SVM-Based Sea Ice Extent Retrieval Using Multisource Scatterometer Measurements
<p>A number of ASCAT measurements in (<b>a</b>) Antarctic and (<b>b</b>) Arctic areas on 4 January 2020. The coastlines are overlaid in black, while the color bar represents the count of measurements in each pixel. The image sizes of the Arctic and Antarctic ice maps are 448 × 304 and 332 × 316, respectively.</p> "> Figure 2
<p>Normalized distribution of the characteristic parameters over open seawater and ice in the Antarctic; the period over which statistics were obtained was from December 2019 to February 2020. (<b>a</b>) <math display="inline"><semantics> <mrow> <msubsup> <mi>σ</mi> <mrow> <mi>H</mi> <mi>H</mi> </mrow> <mn>0</mn> </msubsup> </mrow> </semantics></math> (dB), (<b>b</b>) <math display="inline"><semantics> <mrow> <msubsup> <mi>σ</mi> <mrow> <mi>V</mi> <mi>V</mi> </mrow> <mn>0</mn> </msubsup> </mrow> </semantics></math> (dB), (<b>c</b>) standard deviations of HH measurements, <math display="inline"><semantics> <mrow> <mo>Δ</mo> <msubsup> <mi>σ</mi> <mrow> <mi>H</mi> <mi>H</mi> </mrow> <mn>0</mn> </msubsup> </mrow> </semantics></math> (dB), (<b>d</b>) standard deviations of VV measurements, <math display="inline"><semantics> <mrow> <mo>Δ</mo> <msubsup> <mi>σ</mi> <mrow> <mi>V</mi> <mi>V</mi> </mrow> <mn>0</mn> </msubsup> </mrow> </semantics></math> (dB), (<b>e</b>) polarization ratio of backscatter measurements <math display="inline"><semantics> <mrow> <mi>P</mi> <mi>R</mi> </mrow> </semantics></math>, (<b>f</b>) backscatter dependence on incidence angle <math display="inline"><semantics> <mrow> <msub> <mi>K</mi> <mrow> <mi>V</mi> <mi>V</mi> </mrow> </msub> <mo>,</mo> </mrow> </semantics></math> and (<b>g</b>) band ratio of VV backscatter measurements, <math display="inline"><semantics> <mrow> <mi>B</mi> <mi>R</mi> </mrow> </semantics></math>.</p> "> Figure 2 Cont.
<p>Normalized distribution of the characteristic parameters over open seawater and ice in the Antarctic; the period over which statistics were obtained was from December 2019 to February 2020. (<b>a</b>) <math display="inline"><semantics> <mrow> <msubsup> <mi>σ</mi> <mrow> <mi>H</mi> <mi>H</mi> </mrow> <mn>0</mn> </msubsup> </mrow> </semantics></math> (dB), (<b>b</b>) <math display="inline"><semantics> <mrow> <msubsup> <mi>σ</mi> <mrow> <mi>V</mi> <mi>V</mi> </mrow> <mn>0</mn> </msubsup> </mrow> </semantics></math> (dB), (<b>c</b>) standard deviations of HH measurements, <math display="inline"><semantics> <mrow> <mo>Δ</mo> <msubsup> <mi>σ</mi> <mrow> <mi>H</mi> <mi>H</mi> </mrow> <mn>0</mn> </msubsup> </mrow> </semantics></math> (dB), (<b>d</b>) standard deviations of VV measurements, <math display="inline"><semantics> <mrow> <mo>Δ</mo> <msubsup> <mi>σ</mi> <mrow> <mi>V</mi> <mi>V</mi> </mrow> <mn>0</mn> </msubsup> </mrow> </semantics></math> (dB), (<b>e</b>) polarization ratio of backscatter measurements <math display="inline"><semantics> <mrow> <mi>P</mi> <mi>R</mi> </mrow> </semantics></math>, (<b>f</b>) backscatter dependence on incidence angle <math display="inline"><semantics> <mrow> <msub> <mi>K</mi> <mrow> <mi>V</mi> <mi>V</mi> </mrow> </msub> <mo>,</mo> </mrow> </semantics></math> and (<b>g</b>) band ratio of VV backscatter measurements, <math display="inline"><semantics> <mrow> <mi>B</mi> <mi>R</mi> </mrow> </semantics></math>.</p> "> Figure 3
<p>The flowchart of sea ice monitoring based on SVM classifier with multisource scatterometer measurement.</p> "> Figure 4
<p>The overall accuracy of different SVM model experiments in (<b>a</b>) Arctic and (<b>b</b>) Antarctic regions.</p> "> Figure 5
<p>Time series of model performance in Arctic for the period from 2019 to 2021: (<b>a</b>) overall accuracy; and precision, recall and F1 scores for (<b>b</b>) open water and (<b>c</b>) sea ice.</p> "> Figure 6
