Aerosol Optical Properties and Types over Southern Africa and Reunion Island Determined from Ground-Based and Satellite Observations over a 13-Year Period (2008–2021)
<p>Geographical location of the eight sun photometer sites and of MODIS observations. The sites in South Africa (Pretoria, Skukuza, Simonstown, and Durban), Namibia (Gobabeb and Windpoort), and Botswana (Maun Tower) are identified by blue dots and white squares, and the Reunion site is shown with a red dot and a black square. Dots are for sun photometer and squares for MODIS observations.</p> "> Figure 2
<p>Diagram of aerosol classification at Skukuza (2008–2011 and 2016–2020) defined by using threshold values from Kumar et al. [<a href="#B19-remotesensing-15-01581" class="html-bibr">19</a>]. Each color is associated with an aerosol type: clean marine (CM, in blue), biomass burning/urban industrial (BB/UR, in purple), desert dust (DD, in orange), and mixed type (MX, in green). The frequencies of occurrence for each type account for the annual basis.</p> "> Figure 3
<p>Time series of AOD at 550 nm over the eight sun photometer sites. Solid lines (shaded area) show monthly average (±1 standard deviation) from the sun photometer in blue and from MODIS observations in green. Multiyear annual AOD values for both instruments are provided during the study period. The bottom right panel represents the location of sun photometer sites.</p> "> Figure 4
<p>Time series of AE at 440–870 nm over the eight sun photometer sites. Solid lines (shaded area) show monthly average (±1 standard deviation). Annual AE values are provided during the study period. The bottom right panel represents the location of sun photometer sites.</p> "> Figure 5
<p>Multiyear seasonal average (±1 standard deviation) of AOD at 550 nm (blue for sun photometer and green for MODIS observations) on the left vertical axis and AE at 440–870 nm (purple) on the right vertical axis over the eight sun photometer sites. The colored box diagrams for each season are December to February (DJF), March to May (MAM), June to August (JJA), and September to November (SON). The median is the central value (the line inside the boxes). The edges of the boxes are set at the 25th and 75th percentiles. The whiskers show the extreme values, excluding outliers, which are represented by shaded colored circles. Filled colored dots indicate average values.</p> "> Figure 6
<p>Scatter plot of AOD at 550 nm over the eight sun photometer sites. The total number of observations (N) for both instruments provided during the study period as well as the correlation coefficient (r), root mean square error (RMSE), mean bias error (MBE), and fitting curve (red lines). The black lines represent the 1:1 line. The bottom right panel represents the location of sun photometer sites.</p> "> Figure 7
<p>Aerosol classification from sun photometer data over the eight sun photometer sites. The multiyear seasonal and annual (referred to as “TOTAL”) relative occurrence frequency as a percentage. Each type is associated with one color: clean marine (CM) in blue, biomass burning/urban industrial (BB/UR) in purple, desert dust (DD) in orange, and mixed type (MX) in green.</p> "> Figure 8
<p>Vertical distribution of occurrence frequencies of aerosol types from CALIOP over the eight sun photometer sites. (<b>a</b>) Multiyear average annual values of all aerosol types: clean marine (dark-blue line); dust (yellow line); polluted continental/smoke (orange line); clean continental (green line); polluted dust (brown line); elevated smoke (black line); and dusty marine (sky-blue line). (<b>b</b>) Multiyear seasonal average values of elevated smoke: summer (DJF, dark-blue line), autumn (MAM, red line), winter (JJA, light-green line), and spring (SON, black line).</p> "> Figure 9
<p>Map of clustered back-trajectories as simulated by the HYSPLIT model between August 2008 and November 2021, with air masses ending between 2 and 6 km. The study sites are indicated by star symbols, and the superimposed numbers indicate the percentage of back-trajectories per cluster for each study site. In order to avoid overloading the figures, the clustered back-trajectories are split by site or by groups of sites: (<b>a</b>) Windpoort, Maun Tower, and Reunion; (<b>b</b>) Gobabeb and Simonstown; (<b>c1</b>–<b>c3</b>) Skukuza, Pretoria, and Durban, respectively.</p> "> Figure A1
<p>CALIOP grid retrieval 2.0° × 5.0°, encompassing the eight sun photometer sites.</p> "> Figure A2
<p>Number of clusters as a function of percent change in total spatial variation (TSV) over the eight sun photometer sites.</p> "> Figure A3
<p>Height level of each back-trajectory cluster over the eight sun photometer sites. Each color is associated with a location: orange for Atlantic Ocean (AO), blue for South America (SAM), green for South Africa (SA), purple for Pacific Ocean (PO), and red for recirculation and Indian Ocean (R/IO).</p> ">
Abstract
:1. Introduction
- Provide an overview and update on the spatiotemporal variability of aerosol optical properties and types across several selected sites in Southern Africa and Reunion.
- Discuss the vertical distribution of aerosol.
- Investigate the origin of air masses over the selected sites.
