh, V.P.; Liu, L.; Kong, D. Flood-induced agricultural loss across China and impacts from climate indices. Glob. Planet. Change 2016, 139, 31–43. [Google Scholar] [CrossRef]
- Zhang, Y.; You, Q.; Chen, C.; Li, X. Flash droughts in a typical humid and subtropical basin: A case study in the Gan river basin, China. J. Hydrol. 2017, 551, 162–176. [Google Scholar] [CrossRef]
- Wood, E.F.; Roundy, J.K.; Troy, T.J.; van Beek, L.P.H.; Bierkens, M.F.P.; Blyth, E.; de Roo, A.; Döll, P.; Ek, M.; Famiglietti, J.; et al. Hyperresolution global land surface modeling: Meeting a grand challenge for monitoring earth’s terrestrial water. Water Resour. Res. 2011, 47, W05301. [Google Scholar] [CrossRef]
- Melsen, L.A.; Teuling, A.J.; Torfs, P.J.J.F.; Zappa, M.; Mizukami, N.; Mendoza, P.A.; Clark, M.P.; Uijlenhoet, R. Subjective modeling decisions can significantly impact the simulation of flood and drought events. J. Hydrol. 2019, 568, 1093–1104. [Google Scholar] [CrossRef]
- Broich, M.; Tulbure, M.G.; Verbesselt, J.; Xin, Q.; Wearne, J. Quantifying Australia’s dryland vegetation response to flooding and drought at sub-continental scale. Remote Sens. Environ. 2018, 212, 60–78. [Google Scholar] [CrossRef]
- Brakenridge, R.; Anderson, E. Modis-based flood detection, mapping and measurement: The potential for operational hydrological applications. In Transboundary Floods: Reducing Risks through Flood Management; Marsalek, J., Stancalie, G., Balint, G., Eds.; Springer: Dordrecht, The Netherlands, 2006; pp. 1–12. [Google Scholar]
- Tran, H.; Nguyen, P.; Ombadi, M.; Hsu, K.; Sorooshian, S.; Andreadis, K. Improving hydrologic modeling using cloud-free modis flood maps. J. Hydrometeorol. 2019, 20, 2203–2214. [Google Scholar] [CrossRef]
- Sánchez, N.; González-Zamora, Á.; Martínez-Fernández, J.; Piles, M.; Pablos, M. Integrated remote sensing approach to global agricultural drought monitoring. Agric. For. Meteorol. 2018, 259, 141–153. [Google Scholar] [CrossRef]
- Carozza, D.A.; Boudreault, M. A global flood risk modeling framework built with climate models and machine learning. J. Adv. Model. Earth Syst. 2021, 13, e2020MS002221. [Google Scholar] [CrossRef]
- Zhu, B.; Xie, X.; Zhang, K. Water storage and vegetation changes in response to the 2009/10 drought over north China. Hydrol. Res. 2018, 49, 1618–1635. [Google Scholar] [CrossRef]
- Thomas, A.C.; Reager, J.T.; Famiglietti, J.S.; Rodell, M. A grace-based water storage deficit approach for hydrological drought characterization. Geophys. Res. Lett. 2014, 41, 1537–1545. [Google Scholar] [CrossRef]
- Fang, B.; Kansara, P.; Dandridge, C.; Lakshmi, V. Drought monitoring using high spatial resolution soil moisture data over Australia in 2015–2019. J. Hydrol. 2021, 594, 125960. [Google Scholar] [CrossRef]
- Zhu, B.; Huang, M.; Cheng, Y.; Xie, X.; Liu, Y.; Bisht, G.; Chen, X. Impact of vegetation physiology and phenology on watershed hydrology in a semi-arid watershed in the pacific northwest in a changing climate. Water Resour. Res. 2021, 57, e2020WR028394. [Google Scholar] [CrossRef]