<p>Time series of model performance in the Antarctic for the period from 2019 to 2021: (<b>a</b>) overall accuracy; and precision, recall and F1 scores for (<b>b</b>) open water and (<b>c</b>) sea ice.</p> "> Figure 7
<p>Antarctic Sea ice maps on 26 September 2020 (gray parts in center represent land): (<b>a</b>) SVM model outputs; (<b>b</b>) after misclassification reduction processing; (<b>c</b>) NSIDC sea ice concentration.</p> "> Figure 8
<p>Example daily polar sea ice extent obtained on the basis of multisource scatterometer data. Gray pixels represent land; white pixels represent water; blue pixels represent sea ice; and the black hole in the Arctic is due to there being no coverage by scatterometers.</p> "> Figure 9
<p>The validation results of the Arctic from 2019 to 2021; (<b>a</b>) daily sea ice area for NSIDC SIC 15% ice extent (blue line), NSIDC SIC 30% ice extent (red line), and multisource scatterometer (yellow line), respectively, and (<b>b</b>) sea ice area difference between multisource scatterometer and NSIDC SIC 15% (blue line), and between multisource scatterometer and NSIDC SIC 30% (red line).</p> "> Figure 10
<p>The validation results for the Antarctic from 2019 to 2021: (<b>a</b>) daily sea ice area for NSIDC SIC 15% ice extent (blue line), NSIDC SIC 30% ice extent (red line), and multisource scatterometer (yellow line), respectively, and (<b>b</b>) sea ice area difference between multisource scatterometer and NSIDC SIC 15% (blue line), and between multisource scatterometer and NSIDC SIC 30% (red line).</p> "> Figure 11
<p>Sentinel-1 SAR images showing sea water and ice distributions. Sea ice edge lines from the multisource scatterometer data (red lines) and NSIDC SIC 15% sea ice (yellow lines) are overlapped, with the blue line being the common overlay sea ice edge line. The image acquisition dates were: (<b>a</b>) 4 December 2021, (<b>b</b>) 24 December 2021, (<b>c</b>) 29 November 2021, and (<b>d</b>) 18 December 2021.</p> "> Figure 12
<p>Comparison of acquisition of data at daily and half-day time intervals in the Artic for October 2020: (<b>a</b>) data coverage; (<b>b</b>) sea ice area.</p> "> Figure 13
<p>Comparison of acquisition of data at daily and half-day time intervals in the Antarctic for October 2020: (<b>a</b>) data coverage; (<b>b</b>) sea ice area.</p> ">
Abstract
:1. Introduction
2. Data Sources and Preprocessing
2.1. Data Sources
2.1.1. Scatterometer data
2.1.2. Sea Ice Concentration Data from NSIDC
2.1.3. SAR Imagery
2.2. Data Preprocessing
3. Characteristic Parameters for Sea Ice Monitoring
4. Sea Ice Extent Mapping and Validation
4.1. SVM Sea Ice and Water Discrimination Algorithm
4.2. SVM Model Experiments
4.3. Evaluation of Sea Ice Distribution Model Precision
4.4. Reduction of Residual Classification Errors
4.5. Sea Ice Mapping and Validation
4.5.1. Comparison with NSIDC SIC
4.5.2. Comparison with SAR
4.5.3. Test for Half-Day Retrievals
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cavalieri, D.J.; Parkinson, C.L. Antarctic sea ice variability and trends, 1979–2006. J. Geophys. Res. 2008, 113, C07004. [Google Scholar] [CrossRef] [Green Version]
- Curry, J.A.; Schramm, J.L.; Ebert, E.E. Sea ice-albedo climate feedback mechanism. J. Clim. 1995, 8, 240–247. [Google Scholar] [CrossRef]
- Li, M.; Zhao, C.; Zhao, Y.; Wang, Z.; Shi, L. Polar sea ice monitoring using HY-2A scatterometer measurements. Remote Sens. 2016, 8, 688. [Google Scholar] [CrossRef] [Green Version]
- IPCC (Intergovernmental Panel on Climate Change). Climate Change 2021: The Physical Science Basis. The Working Group I Contribution to the Sixth Assessment Report. 2021. Available online: https://www.ipcc.ch/report/sixth-assessment-report-working-group-i/ (accessed on 10 March 2023).
