Basal Melt Patterns around the Deep Ice Core Drilling Site in the Dome A Region from Ice-Penetrating Radar Measurements
"> Figure 1
<p>Bedrock topography in the vicinity of Dome A and Kunlun Station (contour spacing 100 m), white lines show ground-based radar surveys, asterisks show the Kunlun Station and the Dome A, 1–4 show the radar paths during the CHINARE 21, 5–8 show the radar paths during the CHINARE 29.</p> "> Figure 2
<p>(<b>a</b>–<b>d</b>). Radar profiles of CHINARE 29; white lines show the ice–bedrock interfaces extracted by EisNet; (<b>e</b>) the positions of extracted results around the drilling site at Kunlun Station in the Dome A region (white arrows represent the direction of the radar path).</p> "> Figure 3
<p>Absorption loss (red points) radar data of the CHINARE 21 compared with linear trends (orange lines) with slopes of about 15 dB/km, 5.7 dB/km, 8.4 dB/km, 11 dB/km, and 9.7 dB/km (<b>a</b>–<b>d</b>): absorption loss radar data of four triangles of CHINARE 21 in Dome A region, (<b>e</b>): all radar data of CHINARE 21 in Dome A region).</p> "> Figure 4
<p>Absorption loss (red points) radar data of the CHINARE 29 compared with linear trends (orange line) with slopes of about <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>N</mi> <mo>¯</mo> </mover> </mrow> </semantics></math> = 28 dB/km.</p> "> Figure 5
<p>Reflectivity variation plots along four radar profiles calculated using a linear absorption model and the CHINARE 21 radar data; the vertical lines show <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">Δ</mi> <mi>R</mi> </mrow> </semantics></math> > 7.7 dB area (radar data at the undetermined ice-bedrock interfaces area were removed).</p> "> Figure 6
<p>(<b>a</b>). Wet map on a color bedrock elevation map (contour spacing 100 m) around drilling site at Kunlun Station in the Dome A region; white points are wet points, asterisk is the Kunlun Station. (<b>b</b>). Dry–wet schematic diagram of the marked area in (<b>a</b>) (red points for wet ice–bedrock interface s; blue points for dry ice–bedrock interfaces).</p> "> Figure 7
<p>Wet (red) bed conditions on the modeled basal temperature map using geothermal heat flux of 55 mW m<sup>−2</sup> (<b>a</b>) and 60 mW m<sup>−2</sup> (<b>b</b>) (the red asterisk is Kunlun Station drilling site). The base map is from Zhao et al., 2018 [<a href="#B11-remotesensing-15-01726" class="html-bibr">11</a>].</p> ">
Abstract
:1. Introduction
2. Study Area and Data
3. Methods
3.1. Estimated Bed Returned Power
3.2. Artificial Intelligence Extraction of Ice Thickness
3.3. Classification of Bed Conditions
4. Results
4.1. Various Depth-Averaged Attenuation Rates
4.2. Analysis of the Reflectivity Variation ()
4.3. Wet Bed Condition Map on Bedrock Elevation
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sun, B.; Moore, J.C.; Zwinger, T.; Zhao, L.; Steinhage, D.; Tang, X.; Zhang, D.; Cui, X.; Martín, C. How old is the ice beneath Dome A, Antarctica? Cryosphere 2014, 8, 1121–1128. [Google Scholar] [CrossRef] [Green Version]
