A Statistical Analysis for Intensity Wavelength-Resolution SAR Difference Images
<p>CARABAS-II image samples for (<b>a</b>) Mission 2 and Pass 1 (<b>b</b>) Mission 3 and Pass 2 (<b>c</b>) Mission 4 and Pass 5 (<b>d</b>) Mission 5 and Pass 1. The target deployments of each image are highlighted.</p> "> Figure 2
<p>Anderson–Darling test results for the exponential distribution null hypothesis. The cells in red represent samples where the AD rejects the exponential distribution, and the green cells represent samples where the AD fails to reject the exponential distribution.</p> "> Figure 3
<p>Anderson–Darling test results for the Gamma distribution null hypothesis. The cells in red represent samples where the AD rejects the Gamma distribution, and the green cells represent samples where the AD fails to reject the Gamma distribution.</p> "> Figure 4
<p>Block diagram of the proposed change detection method. All SAR images illustrated in the block diagram are part of the CARABAS-II data set.</p> "> Figure 5
<p>Output detection binary image for experiments 1 and 18 presented in (<b>a</b>,<b>b</b>), respectively, for <math display="inline"><semantics> <mrow> <mi>T</mi> <mi>h</mi> <mo>=</mo> <mn>0.05</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>s</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.25</mn> </mrow> </semantics></math>. The original target deployments for the evaluated experiments are presented in <a href="#remotesensing-15-02401-f001" class="html-fig">Figure 1</a>a,b, respectively.</p> "> Figure 6
<p>Output detection binary image for experiments 1 and 18 presented in (<b>a</b>,<b>b</b>), respectively, for <math display="inline"><semantics> <mrow> <mi>T</mi> <mi>h</mi> <mo>=</mo> <mn>2.5</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>s</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.25</mn> </mrow> </semantics></math>. The original target deployments for the evaluated experiments are presented in <a href="#remotesensing-15-02401-f001" class="html-fig">Figure 1</a>a,b, respectively.</p> "> Figure 7
<p>ROC curves performance comparison of the performances obtained from the studied change detection method under different intensity constraints <math display="inline"><semantics> <msub> <mi>s</mi> <mn>1</mn> </msub> </semantics></math> and reference methods from the literature. The compared performances were the best ROC curves extracted from [<a href="#B32-remotesensing-15-02401" class="html-bibr">32</a>,<a href="#B33-remotesensing-15-02401" class="html-bibr">33</a>], referred to as reference methods 01 and 02, respectively.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wavelength-Resolution SAR Images
2.2. CARABAS-II System
3. Statistical Test
4. Change Detection
4.1. Likelihood-Ratio Test
4.2. Implementation Aspects
4.3. CD Results
5. Discussions
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AD | Anderson-Darling |
AFRL | Air Force Research Laboratory |
CARABAS | Coherent All Radio Band Sensing |
CD | Change Detection |
FAR | False-Alarm Rate |
FOI | Swedish Defence Research Agency |
FOPEN | Foliage-Penetrating |
GoF | Goodness-on-Fit |
LRT | Likelihood-Ratio Test |
ROC | Receiver Operating Characteristic |
SAR | Synthetic Aperture Radar |
UWB | Ultra-Wide-Band |
VHF | Very-High Frequency |
References
- Fransson, J.E.; Walter, F.; Ulander, L.M. Estimation of forest parameters using CARABAS-II VHF SAR data. IEEE Trans. Geosci. Remote Sens. 2000, 38, 720–727. [Google Scholar] [CrossRef]