- Tikhonov, V.V.; Raev, M.D.; Sharkov, E.A.; Boyarskii, D.A.; Repina, I.A.; Komarova, N.Y. Satellite microwave radiometry of sea ice of polar regions: A review. Atmos. Ocean. Phys. 2016, 52, 1012–1030. [Google Scholar] [CrossRef]
- Long, D.G. Polar applications of spaceborne scatterometers. IEEE J. Sel. Top. Appl. Earth. Obs. Remote Sens. 2016, 10, 2307–2320. [Google Scholar] [CrossRef] [Green Version]
- Remund, Q.P.; Long, D.G. A decade of QuikSCAT scatterometer sea ice extent data. IEEE Trans. Geosci. Remote Sens. 2014, 52, 4281–4290. [Google Scholar] [CrossRef] [Green Version]
- Rivas, M.B.; Verspeek, J.; Verhoef, A.; Stoffelen, A. Bayesian sea ice detection with the advanced scatterometer ASCAT. IEEE Trans. Geosci. Remote Sens. 2012, 50, 2649–2657. [Google Scholar] [CrossRef]
- Lindell, D.B.; Long, D.G. Multiyear Arctic sea ice classifification using OSCAT and QuikSCAT. IEEE Trans. Geosci. Remote Sens. 2016, 54, 167–175. [Google Scholar] [CrossRef]
- Zhang, Z.; Yu, Y.; Li, X.; Hui, F.; Cheng, X.; Chen, Z. Arctic sea ice classification using microwave scatterometer and radiometer data during 2002-2017. IEEE Trans. Geosci. Remote Sens. 2019, 57, 5319–5328. [Google Scholar] [CrossRef]
- Yueh, S.H.; Kwok, R.; Lou, S.-H.; Tsai, W.-Y. Sea ice identifification using dual-polarized Ku-band scatterometer data. IEEE Trans. Geosci. Remote Sens. 1997, 35, 560–569. [Google Scholar] [CrossRef]
- Remund, Q.P.; Long, D.G. Automated Antarctic ice edge detection using NSCAT data. In Proceedings of the 1997 IEEE International, Geoscience and Remote Sensing (IGARSS’97), Remote Sensing—A Scientific Vision for Sustainable Development, Singapore, 3–8 August 1997; pp. 1841–1843. [Google Scholar]
- Remund, Q.P.; Long, D.G. Sea ice extent mapping using Ku band scatterometer data. J. Geophys. Res. Oceans 1999, 104, 11515–11527. [Google Scholar] [CrossRef] [Green Version]
- Remund, Q.P.; Long, D.G. Sea ice mapping algorithm for QuikSCAT and SeaWinds. In Proceedings of the 1998 IEEE International, Geoscience and Remote Sensing Symposium Proceedings, 1998. (IGARSS’98), Seattle, WA, USA, 6–10 July 1998; pp. 1686–1688. [Google Scholar]
- De Abreu, R.; Wilson, K.; Arkett, M.; Langlois, D. Evaluating the use of QuikSCAT data for operational sea ice monitoring. In Proceedings of the 2002 IEEE International Geoscience and Remote Sensing Symposium (IGARSS’02), Toronto, ON, Canada, 24–28 June 2002; pp. 3032–3033. [Google Scholar]
- Gohin, F.; Cavanie, A. A first try at identifification of sea ice using the three beam scatterometer of ERS-1. Int. J. Remote Sens. 1994, 15, 1221–1228. [Google Scholar] [CrossRef]
- Cavanie, A.; Gohin, F.; Quilfen, Y.; Lecomte, P. Identifification of sea ice zones using the AMI wind: Physical bases and applications to the FDP and CERSAT processing chains. In Proceedings of the 2nd ERS-1 Symposium, Hamburg, Germany, 11–14 October 1993; pp. 1009–1012. [Google Scholar]
- Breivik, L.A.; Eastwood, S.; Lavergne, T. Use of C-band scatterometer for sea ice edge identifification. IEEE Trans. Geosci. Remote Sens. 2012, 50, 2669–2677. [Google Scholar] [CrossRef]
- Aaboe, S.; Down, E.J.; Eastwood, S. Algorithm Theoretical Basis Document for the Global Sea-Ice Edge and Type Product; Norwegian Meteorological Institute: Blindern, Norway, 2021; Available online: https://osisaf-hl.met.no/sites/osisaf-hl/files/baseline_document/osisaf_cdop3_ss2_atbd_sea-ice-edge-type_v3p4.pdf (accessed on 10 March 2023).