- Seka, A.M.; Zhang, J.; Zhang, D.; Ayele, E.G.; Han, J.; Prodhan, F.A.; Zhang, G.; Liu, Q. Hydrological drought evaluation using grace satellite-based drought index over the lake basins, east Africa. Sci. Total Environ. 2022, 852, 158425. [Google Scholar] [CrossRef]
- Wang, F.; Lai, H.; Li, Y.; Feng, K.; Zhang, Z.; Tian, Q.; Zhu, X.; Yang, H. Identifying the status of groundwater drought from a grace mascon model perspective across China during 2003–2018. Agric. Water Manag. 2022, 260, 107251. [Google Scholar] [CrossRef]
- Zhang, Z.; Chao, B.F.; Chen, J.; Wilson, C.R. Terrestrial water storage anomalies of Yangtze river basin droughts observed by grace and connections with ENSO. Glob. Planet. Chang. 2015, 126, 35–45. [Google Scholar] [CrossRef]
- Landerer, F.W.; Flechtner, F.M.; Save, H.; Webb, F.H.; Bandikova, T.; Bertiger, W.I.; Bettadpur, S.V.; Byun, S.H.; Dahle, C.; Dobslaw, H.; et al. Extending the global mass change data record: Grace follow-on instrument and science data performance. Geophys. Res. Lett. 2020, 47, e2020GL088306. [Google Scholar] [CrossRef]
- Ali, S.; Liu, D.; Fu, Q.; Cheema, M.J.M.; Pal, S.C.; Arshad, A.; Pham, Q.B.; Zhang, L. Constructing high-resolution groundwater drought at spatio-temporal scale using grace satellite data based on machine learning in the Indus basin. J. Hydrol. 2022, 612, 128295. [Google Scholar] [CrossRef]
- Liang, X.; Lettenmaier, D.P.; Wood, E.F.; Burges, S.J. A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res. Atmos. 1994, 99, 14415–14428. [Google Scholar] [CrossRef]
- Zhu, B.; Xie, X.; Lu, C.; Lei, T.; Wang, Y.; Jia, K.; Yao, Y. Extensive evaluation of a continental-scale high-resolution hydrological model using remote sensing and ground-based observations. Remote Sens. 2021, 13, 1247. [Google Scholar] [CrossRef]
- Zhang, X.; Tang, Q.; Pan, M.; Tang, Y. A long-term land surface hydrologic fluxes and states dataset for China. J. Hydrometeorol. 2014, 15, 2067–2084. [Google Scholar] [CrossRef]
- Xie, Z.; Yuan, F.; Duan, Q.; Zheng, J.; Liang, M.; Chen, F. Regional parameter estimation of the vic land surface model: Methodology and application to river basins in China. J. Hydrometeorol. 2007, 8, 447–468. [Google Scholar] [CrossRef]
- Pan, M.; Sahoo, A.K.; Troy, T.J.; Vinukollu, R.K.; Sheffield, J.; Wood, E.F. Multisource estimation of long-term terrestrial water budget for major global river basins. J. Clim. 2012, 25, 3191–3206. [Google Scholar] [CrossRef]
- Dai, Y.; Shangguan, W.; Duan, Q.; Liu, B.; Fu, S.; Niu, G. Development of a China dataset of soil hydraulic parameters using pedotransfer functions for land surface modeling. J. Hydrometeorol. 2013, 14, 869–887. [Google Scholar] [CrossRef]
- Shangguan, W.; Dai, Y.; Liu, B.; Zhu, A.; Duan, Q.; Wu, L.; Ji, D.; Ye, A.; Yuan, H.; Zhang, Q.; et al. A China data set of soil properties for land surface modeling. J. Adv. Model. Earth Syst. 2013, 5, 212–224. [Google Scholar] [CrossRef]
- Xie, X.; Liang, S.; Yao, Y.; Jia, K.; Meng, S.; Li, J. Detection and attribution of changes in hydrological cycle over the three-north region of China: Climate change versus afforestation effect. Agric. For. Meteorol. 2015, 203, 74–87. [Google Scholar] [CrossRef]