- Zhang, N.; An, C.; Fan, X.; Shi, G.; Li, C.; Liu, J.; Hu, Z.; Talalay, P.; Sun, Y.; Li, Y. Chinese First Deep Ice-Core Drilling Project DK-1 at Dome A, Antarctica (2011–2013): Progress and performance. Ann. Glaciol. 2014, 55, 88–98. [Google Scholar] [CrossRef] [Green Version]
- Hu, Z.; Shi, G.; Talalay, P.; Li, Y.; Fan, X.; An, C.; Zhang, N.; Li, C.; Liu, K.; Yu, J.; et al. Deep ice-core drilling to 800 m at Dome A in East Antarctica. Ann. Glaciol. 2021, 62, 293–304. [Google Scholar] [CrossRef]
- Sun, B.; Siegert, M.J.; Mudd, S.M.; Sugden, D.; Fujita, S.; Cui, X.; Jiang, Y.; Tang, X.; Li, Y. The Gamburtsev mountains and the origin and early evolution of the Antarctic ice sheet. Nature 2009, 459, 690–693. [Google Scholar]
- Hou, S.; Li, Y.; Xiao, C.; Ren, J. Recent accumulation rate at Dome A, Antarctic. Chin. Sci. Bull. 2007, 52, 428–431. [Google Scholar] [CrossRef]
- Yang, Y.; Sun, B.; Wang, Z.; Ding, M.; Hwang, C.; Ai, S.; Wang, L.; Du, Y.; Dongchen, E. GPS-derived velocity and strain fields around Dome Argus, Antarctica. J. Glaciol. 2014, 60, 735–742. [Google Scholar] [CrossRef] [Green Version]
- Jiang, S.; Cole-Dai, J.; Li, Y.; Ferris, D.G.; Ma, H.; An, C.; Shi, G.; Sun, B. A detailed 2840 year record of explosive volcanism in a shallow ice core from Dome A, East Antarctica. J. Glaciol. 2012, 58, 65–75. [Google Scholar] [CrossRef] [Green Version]
- Tang, X.; Sun, B.; Wang, T. Radar isochronic layer dating for a deep ice core at Kunlun Station, Antarctica. Sci. China Earth Sci. 2020, 63, 139–144. [Google Scholar] [CrossRef]
- Tang, X.; Sun, B.; Zhang, Z.; Zhang, X.; Cui, X.; Li, X. Structure of the internal isochronous layers at Dome A, East Antarctica. Sci. China Earth Sci. 2011, 54, 445–450. [Google Scholar] [CrossRef]
- Wolovick, M.J.; Robin, E.B.; Timothy, T.C.; Frearson, N. Identification and control of subglacial water networks under Dome A, Antarctica. J. Geophys. Res. Earth Surf. 2013, 118, 140–154. [Google Scholar] [CrossRef]
- Zhao, L.; Moore, J.C.; Sun, B.; Tang, X.; Guo, X. Where is the 1-million-year-old ice at Dome A? Cryosphere 2018, 12, 1651–1663. [Google Scholar] [CrossRef] [Green Version]
- Bell, R.E.; Ferraccioli, F.; Creyts, T.T.; Braaten, D.; Corr, H.; Das, I.; Damaske, D.; Frearson, N.; Jordan, T.; Rose, K.; et al. Widespread Persistent Thickening of the East Antarctic Ice Sheet by Freezing from the Base. Science 2011, 331, 1592–1595. [Google Scholar] [CrossRef]
- Wrona, T.; Wolovick, M.J.; Ferraccioli, F.; Corr, H.; Jordan, T.A.; Siegert, M. Position and variability of complex structures in the central East Antarctic Ice Sheet. Geol. Soc. Lond. Spec. Publ. 2018, 461, 113. [Google Scholar] [CrossRef] [Green Version]
- Bentley, C.R.; Lord, N.; Liu, C. Radar reflections reveal a wet bed beneath stagnant Ice Stream C and a frozen bed beneath ridge BC, West Antarctica. J. Glaciol. 1998, 44, 149–156. [Google Scholar] [CrossRef] [Green Version]
- Bindschadler, R. Monitoring ice sheet behavior from space. Rev. Geophys. 1998, 36, 79–104. [Google Scholar] [CrossRef] [Green Version]