2. Location, Materials, and Method
2.1. Location
2.2. Ground-Based Observation from AERONET: Sun Photometer
2.3. Satellite Observations
2.3.1. MODIS Aerosol Data Set
2.3.2. CALIPSO Aerosol Profiles
2.4. HYSPLIT Back-Trajectories
2.5. Methodology
3. Results
3.1. Spatiotemporal Evolution of Aerosol Optical Properties and Aerosol Types
3.1.1. Monthly Evolution
3.1.2. Seasonal Evolution
3.1.3. Intercomparison
3.1.4. Aerosol Type
3.2. Vertical Distribution with CALIOP
- The northern regions (Windpoort, Maun Tower, and Reunion) present the same elevated smoke profiles around 3–4 km with occurrence frequencies at 32% on average (at Windpoort and Maun Tower, 26.7% and 39.2%, respectively). The Reunion site (found at the same latitude) presents lower values of occurrence frequencies, with a maximum of 8.8% at 2.7 km.
- The west coast (Gobabeb and Simonstown) has the highest altitude peak in occurrence frequency, at 4.5 km (13.6%), particularly at Gobabeb. We note that Simonstown presents very low values of occurrence frequencies, where the maximum is 1.1% at 3.9 km.
- The east coast (Skukuza and Pretoria (which are grouped in the same box) and Durban) has its maximum occurrence frequency (17.1%) at 3.3 km, while Durban remains low at 2.7 km (8.7%).
- At Maun Tower, vertical profiles do not begin at the surface such as with the other sites (Figure 8); this is probably due to considering an average of the topography. It is worth mentioning that the two peaks of elevated smoke could be attributed to being in proximity to a biomass burning region.
- Skukuza and Pretoria sites are both close to biomass burning sources, such as Maun Tower or Windpoort, but present lower occurrence frequency of elevated smoke. It should be noted that Pretoria is more urbanized and industrialized than Skukuza. Figure 8a shows that polluted continental occurrence frequencies are higher than those of elevated smoke.
3.3. Identification of Potential Origin of Air Masses
4. Conclusions
- The relationship between AOD and AE allows for the identification of aerosol types, with two types predominating on an annual basis and for the spring season. The BB/UR type is predominantly nearest to biomass burning areas (such as Maun Tower, Windpoort, Skukuza, and Pretoria), with frequencies from 40% to 60%. The MX type is predominant over the remaining sites (accounting for 50–60%).
- Using the vertical distribution of aerosol types from CALIOP, this study highlighted that the vertical profiles of elevated smoke range from 2 to 6 km. Moreover, they behave differently depending on the seasons, with the highest altitude peak during spring (3–4 km) compared with other seasons (2–3 km). Similar to the results obtained with the sun photometer aerosol classification, an increase is found to be associated with sites closer to biomass burning areas.
- Analysis of back-trajectories during the biomass burning season shows that there is intercontinental transport, with air masses coming from South America and the Atlantic Ocean. Moreover, regional transport with air masses coming from South Africa and local recirculation of air masses around the sites was also observed. The height transportation levels vary along each cluster within the altitude range from 1 to 8 km, with the latter representing the highest altitude reached above the Atlantic Ocean.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Grid Retrieval of CALIOP Observations
Appendix A.2. Aerosol Optical Properties: Comparison with Previous Work
Site | Study Period | Instrument 1 | AOD (nm) 2 | AE (nm) 2 | Citation |
---|---|---|---|---|---|
Skukuza | 1995–2007 | sun photometer | 0.21 (500) | 1.41 (440–870) | Queface et al. [78] |
1991–2011 | sun photometer | 0.18 (550) | 1.34 (440–870) | Horowitz et al. [36] | |
2005–2006 | sun photometer | 0.18 (500) | 1.47 (440–870) | Kumar et al. [18,19] | |
1999–2010 | sun photometer | 0.25 (440) | 1.40 (440–870) | Adesina et al. [26] | |
2008–2020 | sun photometer | 0.19 (550) | 1.29 (440–870) | present study | |
2004–2013 | MODIS-T | 0.11 (550) | 1.31 (470–660) | Adesina et al. [24] | |
2004–2013 | MODIS-T&A | 0.12–0.13 (550) | - | Adesina et al. [25] | |
2008–2020 | MODIS-T | 0.15 (550) | - | present study | |
Pretoria | 2011–2015 | sun photometer | 0.23 (440) | 1.50 (440–870) | Kumar et al. [22] |