- Vesecky, J.F.; Stewart, R.H. The observation of ocean surface phenomena using imagery from the SEASAT synthetic aperture radar: An assessment. J. Geophys. Res. Ocean. 1982, 87, 3397–3430. [Google Scholar] [CrossRef]
- Vu, V.T.; Sjögren, T.K.; Pettersson, M.I.; Marques, P.A. Application of the moving target detection by focusing technique in civil traffic monitoring. In Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 25–30 July 2010; IEEE: New York, NY, USA, 2010; pp. 4118–4121. [Google Scholar]
- Tsai, Y.L.S.; Dietz, A.; Oppelt, N.; Kuenzer, C. Remote sensing of snow cover using spaceborne SAR: A review. Remote Sens. 2019, 11, 1456. [Google Scholar] [CrossRef]
- Galati, G.; Perrotta, G.; Di Girolamo, S.; Mura, R. Space-based SSR constellation for global air traffic control. IEEE Trans. Aerosp. Electron. Syst. 1996, 32, 1088–1106. [Google Scholar] [CrossRef]
- Parker, D. Microwave industry outlook-defense applications. IEEE Trans. Microw. Theory Tech. 2002, 50, 1039–1041. [Google Scholar] [CrossRef]
- Davidson, M.; Iannini, L.; Torres, R.; Geudtner, D. New Perspectives for Applications and Services Provided by Future Spaceborne SAR Missions at the European Space Agency. In Proceedings of the IGARSS 2022—2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022; IEEE: New York, NY, USA, 2022; pp. 4720–4723. [Google Scholar]
- Richards, M.A.; Scheer, J.; Holm, W.A.; Melvin, W.L. Principles of Modern Radar, 1st ed.; Citeseer: Princeton, NJ, USA, 2010. [Google Scholar]
- Nagler, T.; Rott, H.; Ossowska, J.; Schwaizer, G.; Small, D.; Malnes, E.; Luojus, K.; Metsämäki, S.; Pinnock, S. Snow cover monitoring by synergistic use of Sentinel-3 Slstr and Sentinel-L Sar data. In Proceedings of the IGARSS 2018–2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; IEEE: New York, NY, USA, 2018; pp. 8727–8730. [Google Scholar]
- Wang, Y.; Zhang, Z.; Li, N.; Hong, F.; Fan, H.; Wang, X. Maritime surveillance with undersampled SAR. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1423–1427. [Google Scholar] [CrossRef]
- Yan, H.; Wang, R.; Li, F.; Deng, Y.; Liu, Y. Ground moving target extraction in a multichannel wide-area surveillance SAR/GMTI system via the relaxed PCP. IEEE Geosci. Remote Sens. Lett. 2012, 10, 617–621. [Google Scholar] [CrossRef]
- Melvin, W.L.; Scheer, J.A. Principles of Modern Radar: Volume III—Radar Applications, 1st ed.; SciTech Publishing: Edison, NJ, USA, 2014. [Google Scholar]
- Ulander, L.M.H. VHF-Band SAR for Detection of Concealed Ground Targets. In RTO SCI Symposium on Sensors and Sensor Denial by Camouflage, Concealment and Deception; NATO: Brussels, Belgium, 2004; pp. 1–11. [Google Scholar]
- Alves, D.I.; Palm, B.G.; Hellsten, H.; Vu, V.T.; Pettersson, M.I.; Machado, R.; Uchôa-Filho, B.F.; Dammert, P. Wavelength-Resolution SAR Change Detection Using Bayes’ Theorem. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 5560–5568. [Google Scholar] [CrossRef]
- Gomes, N.R.; Dammert, P.; Pettersson, M.I.; Vu, V.T.; Hellsten, H. Comparison of the Rayleigh and K-Distributions for Application in Incoherent Change Detection. IEEE Geosci. Remote Sens. Lett. 2019, 16, 756–760. [Google Scholar] [CrossRef]
- Vu, V.T. Wavelength-Resolution SAR Incoherent Change Detection Based on Image Stack. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1012–1016. [Google Scholar] [CrossRef]