- Catania, G.A.; Conway, H.B.; Gades, A.M.; Raymond, C.F.; Engelhardt, H. Bed reflectivity beneath inactive ice streams in West Antarctica. Ann. Glaciol. 2003, 36, 287–291. [Google Scholar] [CrossRef] [Green Version]
- Peters, M.E.; Blankenship, D.D.; Morse, D.L. Analysis techniques for coherent airborne radar sounding: Application to West Antarctic ice streams. J. Geophys. Res. 2005, 110, B06303. [Google Scholar] [CrossRef]
- Zirizzotti, A.; Cafarella, L.; Baskaradas, J.A.; Tabacco, I.E.; Urbini, S.; Mangialetti, M.; Bianchi, C. Dry–Wet Bedrock Interface Detection by Radio Echo Sounding Measurements. IEEE Trans. Geosci. Remote Sens. 2010, 48, 2343–2348. [Google Scholar] [CrossRef]
- Lindzey, L.E.; Beem, L.H.; Young, D.A.; Quartini, E.; Blankenship, D.D.; Lee, C.K.; Lee, W.; Lee, J.; Lee, J. Aerogeophysical characterization of an active subglacial lake system in the David Glacier catchment, Antarctica. Cryosphere 2020, 14, 2217–2233. [Google Scholar] [CrossRef]
- Yan, S.; Blankenship, D.D.; Greenbaum, J.; Young, D.; Li, L.; Rutishauser, A.; Guo, J.; Roberts, J.L.; van Ommen, T.D.; Siegert, M.; et al. A newly discovered subglacial lake in East Antarctica likely hosts a valuable sedimentary record of ice and climate change. Geology 2022, 50, 949–953. [Google Scholar] [CrossRef]
- Macgregor, J.A.; Matsuoka, K.; Studinger, M. Radar detection of accreted ice over Lake Vostok, Antarctica. Earth Planet. Sci. Lett. 2009, 282, 222–233. [Google Scholar] [CrossRef]
- Dowdeswell, J.A.; Siegert, M. The physiography of modern Antarctic subglacial lakes. Global Planet. Chang. 2003, 35, 221–236. [Google Scholar] [CrossRef]
- Carter, S.P. Radar-based subglacial lake classification in Antarctica, Geochem. Geophys. Geosy. 2007, 8, Q03016. [Google Scholar] [CrossRef]
- Zirizzotti, A.; Cafarella, L.; Urbini, S. Ice and Bedrock Characteristics Underneath Dome C (Antarctica) From Radio Echo Sounding Data Analysis. IEEE Trans. Geosci. Remote Sens. 2012, 50, 37–43. [Google Scholar] [CrossRef]
- Urbini, S.; Cafarella, L.; Tabacco, I.E.; Baskaradas, J.A.; Serafini, M.; Zirizzotti, A. RES Signatures of Ice Bottom Near to Dome C (Antarctica). IEEE Trans. Geosci. Remote Sens. 2014, 53, 1558–1564. [Google Scholar] [CrossRef]
- Hills, B.H.; Christianson, K.; Holschuh, N. A framework for attenuation method selection evaluated with ice-penetrating radar data at South Pole Lake. Ann. Glaciol. 2020, 61, 176–187. [Google Scholar] [CrossRef]
- Fujita, S.; Holmlund, P.; Matsuoka, K.; Enomoto, H.; Fukui, K.; Nakazawa, F.; Sugiyama, S.; Surdyk, S. Radar diagnosis of the subglacial conditions in Dronning Maud Land, East Antarctica. Cryosphere 2012, 6, 1203–1219. [Google Scholar] [CrossRef] [Green Version]
- Macgregor, J.A.; Winebrenner, D.P.; Conway, H.; Matsuoka, K.; Mayewski, P.A.; Clow, G.D. Modeling Englacial Radar Attenuation at Siple Dome, West Antarctica, Using Ice Chemistry and Temperature Data. J. Geophys. Res.-Atmos. 2007, 112, F03008. [Google Scholar] [CrossRef] [Green Version]