2011–2017 | sun photometer | 0.24 (440) | 1.45 (440–870) | Kumar et al. [23] | |
2011–2018 | sun photometer | 0.17 (550) | 1.52 (440–870) | present study | |
2003–2013 | MODIS-T&A | 0.11 (550) | 0.95 (470–660) | Kumar et al. [20] | |
2004–2013 | MODIS-T | 0.11 (550) | 0.94 (470–660) | Adesina et al. [24] | |
2011–2018 | MODIS-T | 0.12 (550) | - | present study | |
Durban | 2003–2013 | MODIS-T&A | 0.168–0.172(550) | 1.38–1.43 (470–660) | Kumar et al. [21] |
2004–2013 | MODIS-T | 0.13 (550) | 1.29 (470–660) | Adesina et al. [24] | |
2015–2021 | MODIS-T | 0.12 (550) | - | present study | |
2015–2021 | sun photometer | 0.17 (550) | 1.18 (440–870) | present study | |
Cape Town | 2003–2013 | MODIS-T&A | 0.08 (550) | 1.18 (470–660) | Kumar et al. [20] |
2004–2013 | MODIS-T | 0.08 (550) | 1.18 (470–660) | Adesina et al. [24] | |
Simonstown | 2015–2021 | MODIS-T | 0.12 (550) | - | present study |
2015–2019 | sun photometer | 0.075 (500) | 0.63 (440–870) | Yakubu et al. [27] | |
2015–2021 | sun photometer | 0.07 (550) | 0.70 (440–870) | present study | |
Gobabeb | 2014–2015 | sun photometer | 0.13 (500) | 1.07 (440–870) | Adesina et al. [79] |
2014–2020 | sun photometer | 0.10 (550) | 1.09 (440–870) | present study | |
2014–2020 | MODIS-T | 0.14 (550) | - | present study | |
Reunion | 2007–2012 | sun photometer | 0.064 (550) | 0.70 (440–870) | Horowitz et al. [36] |
2007–2019 | sun photometer | 0.08 (440) | 0.71 (500–870) | Duflot et al. [35] | |
2008–2021 | sun photometer | 0.07 (550) | 0.74 (440–870) | present study | |
2008–2021 | MODIS-T | 0.12 (550) | - | present study |
Appendix A.3. HYSPLIT Back-Trajectories: Identification of Origin of Air Masses
References
- de Oliveira Alves, N.; Vessoni, A.T.; Quinet, A.; Fortunato, R.S.; Kajitani, G.S.; Peixoto, M.S.; Hacon, S.D.S.; Artaxo, P.; Saldiva, P.; Menck, C.F.M.; et al. Biomass burning in the Amazon region causes DNA damage and cell death in human lung cells. Sci. Rep. 2017, 7, 1–13. [Google Scholar] [CrossRef]
- Edwards, D.P.; Emmons, L.K.; Gille, J.C.; Chu, A.; Attié, J.L.; Giglio, L.; Wood, S.W.; Haywood, J.; Deeter, M.N.; Massie, S.T.; et al. Satellite-observed pollution from Southern Hemisphere biomass burning. J. Geophys. Res. Atmos. 2006, 111, D14312. [Google Scholar] [CrossRef]
- Randerson, J.T.; Chen, Y.; van der Werf, G.R.; Rogers, B.M.; Morton, D.C. Global burned area and biomass burning emissions from small fires. J. Geophys. Res. Biogeosci. 2012, 117, G04012. [Google Scholar] [CrossRef] [Green Version]
- van der Werf, G.R.; Randerson, J.T.; Giglio, L.; van Leeuwen, T.T.; Chen, Y.; Rogers, B.M.; Mu, M.; van Marle, M.J.E.; Morton, D.C.; Collatz, G.J.; et al. Global fire emissions estimates during 1997–2016. Earth Syst. Sci. Data 2017, 9, 697–720. [Google Scholar] [CrossRef] [Green Version]
- Giglio, L.; Randerson, J.T.; van der Werf, G.R. Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emissions database (GFED4). J. Geophys. Res. Biogeosc. 2013, 118, 317–328. [Google Scholar] [CrossRef] [Green Version]
- Kganyago, M.; Shikwambana, L. Assessing Spatio-Temporal Variability of Wildfires and their Impact on Sub-Saharan Ecosystems and Air Quality Using Multisource Remotely Sensed Data and Trend Analysis. Sustainability 2019, 11, 6811. [Google Scholar] [CrossRef] [Green Version]
- Garstang, M.; Tyson, P.D.; Swap, R.; Edwards, M.; Kållberg, P.; Lindesay, J.A. Horizontal and vertical transport of air over southern Africa. J. Geophys. Res. Atmos. 1996, 101, 23721–23736. [Google Scholar] [CrossRef]
- Lindesay, J.A.; Andreae, M.O.; Goldammer, J.G.; Harris, G.; Annegarn, H.J.; Garstang, M.; Scholes, R.J.; van Wilgen, B.W. International geosphere-biosphere programme/international global atmospheric chemistry SAFARI-92 field experiment: Background and overview. J. Geophys. Res. Atmos. 1996, 101, 23521–23530. [Google Scholar] [CrossRef]
- Swap, R.; Privette, J. Overview of the Southern African Regional Science Initiative-SAFARI 2000. In Proceedings of the IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS’99 (Cat. No.99CH36293), Hamburg, Germany, 28 June–2 July 1999; Volume 1, pp. 595–597. [Google Scholar] [CrossRef]
- Pak, B.C.; Langenfelds, R.L.; Young, S.A.; Francey, R.J.; Meyer, C.P.; Kivlighon, L.M.; Cooper, L.N.; Dunse, B.L.; Allison, C.E.; Steele, L.P.; et al. Measurements of biomass burning influences in the troposphere over southeast Australia during the SAFARI 2000 dry season campaign. J. Geophys. Res. Atmos. 2003, 108, D138480. [Google Scholar] [CrossRef]