- Voigt, G.H.M.; Alves, D.I.; Müller, C.; Machado, R.; Vu, V.T.; Pettersson, M.I. Change detection method for intensity VHF wavelength-resolution SAR images. In Proceedings of the Submitted to SPIE Remote Sensing Symposium: Image and Signal Processing for Remote Sensing XXVII, Online, 13–17 September 2021. [Google Scholar]
- Lundberg, M.; Ulander, L.M.; Pierson, W.E.; Gustavsson, A. A challenge problem for detection of targets in foliage. In Proceedings of the Algorithms for Synthetic Aperture Radar Imagery XIII, Orlando, FL, USA, 17–21 April 2006; Volume 6237, pp. 160–171. [Google Scholar]
- Frolind, P.O.; Ulander, L. Motion compensation effects for repeat-pass processing in wavelength-resolution SAR. In Proceedings of the IGARSS’98—Sensing and Managing the Environment: 1998 IEEE International Geoscience and Remote Sensing. Symposium Proceedings (Cat. No. 98CH36174), Seattle, WA, USA, 6–10 July 1998; IEEE: New York, NY, USA, 1998; Volume 5, pp. 2637–2639. [Google Scholar]
- Machado, R.; Vu, V.T.; Pettersson, M.I.; Dammert, P.; Hellsten, H. The Stability of UWB Low-Frequency SAR Images. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1114–1118. [Google Scholar] [CrossRef]
- Voigt, G.H.; Alves, D.I.; Müller, C.; Machado, R.; Vu, V.T.; Pettersson, M.I. Target Detection Method for Intensity VHF Wavelength-Resolution SAR Images. In Proceedings of the XXXIX Simpósio Brasileiro de Telecomunicações e Processamento de Sinais, Online, 26–29 September 2021. [Google Scholar]
- Alves, D.I.; Palm, B.G.; Pettersson, M.I.; Vu, V.T.; Machado, R.; Uchôa-Filho, B.F.; Dammert, P.; Hellsten, H. A Statistical Analysis for Wavelength-Resolution SAR Image Stacks. IEEE Geosci. Remote Sens. Lett. 2020, 17, 227–231. [Google Scholar] [CrossRef]
- Vu, V.T.; Pettersson, M.I.; Machado, R.; Dammert, P.; Hellsten, H. False Alarm Reduction in Wavelength-Resolution SAR Change Detection Using Adaptive Noise Canceler. IEEE Trans. Geosci. Remote Sens. 2017, 55, 591–599. [Google Scholar] [CrossRef]
- Campos, A.B.; Pettersson, M.I.; Vu, V.T.; Machado, R. False Alarm Reduction in Wavelength–Resolution SAR Change Detection Schemes by Using a Convolutional Neural Network. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Vinholi, J.G.; Palm, B.G.; Silva, D.; Machado, R.; Pettersson, M.I. Change Detection Based on Convolutional Neural Networks Using Stacks of Wavelength-Resolution Synthetic Aperture Radar Images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–14. [Google Scholar] [CrossRef]
- Alves, D.I.; Müller, C.; Palm, B.G.; Pettersson, M.I.; Vu, V.T.; Machado, R.; Uchôa-Filho, B.F.; Dammert, P.; Hellsten, H. Neyman–Pearson Criterion-Based Change Detection Methods for Wavelength–Resolution SAR Image Stacks. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Harris, B.W.; Milo, M.W.; Roan, M.J. Symbolic target detection in SAR imagery via rotationally invariant-weighted feature extraction. Int. J. Remote Sens. 2013, 34, 8724–8740. [Google Scholar] [CrossRef]
- Gao, G. Statistical modeling of SAR images: A survey. Sensors 2010, 10, 775–795. [Google Scholar] [CrossRef]
- Matsuoka, M.; Yamazaki, F. Use of satellite SAR intensity imagery for detecting building areas damaged due to earthquakes. Earthq. Spectra 2004, 20, 975–994. [Google Scholar] [CrossRef]
- Gong, M.; Li, Y.; Jiao, L.; Jia, M.; Su, L. SAR change detection based on intensity and texture changes. ISPRS J. Photogramm. Remote Sens. 2014, 93, 123–135. [Google Scholar] [CrossRef]
- Wang, C.; Bi, F.; Zhang, W.; Chen, L. An intensity-space domain CFAR method for ship detection in HR SAR images. IEEE Geosci. Remote Sens. Lett. 2017, 14, 529–533. [Google Scholar] [CrossRef]