- Haan, S.D.; Stoffelen, A. Ice Discrimination Using ERS Scatterometer, EUMETSAT, Darmstadt, Germany, Tech. Rep. SAF/OSI/KNMI/TEC/TN/120. Available online: http://www.knmi.nl/publications/ (accessed on 10 March 2023).
- Otosaka, I.; Rivas, M.B.; Stoffelen, A. Bayesian Sea Ice Detection with the ERS Scatterometer and Sea Ice Backscatter Model at C-Band. IEEE Trans. Geosci. Remote Sens. 2018, 56, 2248–2254. [Google Scholar] [CrossRef]
- Rivas, M.B.; Otosaka, I.; Stoffelen, A.; Verhoef, A. A scatterometer record of sea ice extents and backscatter: 1992–2016. Cryosphere 2018, 12, 2941–2953. [Google Scholar] [CrossRef] [Green Version]
- Rivas, M.B.; Stoffelen, A. New Bayesian algorithm for sea ice detection with QuikSCAT. IEEE Trans. Geosci. Remote Sens. 2011, 49, 1894–1901. [Google Scholar] [CrossRef]
- Ren, Y.; Li, X.; Yang, X.; Xu, H. Development of a dual-attention U-Net model for sea ice and open water classification on SAR images. IEEE Trans. Geosci. Remote Sens. Lett. 2021, 19, 1–5. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, W.; Hu, Y.; Chu, Q.; Liu, L. An Improved Sea Ice Classification Algorithm with Gaofen-3 Dual-Polarization SAR Data Based on Deep Convolutional Neural Networks. Remote Sens. 2022, 14, 906. [Google Scholar] [CrossRef]
- Zhai, X.; Wang, Z.; Zheng, Z.; Xu, R.; Dou, F.; Xu, N.; Zhang, X. Sea Ice Monitoring with CFOSAT Scatterometer Measurements Using Random Forest Classifier. Remote Sens. 2021, 13, 4686. [Google Scholar] [CrossRef]
- Lin, W.; Dong, X.; Portabella, M.; Lang, S.; He, Y.; Yun, R.; Wang, Z.; Xu, X.; Zhu, D.; Liu, J. A perspective on the performance of the cfosat rotating fan-beam scatterometer. IEEE Trans. Geosci. Remote Sens. 2019, 57, 627–639. [Google Scholar] [CrossRef] [Green Version]
- Meier, W.N.; Fetterer, F.; Windnagel, A.K.; Stewart, J.S. NOAA/NSIDC Climate Data Record of Passive Microwave Sea Ice Concentration, Version 4; NOAA/NSIDC: Boulder, CO, USA, 2021. [Google Scholar] [CrossRef]
- Dierking, W. Sea ice monitoring by synthetic aperture radar. Oceanography 2013, 26, 100–111. [Google Scholar] [CrossRef]
- Li, X.; Sun, Y.; Zhang, Q. Extraction of Sea Ice Cover by Sentinel-1 SAR Based on Support Vector Machine with Unsupervised Generation of Training Data. IEEE Trans. Geosci. Remote Sens. 2021, 59, 3040–3053. [Google Scholar] [CrossRef]
- Remund, Q.; Early, D.; Long, D. Azimuthal Modulation of Ku-Band Scatterometer Sigma-0 over the Antarctic; MERS: Provo, UT, USA, 3 July 1997. [Google Scholar]
- Early, D.S.; Long, D.G. Azimuthal modulation of C-band scatterometer σ0 over Southern Ocean sea ice. IEEE Trans. Geosci. Remote Sens. 1997, 35, 1201–1209. [Google Scholar] [CrossRef]