- Zhu, B.; Xie, X.; Meng, S.; Lu, C.; Yao, Y. Sensitivity of soil moisture to precipitation and temperature over China: Present state and future projection. Sci. Total Environ. 2020, 705, 135774. [Google Scholar] [CrossRef]
- Rodell, M.; Houser, P.R.; Jambor, U.; Gottschalck, J.; Mitchell, K.; Meng, C.J.; Arsenault, K.; Cosgrove, B.; Radakovich, J.; Bosilovich, M.; et al. The global land data assimilation system. Bull. Am. Meteorol. Soc. 2004, 85, 381–394. [Google Scholar] [CrossRef]
- Long, D.; Longuevergne, L.; Scanlon, B.R. Global analysis of approaches for deriving total water storage changes from grace satellites. Water Resour. Res. 2015, 51, 2574–2594. [Google Scholar] [CrossRef]
- Sun, A.Y.; Scanlon, B.R.; Save, H.; Rateb, A. Reconstruction of GRACE total water storage through automated machine learning. Water Resour. Res. 2021, 57, e2020WR028666. [Google Scholar] [CrossRef]
- Zhang, K.; Xie, X.; Zhu, B.; Meng, S.; Yao, Y. Unexpected groundwater recovery with decreasing agricultural irrigation in the yellow river basin. Agric. Water Manag. 2019, 213, 858–867. [Google Scholar] [CrossRef]
- Wang, K.; Wang, L.; Wei, Y.-M.; Ye, M. Beijing storm of July 21, 2012: Observations and reflections. Nat. Hazards 2013, 67, 969–974. [Google Scholar] [CrossRef]
- Liu, J.; Liu, M.; Zhuang, D.; Zhang, Z.; Deng, X. Study on spatial pattern of land-use change in China during 1995–2000. Sci. China Ser. D 2003, 46, 373–384. [Google Scholar]
- Huang, Y.; Chen, S.; Cao, Q.; Hong, Y.; Wu, B.; Huang, M.; Qiao, L.; Zhang, Z.; Li, Z.; Li, W.; et al. Evaluation of version-7 TRMM multi-satellite precipitation analysis product during the Beijing extreme heavy rainfall event of 21 July 2012. Water 2014, 6, 32–44. [Google Scholar] [CrossRef]
- Wang, Y.; Xie, X.; Liang, S.; Zhu, B.; Yao, Y.; Meng, S.; Lu, C. Quantifying the response of potential flooding risk to urban growth in Beijing. Sci. Total Environ. 2020, 705, 135868. [Google Scholar] [CrossRef]
- Chen, S.; Liu, H.; You, Y.; Mullens, E.; Hu, J.; Yuan, Y.; Huang, M.; He, L.; Luo, Y.; Zeng, X.; et al. Evaluation of High-Resolution Precipitation Estimates from Satellites during July 2012 Beijing Flood Event Using Dense Rain Gauge Observations. PLoS ONE 2014, 9, e89681. [Google Scholar] [CrossRef]
- Ye, T.; Shi, P.; Wang, J.a.; Liu, L.; Fan, Y.; Hu, J. China’s drought disaster risk management: Perspective of severe droughts in 2009–2010. Int. J. Disaster Risk Sci. 2012, 3, 84–97. [Google Scholar] [CrossRef]
- Qin, Y.; Yang, D.; Lei, H.; Xu, K.; Xu, X. Comparative analysis of drought based on precipitation and soil moisture indices in Haihe basin of north China during the period of 1960–2010. J. Hydrol. 2015, 526, 55–67. [Google Scholar] [CrossRef]
- Wu, J.; Zhou, L.; Mo, X.; Zhou, H.; Zhang, J.; Jia, R. Drought monitoring and analysis in China based on the integrated surface drought index (ISDI). Int. J. Appl. Earth Obs. Geoinf. 2015, 41, 23–33. [Google Scholar] [CrossRef]
- Suárez-Almiñana, S.; Andreu, J.; Solera, A.; Madrigal, J. Integrating seasonal forecasts into real-time drought management: Júcar river basin case study. Int. J. Disaster Risk Reduct. 2022, 70, 102777. [Google Scholar] [CrossRef]