- Ulander, L.M.H.; Lundberg, M.; Pierson, W.; Gustavsson, A. Change detection for low-frequency SAR ground surveillance. IEE Proc. Radar Sonar Navig. 2005, 152, 413–420. [Google Scholar] [CrossRef]
- Vu, V.T.; Gomes, N.R.; Pettersson, M.I.; Dammert, P.; Hellsten, H. Bivariate Gamma Distribution for Wavelength-Resolution SAR Change Detection. IEEE Trans. Geosci. Remote Sens. 2019, 57, 473–481. [Google Scholar] [CrossRef]
- Anderson, T.W.; Darling, D.A. A test of goodness of fit. J. Am. Stat. Assoc. 1954, 49, 765–769. [Google Scholar] [CrossRef]
- DeVore, M.D.; O’Sullivan, J.A. Statistical assessment of model fit for synthetic aperture radar data. In Proceedings of the Algorithms for Synthetic Aperture Radar Imagery VIII, Orlando, FL, USA, 16–19 April 2001; SPIE: Paris, France, 2001; Volume 4382, pp. 379–388. [Google Scholar]
- Dodge, Y. The Concise Encyclopedia of Statistics; Springer Science & Business Media: New York, NY, USA, 2008. [Google Scholar]
- Makarov, A.; Simonova, G. Studying the Power of the Two-Sample Anderson–Darling Test in the Case of Contamination of One Sample. J. Math. Sci. 2017, 221, 580–587. [Google Scholar] [CrossRef]
- U.S. Air Force. The Sensor Data Management System; U.S. Air Force: Columbus, OH, USA, 2021. [Google Scholar]
- Hellsten, H.; Ulander, L.M.; Gustavsson, A.; Larsson, B. Development of VHF CARABAS II SAR. In Radar Sensor Technology; SPIE: Paris, France, 1996; Volume 2747, pp. 48–60. [Google Scholar]
- Wang, H.; Yang, E.h.; Zhao, Z.; Zhang, W. Spectrum sensing in cognitive radio using goodness of fit testing. IEEE Trans. Wirel. Commun. 2009, 8, 5427–5430. [Google Scholar] [CrossRef]
- D’Agostino, R. Goodness-of-Fit-Techniques; Routledge: Abingdon, UK, 2017. [Google Scholar]
- Marsaglia, G.; Marsaglia, J. Evaluating the anderson-darling distribution. J. Stat. Softw. 2004, 9, 1–5. [Google Scholar] [CrossRef]
- Thomas, M.; Joy, A.T. Elements of Information Theory; Wiley-Interscience: New York, NY, USA, 2006. [Google Scholar]
- Fisher, R.A. Statistical methods for research workers. In Breakthroughs in Statistics; Springer: Cham, Switzerland, 1992; pp. 66–70. [Google Scholar]
- Leone, F.C.; Nelson, L.S.; Nottingham, R. The folded normal distribution. Technometrics 1961, 3, 543–550. [Google Scholar] [CrossRef]
- Byers, R. Half-Normal Distribution. In Wiley StatsRef: Statistics Reference Online; Wiley: New York, NY, USA, 2014. [Google Scholar]
- Brockwell, P.J.; Brockwell, P.J.; Davis, R.A.; Davis, R.A. Introduction to Time Series and Forecasting; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Lundberg, M.; Ulander, L.M.H.; Pierson, W.E.; Gustavsson, A. A challenge problem for detection of targets in foliage. In Algorithms for Synthetic Aperture Radar Imagery XIII; SPIE: Paris, France, 2006; Volume 6237. [Google Scholar]
- Vu, V.T.; Alves, D.I.; Palm, B.G.; Pettersson, M.I.; Dammert, P.; Hellsten, H. A Detector for Wavelength Resolution SAR Incoherent Change Detection. In Proceedings of the IEEE Radar Conference (RadarConf), Boston, MA, USA, 22–26 April 2019; IEEE: New York, NY, USA, 2019; pp. 1–5. [Google Scholar]
Experiments | Surveillance Image (Image A – Image C) | Reference Image (Image B – Image C) | Detected Targets | Probability of Detection | False Alarm | False Alarm Rate (km) | |
---|---|---|---|---|---|---|---|
Image A | Image B | Image C | |||||
1 | M2P1 | M4P1 | M3P1 | 25 | 1 | 5 | 0.83 |
2 | M3P1 | M5P1 | M4P1 | 25 | 1 | 12 | 2 |
3 | M4P1 | M2P1 | M5P1 | 25 | 1 | 1 | 0.16 |