- Formenti, P.; D’Anna, B.; Flamant, C.; Mallet, M.; Piketh, S.J.; Schepanski, K.; Waquet, F.; Auriol, F.; Brogniez, G.; Burnet, F.; et al. The Aerosols, Radiation and Clouds in Southern Africa Field Campaign in Namibia: Overview, Illustrative Observations, and Way Forward. Bull. Am. Meteorol. Soc. 2019, 100, 1277–1298. [Google Scholar] [CrossRef]
- Andersen, H.; Cermak, J. First fully diurnal fog and low cloud satellite detection reveals life cycle in the Namib. Atmos. Meas. Tech. 2018, 11, 5461–5470. [Google Scholar] [CrossRef] [Green Version]
- Redemann, J.; Wood, R.; Zuidema, P.; Doherty, S.J.; Luna, B.; LeBlanc, S.E.; Diamond, M.S.; Shinozuka, Y.; Chang, I.Y.; Ueyama, R.; et al. An overview of the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) project: Aerosol–cloud–radiation interactions in the southeast Atlantic basin. Atmos. Chem. Phys. 2021, 21, 1507–1563. [Google Scholar] [CrossRef]
- Chang, I.; Gao, L.; Burton, S.P.; Chen, H.; Diamond, M.S.; Ferrare, R.A.; Flynn, C.J.; Kacenelenbogen, M.; LeBlanc, S.E.; Meyer, K.G.; et al. Spatiotemporal Heterogeneity of Aerosol and Cloud Properties Over the Southeast Atlantic: An Observational Analysis. Geophys. Res. Lett. 2021, 48, e2020GL091469. [Google Scholar] [CrossRef]
- Doherty, S.J.; Saide, P.E.; Zuidema, P.; Shinozuka, Y.; Ferrada, G.A.; Gordon, H.; Mallet, M.; Meyer, K.; Painemal, D.; Howell, S.G.; et al. Modeled and observed properties related to the direct aerosol radiative effect of biomass burning aerosol over the southeastern Atlantic. Atmos. Chem. Phys. 2022, 22, 1–46. [Google Scholar] [CrossRef]
- Schmid, B.; Redemann, J.; Russell, P.B.; Hobbs, P.V.; Hlavka, D.L.; McGill, M.J.; Holben, B.N.; Welton, E.J.; Campbell, J.R.; Torres, O.; et al. Coordinated airborne, spaceborne, and ground-based measurements of massive thick aerosol layers during the dry season in southern Africa. J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef] [Green Version]
- Flamant, C.; Gaetani, M.; Chaboureau, J.P.; Chazette, P.; Cuesta, J.; Piketh, S.J.; Formenti, P. Smoke in the river: An Aerosols, Radiation and Clouds in southern Africa (AEROCLO-sA) case study. Atmos. Chem. Phys. 2022, 22, 5701–5724. [Google Scholar] [CrossRef]
- Kumar, K.R.; Sivakumar, V.; Reddy, R.; Gopal, K.R.; Adesina, A.J. Inferring wavelength dependence of AOD and Ångström exponent over a sub-tropical station in South Africa using AERONET data: Influence of meteorology, long-range transport and curvature effect. Sci. Total Environ. 2013, 461–462, 397–408. [Google Scholar] [CrossRef]
- Kumar, K.R.; Sivakumar, V.; Reddy, R.R.; Gopal, K.R.; Adesina, A.J. Identification and Classification of Different Aerosol Types over a Subtropical Rural Site in Mpumalanga, South Africa: Seasonal Variations as Retrieved from the AERONET Sunphotometer. Aerosol Air Qual. Res. 2014, 14, 108–123. [Google Scholar] [CrossRef] [Green Version]
- Kumar, K.R.; Sivakumar, V.; Yin, Y.; Reddy, R.; Kang, N.; Diao, Y.; Adesina, A.J.; Yu, X. Long-term (2003–2013) climatological trends and variations in aerosol optical parameters retrieved from MODIS over three stations in South Africa. Atmos. Environ. 2014, 95, 400–408. [Google Scholar] [CrossRef]
- Kumar, K.R.; Yin, Y.; Sivakumar, V.; Kang, N.; Yu, X.; Diao, Y.; Adesina, A.J.; Reddy, R. Aerosol climatology and discrimination of aerosol types retrieved from MODIS, MISR and OMI over Durban (29.88°S, 31.02°E), South Africa. Atmos. Environ. 2015, 117, 9–18. [Google Scholar] [CrossRef]
- Kumar, K.R.; Kang, N.; Sivakumar, V.; Griffith, D. Temporal characteristics of columnar aerosol optical properties and radiative forcing (2011–2015) measured at AERONET’s Pretoria_CSIR_DPSS site in South Africa. Atmos. Environ. 2017, 165, 274–289. [Google Scholar] [CrossRef] [Green Version]
- Kumar, K.R.; Boiyo, R.; Khan, R.; Kang, N.; Yu, X.; Sivakumar, V.; Griffith, D.; Devi, N.L. Multi-year analysis of aerosol optical properties and implications to radiative forcing over urban Pretoria, South Africa. Theor. Appl. Climatol. 2020, 141, 343–357. [Google Scholar] [CrossRef]
- Adesina, A.J.; Kumar, K.R.; Sivakumar, V. Aerosol-Cloud-Precipitation Interactions over Major Cities in South Africa: Impact on Regional Environment and Climate Change. Aerosol Air Qual. Res. 2016, 16, 195–211. [Google Scholar] [CrossRef] [Green Version]