- Chapelle, O.; Haffner, P.; Vapnik, V.N. Support vector machines for histogram-based image classification. IEEE Trans. Neural Netw. 1999, 10, 1055–1064. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Guo, H.; Zhang, L. SVM-Based Sea Ice Classification Using Textural Features and Concentration From RADARSAT-2 Dual-Pol ScanSAR Data. IEEE J. Sel. Top. Appl. Earth. Obs. Remote Sens. 2015, 8, 1601–1613. [Google Scholar] [CrossRef]
- Russ, J.C. The Image Processing Handbook; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
Scatterometer | HSCAT | CSCAT | ASCAT |
---|---|---|---|
Frequency (GHz) | 13.4 (Ku-Band) | 13.256 (Ku-Band) | 5.3 (C-Band) |
Polarization | HH, VV | HH, VV | VV |
Incidence Angle (°) | 41.5, 48.5 | 28–51 | 25–65 |
Swath Width (km) | 1400, 1800 | 1000 | 500 × 2 (on each side) |
Spatial Resolution of (km) | 25 × 32 | 25 × 25 | 12.5 × 12.5 |
Scatterometers | Characteristic Parameters | ||||||
---|---|---|---|---|---|---|---|
HSCAT | √ | √ | √ | √ | √ | — | — |
CSCAT | √ | √ | √ | √ | √ | √ | √ |
ASCAT | — | √ | — | √ | — | √ |
Category | ID | Parameters from Scatterometer Data |
---|---|---|
1 | I | HSCAT: ,,, |
II | ASCAT: , | |
III | HSCAT + ASCAT | |
2 | IV | CSCAT: ,,,, |
V | ASCAT: ,, | |
VI | CSCAT + ASCAT + | |
3 | VII | HSCAT + ASCAT + CSCAT + |
Region | Classification (%) | Precision (%) | Recall (%) | F1 Score (%) | Overall Accuracy (%) |
---|---|---|---|---|---|
Arctic | Open water | 98.79 | 97.31 | 98.04 | 97.15 |
Ice | 91.89 | 95.77 | 93.76 | ||
Antarctic | Open water | 99.09 | 98.66 | 98.97 | 98.41 |
Ice | 93.21 | 96.69 | 94.82 |
Region | Comparisons | All | JFM | AMJ | JAS | OND | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
MAD | SD | MAD | SD | MAD | SD | MAD | SD | MAD | SD | ||
Arctic ×106 km2 | Compared to NSIDC SIC 15% | 0.121 | 0.119 | 0.122 | 0.085 | 0.109 | 0.115 | 0.128 | 0.108 | 0.126 | 0.097 |
Compared to NSIDC SIC 30% | 0.149 | 0.132 | 0.141 | 0.129 | 0.161 | 0.127 | 0.194 | 0.136 | 0.109 | 0.088 | |
Antarctic ×106 km2 | Compared to NSIDC SIC 15% | 0.166 | 0.146 | 0.159 | 0.126 | 0.153 | 0.066 | 0.217 | 0.096 | 0.133 | 0.176 |
Compared to NSIDC SIC 30% | 0.347 | 0.251 | 0.488 | 0.201 | 0.145 | 0.047 | 0.208 | 0.094 | 0.567 | 0.276 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, C.; Wang, Z.; Zhai, X.; Lin, W.; He, Y. SVM-Based Sea Ice Extent Retrieval Using Multisource Scatterometer Measurements. Remote Sens. 2023, 15, 1630. https://doi.org/10.3390/rs15061630
Xu C, Wang Z, Zhai X, Lin W, He Y. SVM-Based Sea Ice Extent Retrieval Using Multisource Scatterometer Measurements. Remote Sensing. 2023; 15(6):1630. https://doi.org/10.3390/rs15061630
Chicago/Turabian StyleXu, Changjing, Zhixiong Wang, Xiaochun Zhai, Wenming Lin, and Yijun He. 2023. "SVM-Based Sea Ice Extent Retrieval Using Multisource Scatterometer Measurements" Remote Sensing 15, no. 6: 1630. https://doi.org/10.3390/rs15061630
APA StyleXu, C., Wang, Z., Zhai, X., Lin, W., & He, Y. (2023). SVM-Based Sea Ice Extent Retrieval Using Multisource Scatterometer Measurements. Remote Sensing, 15(6), 1630. https://doi.org/10.3390/rs15061630