- Jordan, T.M.; Bamber, J.L.; Williams, C.N.; Paden, J.; Siegert, M.; Huybrechts, P.; Gagliardini, O.; Gillet-Chaulet, F. An ice-sheet-wide framework for englacial attenuation from ice-penetrating radar data. Cryosphere 2016, 10, 1547–1570. [Google Scholar] [CrossRef] [Green Version]
- Macgregor, J.A.; Li, J.; Paden, J.; Catania, G.; Clow, G.D.; Fahnestock, M.; Gogineni, S.P.; Grimm, R.; Morlighem, M.; Nandi, S.; et al. Radar attenuation and temperature within the Greenland Ice Sheet. J.Geophys. Res. Earth Surf. 2015, 120, 983–1008. [Google Scholar] [CrossRef] [Green Version]
- Matsuoka, K.; Morse, D.; Raymond, C.F. Estimating englacial radar attenuation using depth profiles of the returned power, central West Antarctica. J. Geophys. Res. Earth Surf. 2010, 115, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Matsuoka, K.; Macgregor, J.A.; Pattyn, F. Predicting radar attenuation within the Antarctic ice sheet. Earth Planet. Sci. Lett. 2012, 359–360, 173–183. [Google Scholar] [CrossRef]
- Matsuoka, K.; Pattyn, F.; Callens, D.; Conway, H. Radar characterization of the basal interface across the grounding zone of an ice-rise promontory in East Antarctica. Ann. Glaciol. 2012, 53, 29–34. [Google Scholar] [CrossRef] [Green Version]
- Holschuh, N.; Christianson, K.; Anandakrishnan, S.; Alley, R.B.; Jacobel, R.W. Constraining attenuation uncertainty in common midpoint radar surveys of ice sheets. J.Geophys. Res. Earth Surf. 2016, 121, 1876–1890. [Google Scholar] [CrossRef] [Green Version]
- Bingham, R.G.; Siegert, M.J. Radio-Echo Sounding Over Polar Ice Masses. J. Environ. Eng. Geoph. 2007, 12, 47–62. [Google Scholar] [CrossRef] [Green Version]
- Cui, X.; Sun, B.; Tian, G.; Tang, X.; Zhang, X.; Jiang, Y.; Guo, J.; Li, X. Ice radar investigation at Dome A, East Antarctica: Ice thickness and subglacial topography. Chin. Sci. Bull. 2010, 55, 425–431. [Google Scholar] [CrossRef]
- Tang, X.; Sun, B.; Guo, J.; Cui, X.; Zhao, B.; Chen, Y. A freeze-on ice zone along the Zhongshan–Kunlun ice sheet profile, East Antarctica, by a new ground-based ice-penetrating radar. Sci. Bull. 2015, 60, 574–576. [Google Scholar] [CrossRef] [Green Version]
- Tang, X.; Sun, B.; Wang, T. Internal layering structure and subglacial conditions along a traverse line from Zhongshan Station to Dome A, East Antarctica, revealed by ground-based radar sounding. Appl. Geophys. 2020, 17, 870–878. [Google Scholar] [CrossRef]
- Cui, X.; Wang, T.; Sun, B.; Tang, X.; Guo, J. Chinese radioglaciological studies on the Antarctic ice sheet: Progress and prospects. Adv. Polar Sci. 2017, 28, 14–23. [Google Scholar]
- Dong, S.; Tang, X.; Guo, J.; Fu, L.; Chen, X.; Sun, B. EisNet: Extracting Bedrock and Internal Layers From Radiostratigraphy of Ice Sheets With Machine Learning. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–12. [Google Scholar] [CrossRef]
- Tang, X.; Luo, K.; Dong, S.; Zhang, Z.; Sun, B. Quantifying Basal Roughness and Internal Layer Continuity Index of Ice Sheets by an Integrated Means with Radar Data and Deep Learning. Remote Sens. 2022, 14, 4507. [Google Scholar] [CrossRef]