- Adesina, A.J.; Kumar, K.R.; Sivakumar, V.; Piketh, S.J. Intercomparison and assessment of long-term (2004–2013) multiple satellite aerosol products over two contrasting sites in South Africa. J. Atmos. Sol.-Terr. Phys. 2016, 148, 82–95. [Google Scholar] [CrossRef]
- Adesina, A.J.; Piketh, S.; Kanike, R.K.; Venkataraman, S. Characteristics of columnar aerosol optical and microphysical properties retrieved from the sun photometer and its impact on radiative forcing over Skukuza (South Africa) during 1999–2010. Environ. Sci. Pollut. Res. 2017, 24, 16160–16171. [Google Scholar] [CrossRef]
- Yakubu, A.T.; Chetty, N. Optical properties of atmospheric aerosol over Cape Town, Western Cape of South Africa: Role of biomass burning. Atmósfera 2021, 34, 395–416. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Haywood, J.M.; Hobbs, P.V.; Hart, W.; Kleidman, R.; Schmid, B. Remote sensing of vertical distributions of smoke aerosol off the coast of Africa. Geophys. Res. Lett. 2003, 30, 161831. [Google Scholar] [CrossRef] [Green Version]
- Swap, R.; Tyson, P. Stable discontinuities as determinants of the vertical distribution of aerosols and trace gases in the atmosphere. South Afr. J. Sci. 1999, 95, 63–71. [Google Scholar]
- Chazette, P.; Flamant, C.; Totems, J.; Gaetani, M.; Smith, G.; Baron, A.; Landsheere, X.; Desboeufs, K.; Doussin, J.F.; Formenti, P. Evidence of the complexity of aerosol transport in the lower troposphere on the Namibian coast during AEROCLO-sA. Atmos. Chem. Phys. 2019, 19, 14979–15005. [Google Scholar] [CrossRef] [Green Version]
- Clain, G.; Baray, J.L.; Delmas, R.; Diab, R.; Leclair de Bellevue, J.; Keckhut, P.; Posny, F.; Metzger, J.M.; Cammas, J.P. Tropospheric ozone climatology at two Southern Hemisphere tropical/subtropical sites, (Reunion Island and Irene, South Africa) from ozonesondes, LIDAR, and in situ aircraft measurements. Atmos. Chem. Phys. 2009, 9, 1723–1734. [Google Scholar] [CrossRef] [Green Version]
- Duflot, V.; Royer, P.; Chazette, P.; Baray, J.L.; Courcoux, Y.; Delmas, R. Marine and biomass burning aerosols in the southern Indian Ocean: Retrieval of aerosol optical properties from shipborne lidar and Sun photometer measurements. J. Geophys. Res. Atmos. 2011, 116, D18208. [Google Scholar] [CrossRef] [Green Version]
- Duflot, V.; Baray, J.L.; Payen, G.; Marquestaut, N.; Posny, F.; Metzger, J.M.; Langerock, B.; Vigouroux, C.; Hadji-Lazaro, J.; Portafaix, T.; et al. Tropospheric ozone profiles by DIAL at Maïdo Observatory (Reunion Island): System description, instrumental performance and result comparison with ozone external data set. Atmos. Meas. Tech. 2017, 10, 3359–3373. [Google Scholar] [CrossRef] [Green Version]
- Verreyken, B.; Amelynck, C.; Brioude, J.; Müller, J.F.; Schoon, N.; Kumps, N.; Colomb, A.; Metzger, J.M.; Lee, C.F.; Koenig, T.K.; et al. Characterisation of African biomass burning plumes and impacts on the atmospheric composition over the south-west Indian Ocean. Atmos. Chem. Phys. 2020, 20, 14821–14845. [Google Scholar] [CrossRef]
- Duflot, V.; Bègue, N.; Pouliquen, M.L.; Goloub, P.; Metzger, J.M. Aerosols on the Tropical Island of La Réunion (21°S, 55°E): Assessment of Climatology, Origin of Variability and Trend. Remote Sens. 2022, 14, 4945. [Google Scholar] [CrossRef]
- Horowitz, H.M.; Garland, R.M.; Thatcher, M.; Landman, W.A.; Dedekind, Z.; van der Merwe, J.; Engelbrecht, F.A. Evaluation of climate model aerosol seasonal and spatial variability over Africa using AERONET. Atmos. Chem. Phys. 2017, 17, 13999–14023. [Google Scholar] [CrossRef] [Green Version]
- Kaskaoutis, D.G.; Badarinath, K.V.S.; Kumar Kharol, S.; Rani Sharma, A.; Kambezidis, H.D. Variations in the aerosol optical properties and types over the tropical urban site of Hyderabad, India. J. Geophys. Res. Atmos. 2009, 114, D22204. [Google Scholar] [CrossRef]
- Patel, P.N.; Dumka, U.; Kaskaoutis, D.; Babu, K.; Mathur, A.K. Optical and radiative properties of aerosols over Desalpar, a remote site in western India: Source identification, modification processes and aerosol type discrimination. Sci. Total Environ. 2017, 575, 612–627. [Google Scholar] [CrossRef] [Green Version]