- Xu, B.; Huang, X.; Mo, R.; Zhong, P.-a.; Lu, Q.; Zhang, H.; Si, W.; Xiao, J.; Sun, Y. Integrated real-time flood risk identification, analysis, and diagnosis model framework for a multireservoir system considering temporally and spatially dependent forecast uncertainties. J. Hydrol. 2021, 600, 126679. [Google Scholar] [CrossRef]
- Wu, H.; Adler, R.F.; Tian, Y.; Huffman, G.J.; Li, H.; Wang, J. Real-time global flood estimation using satellite-based precipitation and a coupled land surface and routing model. Water Resour. Res. 2014, 50, 2693–2717. [Google Scholar] [CrossRef]
- Xie, X.; Meng, S.; Liang, S.; Yao, Y. Improving streamflow predictions at ungauged locations with real-time updating: Application of an ENKF-based state-parameter estimation strategy. Hydrol. Earth Syst. Sci. 2014, 18, 3923–3936. [Google Scholar] [CrossRef]
- Huang, Q.; Qin, G.; Zhang, Y.; Tang, Q.; Liu, C.; Xia, J.; Chiew, F.H.S.; Post, D. Using remote sensing data-based hydrological model calibrations for predicting runoff in ungauged or poorly gauged catchments. Water Resour. Res. 2020, 56, e2020WR028205. [Google Scholar] [CrossRef]
- Stisen, S.; Jensen, K.H.; Sandholt, I.; Grimes, D.I.F. A remote sensing driven distributed hydrological model of the Senegal river basin. J. Hydrol. 2008, 354, 131–148. [Google Scholar] [CrossRef]
- Jiang, F.; Xie, X.; Liang, S.; Wang, Y.; Zhu, B.; Zhang, X.; Chen, Y. Loess plateau evapotranspiration intensified by land surface radiative forcing associated with ecological restoration. Agric. For. Meteorol. 2021, 311, 108669. [Google Scholar] [CrossRef]
- Xie, X.; Cui, Y. Development and test of swat for modeling hydrological processes in irrigation districts with paddy rice. J. Hydrol. 2011, 396, 61–71. [Google Scholar] [CrossRef]
Variables | Resolution | Validation Datasets |
---|---|---|
ET | 0.0625°, daily | 33 covariance tower stations, GLASS ET products |
SM | 66 in situ stations, ESA-CCI SM products | |
R | 29 hydrologic gauge stations | |
Rb |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, B.; Xie, X.; Wang, Y.; Zhao, X. The Benefits of Continental-Scale High-Resolution Hydrological Modeling in the Detection of Extreme Hydrological Events in China. Remote Sens. 2023, 15, 2402. https://doi.org/10.3390/rs15092402
Zhu B, Xie X, Wang Y, Zhao X. The Benefits of Continental-Scale High-Resolution Hydrological Modeling in the Detection of Extreme Hydrological Events in China. Remote Sensing. 2023; 15(9):2402. https://doi.org/10.3390/rs15092402
Chicago/Turabian StyleZhu, Bowen, Xianhong Xie, Yibing Wang, and Xuehua Zhao. 2023. "The Benefits of Continental-Scale High-Resolution Hydrological Modeling in the Detection of Extreme Hydrological Events in China" Remote Sensing 15, no. 9: 2402. https://doi.org/10.3390/rs15092402
APA StyleZhu, B., Xie, X., Wang, Y., & Zhao, X. (2023). The Benefits of Continental-Scale High-Resolution Hydrological Modeling in the Detection of Extreme Hydrological Events in China. Remote Sensing, 15(9), 2402. https://doi.org/10.3390/rs15092402