- Jacobel, R.W.; Welch, B.C.; Osterhouse, D.; Pettersson, R.; Gregor, J.A.M. Spatial variation of radar-derived basal conditions on Kamb Ice Stream, West Antarctica. Ann. Glaciol. 2009, 50, 10–16. [Google Scholar] [CrossRef] [Green Version]
- Winebrenner, D.; Smith, B.; Catania, G.; Conway, H.; Raymond, C. Radio frequency attenuation beneath Siple dome, West antarctica, from wide angle and profiling radar observations. Ann. Glaciol. 2003, 37, 226–232. [Google Scholar] [CrossRef] [Green Version]
- MacGregor, J.A.; Matsuoka, K.; Waddington, E.D.; Winebrenner, D.P.; Pattyn, F. Spatial variation of englacial radar attenuation: Modeling approach and application to the Vostok flowline. J.Geophys. Res. Earth Surf. 2012, 117, 1–15. [Google Scholar] [CrossRef] [Green Version]
- MacGregor, J.A.; Anandakrishnan, S.; Catania, G.A.; Winebrenner, D.P. The grounding zone of the Ross Ice Shelf, West Antarctica, from ice-penetrating radar. J. Glaciol. 2011, 57, 917–928. [Google Scholar] [CrossRef] [Green Version]
- Olivier, P.; Catherine, R.; Frédéric, P.; Stefano, U.; Massimo, F. Geothermal flux and basal melt rate in the Dome C region inferred from radar reflectivity and heat modelling. Cryosphere 2017, 11, 2231–2246. [Google Scholar]
- Paxman, G.J.G.; Watts, A.B.; Ferraccioli, F.; Jordan, T.A.; Bell, R.E.; Jamieson, S.S.R.; Finn, C.A. Erosion-driven uplift in the Gamburtsev Subglacial Mountains of East Antarctica. Earth Planet. Sci. Lett. 2016, 452, 1–14. [Google Scholar] [CrossRef] [Green Version]
Radar Systems | CHINARE 21 Dual-Frequency Radar | CHINARE 29 Developed Deep IPR |
---|---|---|
Antenna | Three-element Yagi | Log-periodical |
Center frequency/MHz | 60/179 | 150 |
Peak power/kW | 1 | 0.5 |
Pulse width/μs | 250/500/1000 | 2000/4000/8000 |
Sampling time window/μs | 50 | 50 |
Sampling frequency/MHz | 100 | 500 |
Noise/dB | <1 | <3 |
Dynamic range/dB | 80 | >110 |
Bandwidth/MHz | 4 | 100 |
Antenna gain/dBi | 7.2 | 9 |
Beam width/(°) | 70 | 60 |
Interface (Reflection/Transmission Losses) | Power Loss L (dB) |
---|---|
ice–air () | 0.35 |
air–ice () | 11.0 |
ice–water () | 3.5 |
ice–rock () | 11.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Tang, X.; Xiao, E.; Luo, K.; Dong, S.; Sun, B. Basal Melt Patterns around the Deep Ice Core Drilling Site in the Dome A Region from Ice-Penetrating Radar Measurements. Remote Sens. 2023, 15, 1726. https://doi.org/10.3390/rs15071726
Wang H, Tang X, Xiao E, Luo K, Dong S, Sun B. Basal Melt Patterns around the Deep Ice Core Drilling Site in the Dome A Region from Ice-Penetrating Radar Measurements. Remote Sensing. 2023; 15(7):1726. https://doi.org/10.3390/rs15071726
Chicago/Turabian StyleWang, Hao, Xueyuan Tang, Enzhao Xiao, Kun Luo, Sheng Dong, and Bo Sun. 2023. "Basal Melt Patterns around the Deep Ice Core Drilling Site in the Dome A Region from Ice-Penetrating Radar Measurements" Remote Sensing 15, no. 7: 1726. https://doi.org/10.3390/rs15071726