4 | M5P1 | M3P1 | M2P1 | 24 | 0.96 | 2 | 0.33 |
5 | M2P2 | M4P2 | M3P2 | 25 | 1 | 5 | 0.83 |
6 | M3P2 | M5P2 | M4P2 | 25 | 1 | 3 | 0.5 |
7 | M4P2 | M2P2 | M5P2 | 25 | 1 | 6 | 1 |
8 | M5P2 | M3P2 | M2P2 | 22 | 0.88 | 1 | 0.16 |
9 | M2P3 | M4P3 | M3P3 | 25 | 1 | 11 | 1.83 |
10 | M3P3 | M5P3 | M4P3 | 25 | 1 | 6 | 1 |
11 | M4P3 | M2P3 | M4P3 | 25 | 1 | 5 | 0.83 |
12 | M5P3 | M3P3 | M2P3 | 25 | 1 | 5 | 0.83 |
13 | M2P4 | M4P4 | M3P4 | 25 | 1 | 5 | 0.83 |
14 | M3P4 | M5P4 | M4P4 | 25 | 1 | 1 | 0.16 |
15 | M4P4 | M2P4 | M5P4 | 25 | 1 | 2 | 0.33 |
16 | M5P4 | M3P4 | M2P4 | 22 | 0.88 | 2 | 0.33 |
17 | M2P5 | M4P5 | M3P5 | 25 | 1 | 9 | 1.5 |
18 | M3P5 | M5P5 | M4P5 | 22 | 0.88 | 92 | 15.33 |
19 | M4P5 | M2P5 | M5P5 | 25 | 1 | 1 | 0.16 |
20 | M5P5 | M3P5 | M2P5 | 25 | 1 | 17 | 2.83 |
21 | M2P6 | M4P6 | M3P6 | 25 | 1 | 4 | 0.66 |
22 | M3P6 | M5P6 | M4P6 | 25 | 1 | 4 | 0.66 |
23 | M4P6 | M2P6 | M5P6 | 25 | 1 | 10 | 1.66 |
24 | M5P6 | M3P6 | M2P6 | 25 | 1 | 0 | 0 |
Total | 590 | 0.98 | 209 | 1.45 |
Experiments | Surveillance Image (Image A – Image C) | Reference Image (Image B – Image C) | Detected Targets | Probability of Detection | False Alarm | False Alarm Rate (km) | |
---|---|---|---|---|---|---|---|
Image A | Image B | Image C | |||||
1 | M2P1 | M4P1 | M3P1 | 25 | 1 | 0 | 0 |
2 | M3P1 | M5P1 | M4P1 | 25 | 1 | 3 | 0.5 |
3 | M4P1 | M2P1 | M5P1 | 25 | 1 | 0 | 0 |
4 | M5P1 | M3P1 | M2P1 | 23 | 0.92 | 2 | 0.33 |
5 | M2P2 | M4P2 | M3P2 | 25 | 1 | 1 | 0.16 |
6 | M3P2 | M5P2 | M4P2 | 25 | 1 | 0 | 0 |
7 | M4P2 | M2P2 | M5P2 | 25 | 1 | 0 | 0 |
8 | M5P2 | M3P2 | M2P2 | 21 | 0.84 | 1 | 0.16 |
9 | M2P3 | M4P3 | M3P3 | 25 | 1 | 1 | 0.16 |
10 | M3P3 | M5P3 | M4P3 | 21 | 0.84 | 0 | 0 |
11 | M4P3 | M2P3 | M4P3 | 25 | 1 | 1 | 0.16 |
12 | M5P3 | M3P3 | M2P3 | 24 | 0.96 | 1 | 0.16 |
13 | M2P4 | M4P4 | M3P4 | 24 | 0.96 | 1 | 0.16 |
14 | M3P4 | M5P4 | M4P4 | 25 | 1 | 0 | 0 |
15 | M4P4 | M2P4 | M5P4 | 25 | 1 | 0 | 0 |
16 | M5P4 | M3P4 | M2P4 | 20 | 0.8 | 0 | 0 |
17 | M2P5 | M4P5 | M3P5 | 25 | 1 | 0 | 0 |
18 | M3P5 | M5P5 | M4P5 | 16 | 0.64 | 10 | 1.66 |
19 | M4P5 | M2P5 | M5P5 | 25 | 1 | 0 | 0 |
20 | M5P5 | M3P5 | M2P5 | 24 | 0.96 | 1 | 0.16 |
21 | M2P6 | M4P6 | M3P6 | 25 | 1 | 0 | 0 |
22 | M3P6 | M5P6 | M4P6 | 24 | 0.96 | 0 | 0 |
23 | M4P6 | M2P6 | M5P6 | 25 | 1 | 0 | 0 |
24 | M5P6 | M3P6 | M2P6 | 24 | 0.96 | 0 | 0 |
Total | 571 | 0.95 | 22 | 0.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mittmann Voigt, G.H.; Irion Alves, D.; Müller, C.; Machado, R.; Ramos, L.P.; Vu, V.T.; Pettersson, M.I. A Statistical Analysis for Intensity Wavelength-Resolution SAR Difference Images. Remote Sens. 2023, 15, 2401. https://doi.org/10.3390/rs15092401
Mittmann Voigt GH, Irion Alves D, Müller C, Machado R, Ramos LP, Vu VT, Pettersson MI. A Statistical Analysis for Intensity Wavelength-Resolution SAR Difference Images. Remote Sensing. 2023; 15(9):2401. https://doi.org/10.3390/rs15092401
Chicago/Turabian StyleMittmann Voigt, Gustavo Henrique, Dimas Irion Alves, Crístian Müller, Renato Machado, Lucas Pedroso Ramos, Viet Thuy Vu, and Mats I. Pettersson. 2023. "A Statistical Analysis for Intensity Wavelength-Resolution SAR Difference Images" Remote Sensing 15, no. 9: 2401. https://doi.org/10.3390/rs15092401
APA StyleMittmann Voigt, G. H., Irion Alves, D., Müller, C., Machado, R., Ramos, L. P., Vu, V. T., & Pettersson, M. I. (2023). A Statistical Analysis for Intensity Wavelength-Resolution SAR Difference Images. Remote Sensing, 15(9), 2401. https://doi.org/10.3390/rs15092401