- Piketh, S.J.; Annegarn, H.J.; Tyson, P.D. Lower tropospheric aerosol loadings over South Africa: The relative contribution of aeolian dust, industrial emissions, and biomass burning. J. Geophys. Res. Atmos. 1999, 104, 1597–1607. [Google Scholar] [CrossRef]
- Swap, R.J.; Annegarn, H.J.; Suttles, J.T.; King, M.D.; Platnick, S.; Privette, J.L.; Scholes, R.J. Africa burning: A thematic analysis of the Southern African Regional Science Initiative (SAFARI 2000). J. Geophys. Res. Atmos. 2003, 108, D138465. [Google Scholar] [CrossRef]
- Ginoux, P.; Prospero, J.M.; Gill, T.E.; Hsu, N.C.; Zhao, M. Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products. Rev. Geophys. 2012, 50, RG3005. [Google Scholar] [CrossRef]
- Johansson, L.; Jalkanen, J.P.; Kukkonen, J. Global assessment of shipping emissions in 2015 on a high spatial and temporal resolution. Atmos. Environ. 2017, 167, 403–415. [Google Scholar] [CrossRef]
- Cahoon, D.R., Jr.; Stocks, B.J.; Levine, J.S.; Cofer III, W.R.; O’Neill, K.P. Seasonal distribution of African savanna fires. Nature 1992, 359, 812–815. [Google Scholar] [CrossRef]
- van der Werf, G.R.; Randerson, J.T.; Giglio, L.; Collatz, G.J.; Mu, M.; Kasibhatla, P.S.; Morton, D.C.; DeFries, R.S.; Jin, Y.; van Leeuwen, T.T. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos. Chem. Phys. 2010, 10, 11707–11735. [Google Scholar] [CrossRef] [Green Version]
- Adesina, J.A.; Piketh, S.J. Seasonal Variation of Major Aerosol Types over Skukuza as Inferred from Sunphotometer Measurements; National Association for Clean Air: Nelspruit, South Africa, 2016; ISBN 978-0-620-70646-9. [Google Scholar]
- Eck, T.F.; Holben, B.; Reid, J.; Dubovik, O.; Smirnov, A.; O’neill, N.; Slutsker, I.; Kinne, S. Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols. J. Geophys. Res. Atmos. 1999, 104, 31333–31349. [Google Scholar] [CrossRef]
- Dubovik, O.; Sinyuk, A.; Lapyonok, T.; Holben, B.N.; Mishchenko, M.; Yang, P.; Eck, T.F.; Volten, H.; Muñoz, O.; Veihelmann, B.; et al. Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust. J. Geophys. Res. Atmos. 2006, 111, D11208. [Google Scholar] [CrossRef] [Green Version]
- Ångström, A. The parameters of atmospheric turbidity. Tellus 1964, 16, 64–75. [Google Scholar] [CrossRef] [Green Version]
- Schuster, G.L.; Dubovik, O.; Holben, B.N. Angstrom exponent and bimodal aerosol size distributions. J. Geophys. Res. Atmos. 2006, 111, D07207. [Google Scholar] [CrossRef] [Green Version]
- Hunt, W.H.; Winker, D.M.; Vaughan, M.A.; Powell, K.A.; Lucker, P.L.; Weimer, C. CALIPSO Lidar Description and Performance Assessment. J. Atmos. Ocean. Technol. 2009, 26, 1214–1228. [Google Scholar] [CrossRef]
- Gui, K.; Che, H.; Zheng, Y.; Zhao, H.; Yao, W.; Li, L.; Zhang, L.; Wang, H.; Wang, Y.; Zhang, X. Three-dimensional climatology, trends, and meteorological drivers of global and regional tropospheric type-dependent aerosols: Insights from 13 years (2007–2019) of CALIOP observations. Atmos. Chem. Phys. 2021, 21, 15309–15336. [Google Scholar] [CrossRef]
- Draxler, R.R.; Hess, G. An overview of the HYSPLIT_4 modelling system for trajectories. Aust. Meteorol. Mag. 1998, 47, 295–308. [Google Scholar]
- Hernández-Ceballos, M.; Adame, J.; Bolívar, J.; De la Morena, B. Vertical behaviour and meteorological properties of air masses in the southwest of the Iberian Peninsula (1997–2007). Meteorol. Atmos. Phys. 2013, 119, 163–175. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, X.; Draxler, R.R. TrajStat: GIS-based software that uses various trajectory statistical analysis methods to identify potential sources from long-term air pollution measurement data. Environ. Model. Softw. 2009, 24, 938–939. [Google Scholar] [CrossRef]
- Millet, T.; Bencherif, H.; Bounhir, A.; Bègue, N.; Lamy, K.; Ranaivombola, M.; Benkhaldoun, Z.; Portafaix, T.; Duflot, V. Aerosol Distributions and Transport over Southern Morocco from Ground-Based and Satellite Observations (2004-2020). Atmosphere 2022, 13, 923. [Google Scholar] [CrossRef]
- Yang, X.; Zhao, C.; Yang, Y.; Fan, H. Long-term multi-source data analysis about the characteristics of aerosol optical properties and types over Australia. Atmos. Chem. Phys. 2021, 21, 3803–3825. [Google Scholar] [CrossRef]
- Bergstrom, R.W.; Pilewskie, P.; Russell, P.B.; Redemann, J.; Bond, T.C.; Quinn, P.K.; Sierau, B. Spectral absorption properties of atmospheric aerosols. Atmos. Chem. Phys. 2007, 7, 5937–5943. [Google Scholar] [CrossRef] [Green Version]
- Russell, P.B.; Bergstrom, R.W.; Shinozuka, Y.; Clarke, A.D.; DeCarlo, P.F.; Jimenez, J.L.; Livingston, J.M.; Redemann, J.; Dubovik, O.; Strawa, A. Absorption Angstrom Exponent in AERONET and related data as an indicator of aerosol composition. Atmos. Chem. Phys. 2010, 10, 1155–1169. [Google Scholar] [CrossRef] [Green Version]
- Giles, D.M.; Holben, B.N.; Eck, T.F.; Sinyuk, A.; Smirnov, A.; Slutsker, I.; Dickerson, R.R.; Thompson, A.M.; Schafer, J.S. An analysis of AERONET aerosol absorption properties and classifications representative of aerosol source regions. J. Geophys. Res. Atmos. 2012, 117, D17203. [Google Scholar] [CrossRef] [Green Version]
- Pace, G.; di Sarra, A.; Meloni, D.; Piacentino, S.; Chamard, P. Aerosol optical properties at Lampedusa (Central Mediterranean). 1. Influence of transport and identification of different aerosol types. Atmos. Chem. Phys. 2006, 6, 697–713. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.H.; Omar, A.H.; Tackett, J.L.; Vaughan, M.A.; Winker, D.M.; Trepte, C.R.; Hu, Y.; Liu, Z.; Poole, L.R.; Pitts, M.C.; et al. The CALIPSO version 4 automated aerosol classification and lidar ratio selection algorithm. Atmos. Meas. Tech. 2018, 11, 6107–6135. [Google Scholar] [CrossRef] [Green Version]
- Alam, K.; Qureshi, S.; Blaschke, T. Monitoring spatio-temporal aerosol patterns over Pakistan based on MODIS, TOMS and MISR satellite data and a HYSPLIT model. Atmos. Environ. 2011, 45, 4641–4651. [Google Scholar] [CrossRef]
- Bègue, N.; Shikwambana, L.; Bencherif, H.; Pallotta, J.; Sivakumar, V.; Wolfram, E.; Mbatha, N.; Orte, F.; Du Preez, D.J.; Ranaivombola, M.; et al. Statistical analysis of the long-range transport of the 2015 Calbuco volcanic plume from ground-based and space-borne observations. Ann. Geophys. 2020, 38, 395–420. [Google Scholar] [CrossRef] [Green Version]
- Vaz Peres, L.; Bencherif, H.; Mbatha, N.; Passaglia Schuch, A.; Toihir, A.M.; Bègue, N.; Portafaix, T.; Anabor, V.; Kirsch Pinheiro, D.; Paes Leme, N.M.; et al. Measurements of the total ozone column using a Brewer spectrophotometer and TOMS and OMI satellite instruments over the Southern Space Observatory in Brazil. Ann. Geophys. 2017, 35, 25–37. [Google Scholar] [CrossRef] [Green Version]
- Jury, M.R.; Buthelezi, M.S. Air Pollution Dispersion over Durban, South Africa. Atmosphere 2022, 13, 811. [Google Scholar] [CrossRef]
- Tripathi, S.N.; Dey, S.; Chandel, A.; Srivastava, S.; Singh, R.P.; Holben, B.N. Comparison of MODIS and AERONET derived aerosol optical depth over the Ganga Basin, India. Ann. Geophys. 2005, 23, 1093–1101. [Google Scholar] [CrossRef] [Green Version]
- Hoelzemann, J.J.; Longo, K.M.; Fonseca, R.M.; do Rosário, N.M.E.; Elbern, H.; Freitas, S.R.; Pires, C. Regional representativity of AERONET observation sites during the biomass burning season in South America determined by correlation studies with MODIS Aerosol Optical Depth. J. Geophys. Res. Atmos. 2009, 114, D13301. [Google Scholar] [CrossRef]
- Hao, W.M.; Ward, D.E.; Susott, R.A.; Babbitt, R.E.; Nordgren, B.L.; Kaufman, Y.J.; Holben, B.N.; Giles, D.M. Comparison of aerosol optical thickness measurements by MODIS, AERONET sun photometers, and Forest Service handheld sun photometers in southern Africa during the SAFARI 2000 campaign. Int. J. Remote Sens. 2005, 26, 4169–4183. [Google Scholar] [CrossRef]
- Chu, D.A.; Kaufman, Y.J.; Ichoku, C.; Remer, L.A.; Tanré, D.; Holben, B.N. Validation of MODIS aerosol optical depth retrieval over land. Geophys. Res. Lett. 2002, 29, MOD2-1–MOD2-4. [Google Scholar] [CrossRef] [Green Version]
- Bréon, F.M.; Vermeulen, A.; Descloitres, J. An evaluation of satellite aerosol products against sunphotometer measurements. Remote Sens. Environ. 2011, 115, 3102–3111. [Google Scholar] [CrossRef]
- Madry, W.L.; Toon, O.B.; O’Dowd, C.D. Modeled optical thickness of sea-salt aerosol. J. Geophys. Res. Atmos. 2011, 116, D08211. [Google Scholar] [CrossRef] [Green Version]
- Thompson, A.M.; Pickering, K.E.; McNamara, D.P.; Schoeberl, M.R.; Hudson, R.D.; Kim, J.H.; Browell, E.V.; Kirchhoff, V.W.J.H.; Nganga, D. Where did tropospheric ozone over southern Africa and the tropical Atlantic come from in October 1992? Insights from TOMS, GTE TRACE A, and SAFARI 1992. J. Geophys. Res. Atmos. 1996, 101, 24251–24278. [Google Scholar] [CrossRef]
- Bencherif, H.; Bègue, N.; Kirsch Pinheiro, D.; Du Preez, D.J.; Cadet, J.M.; da Silva Lopes, F.J.; Shikwambana, L.; Landulfo, E.; Vescovini, T.; Labuschagne, C.; et al. Investigating the Long-Range Transport of Aerosol Plumes Following the Amazon Fires (August 2019): A Multi-Instrumental Approach from Ground-Based and Satellite Observations. Remote Sens. 2020, 12, 3846. [Google Scholar] [CrossRef]
- Mascaut, F.; Pujol, O.; Verreyken, B.; Peroni, R.; Metzger, J.M.; Blarel, L.; Podvin, T.; Goloub, P.; Sellegri, K.; Thornberry, T.; et al. Aerosol characterization in an oceanic context around Reunion Island (AEROMARINE field campaign). Atmos. Environ. 2022, 268, 118770. [Google Scholar] [CrossRef]
- Bègue, N.; Tulet, P.; Pelon, J.; Aouizerats, B.; Berger, A.; Schwarzenboeck, A. Aerosol processing and CCN formation of an intense Saharan dust plume during the EUCAARI 2008 campaign. Atmos. Chem. Phys. 2015, 15, 3497–3516. [Google Scholar] [CrossRef] [Green Version]
- Bègue, N.; Tulet, P.; Chaboureau, J.P.; Roberts, G.; Gomes, L.; Mallet, M. Long-range transport of Saharan dust over northwestern Europe during EUCAARI 2008 campaign: Evolution of dust optical properties by scavenging. J. Geophys. Res. 2012, 117, D17201. [Google Scholar] [CrossRef] [Green Version]
- Torres, O.; Tanskanen, A.; Veihelmann, B.; Ahn, C.; Braak, R.; Bhartia, P.K.; Veefkind, P.; Levelt, P. Aerosols and surface UV products from Ozone Monitoring Instrument observations: An overview. J. Geophys. Res. Atmos. 2007, 112, D24S47. [Google Scholar] [CrossRef] [Green Version]
- Queface, A.J.; Piketh, S.J.; Eck, T.F.; Tsay, S.C.; Mavume, A.F. Climatology of aerosol optical properties in Southern Africa. Atmos. Environ. 2011, 45, 2910–2921. [Google Scholar] [CrossRef]
- Adesina, J.A.; Piketh, S.J.; Formenti, P.; Maggs-Kölling, G.; Holben, B.N.; Sorokin, M.G. Aerosol optical properties and direct radiative effect over Gobabeb, Namibia. Clean Air J. 2019, 29, 1–11. [Google Scholar] [CrossRef]
Station | Location, Country | Coordinates | Altitude (m) | Time Span, Data Availability (%) | Site Typology |
---|---|---|---|---|---|
Reunion | Campus of Moufia, Reunion Island | 20.901°S, 55.485°E | 93 | 2008–2021, 100 | Marine |
Windpoort | Etosha Pan, Namibia | 19.366°S, 15.483°E | 1206 | 2016–2021, 46.1 | Rural |
Gobabeb | Namib Desert, Namibia | 23.562°S, 15.041°E | 405 | 2014–2020, 53.8 | Coastal, desert |
Maun Tower | Botswana | 19.900°S, 23.550°E | 951 | 2017–2021, 30.7 | Rural |
Pretoria | Gauteng, South Africa | 25.757°S, 28.280°E | 1449 | 2011–2018, 61.5 | Urban, industrial |
Skukuza | Mpumalanga, South Africa | 24.992°S, 31.587°E | 265 | 2008–2011 2016–2020, 69.2 | Rural |
Simonstown | Western Cape, South Africa | 34.193°S, 18.446°E | 27 | 2015–2021, 53.8 | Urban, coastal |
Durban | KwaZulu-Natal, South Africa | 29.817°S, 30.944°E | 205 | 2015–2021, 53.8 | Urban, coastal |
Aerosol Type | AOD | AE |
---|---|---|
clean marine (CM) | AOD < 0.06 | AE < 1.5 |
desert dust (DD) | AOD > 0.15 | AE < 0.5 |
mixed (MX) | - | - |
biomass burning and urban industrial (BB/UR) | AOD > 0.1 | AE > 1.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ranaivombola, M.; Bègue, N.; Bencherif, H.; Millet, T.; Sivakumar, V.; Duflot, V.; Baron, A.; Mbatha, N.; Piketh, S.; Formenti, P.; et al. Aerosol Optical Properties and Types over Southern Africa and Reunion Island Determined from Ground-Based and Satellite Observations over a 13-Year Period (2008–2021). Remote Sens. 2023, 15, 1581. https://doi.org/10.3390/rs15061581
Ranaivombola M, Bègue N, Bencherif H, Millet T, Sivakumar V, Duflot V, Baron A, Mbatha N, Piketh S, Formenti P, et al. Aerosol Optical Properties and Types over Southern Africa and Reunion Island Determined from Ground-Based and Satellite Observations over a 13-Year Period (2008–2021). Remote Sensing. 2023; 15(6):1581. https://doi.org/10.3390/rs15061581
Chicago/Turabian StyleRanaivombola, Marion, Nelson Bègue, Hassan Bencherif, Tristan Millet, Venkataraman Sivakumar, Valentin Duflot, Alexandre Baron, Nkanyiso Mbatha, Stuart Piketh, Paola Formenti, and et al. 2023. "Aerosol Optical Properties and Types over Southern Africa and Reunion Island Determined from Ground-Based and Satellite Observations over a 13-Year Period (2008–2021)" Remote Sensing 15, no. 6: 1581. https://doi.org/10.3390/rs15061581