Detection of Soil Erosion Hotspots in the Croplands of a Typical Black Soil Region in Northeast China: Insights from Sentinel-2 Multispectral Remote Sensing
<p>(<b>a</b>,<b>b</b>) Spatial distribution of the sampling points overlaid on the digital elevation model of the catchment in northeast China; (<b>c</b>,<b>d</b>) a Sentinel-2 true color image (13 May 2021) of the catchment showing the large percentage of exposed bare soils, and zoom-in areas depicting the selection of sampling points; (<b>e</b>,<b>f</b>) representative sampling locations along typical slope profiles with average length at ca. 300 m and their corresponding slope degrees. Different letters indicate significant differences among the three groups (<span class="html-italic">p</span> < 0.05).</p> "> Figure 2
<p>(<b>a</b>) Topographic position index (TPI), (<b>b</b>) estimated net soil erosion rates converted from <sup>137</sup>Cs inventory, (<b>c</b>) soil organic carbon (SOC) content and (<b>d</b>) C/N ratio at Summit, Mid-slope and Foot-slope positions. Different letters indicate significant differences among the three groups (<span class="html-italic">p</span> < 0.05).</p> "> Figure 3
<p>Classification of three slope positions based on linear discriminant analysis (LDA) of PC scores arising from laboratory-based VNIR spectra. Subsoil spectra of Summit positions were included to investigate any spectral similarity to the topsoil of Mid-slope positions. Histograms on the right show the distribution of the first LD function’s value for the four sample groups.</p> "> Figure 4
<p>Laboratory-based mean spectra of topsoil in three soil erosion intensity classes. (<b>a</b>) Raw spectra and (<b>b</b>) continuum-removed reflectance. Shaded areas represent standard deviations from the mean.</p> "> Figure 5
<p>Boxplots of laboratory spectral indices of topsoil used for spectral separation of erosion intensity classes. (<b>a</b>) Mean reflectance over the visible region (400–780 nm), (<b>b</b>) slope between 800 and 1350 nm, and (<b>c</b>) continuum-removed reflectance value at 670 nm. Different letters indicate significant differences among the three groups (<span class="html-italic">p</span> < 0.05).</p> "> Figure 6
<p>Classification of three erosion intensity classes based on linear discriminant analysis (LDA) of PC scores derived from Sentinel-2 bare soil spectra. Histograms on the right show the distribution of the first LD function’s value for the three classes.</p> "> Figure 7
<p>Sentinel-2-based mean spectra of three soil erosion intensity classes. (<b>a</b>) Raw spectra and (<b>b</b>) continuum-removed reflectance. Shaded areas represent standard deviations from the mean. Sentinel-2 band width and positions are indicated in the left figure.</p> "> Figure 8
<p>Boxplots of Sentinel-2 spectral indices used for spectral separation of erosion intensity classes. (<b>a</b>) Mean reflectance over the three visible bands (B2, B3, B4), (<b>b</b>) slope between B8 and B11, and (<b>c</b>) continuum-removed reflectance value at 670 nm. Different letters indicate significant differences among the three groups (<span class="html-italic">p</span> < 0.05).</p> "> Figure 9
<p>Soil erosion intensity map at 10 m resolution. The classification criteria were based on the results from <a href="#remotesensing-15-01402-f008" class="html-fig">Figure 8</a>.</p> "> Figure 10
<p>(<b>a</b>) Density plots of NDVI in June 2021 for the three erosion intensity classes within the cropland extent; (<b>b</b>,<b>c</b>) zoomed-in areas with detailed soil erosion pattern and (<b>d</b>,<b>e</b>) the corresponding field-scale NDVI maps to depict the relation of crop variability with erosion-induced variations in soil productivity.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Soil Sampling and Analysis
2.3. Laboratory and Sentinel-2-Based Soil Spectral Analysis
2.3.1. Laboratory Soil Spectra Acquisition and Analysis
2.3.2. Sentinel-2 Image Processing and Spectral Analysis
2.4. Soil Erosion Mapping and Validation
3. Results
3.1. Summary of Soil Analytical Results at Different Slope Positions
3.2. Laboratory-Based Spectral Discrimination of Soil Erosion Classes
3.2.1. PCA-LDA Classification
3.2.2. Detection of Spectral Features in Support of Erosion Classification
3.3. Sentinel-2-Based Soil Erosion Classification and Mapping
3.3.1. Bare Soil Spectral Classification
3.3.2. Soil Erosion Mapping and Evaluation
4. Discussion
4.1. Erosion Characteristics at the Sampled Slope Positions
4.2. Soil Erosion Mapping Driven by Sentinel-2 Imagery
4.3. The Way Forward
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Prăvălie, R.; Patriche, C.; Borrelli, P.; Panagos, P.; Roșca, B.; Dumitraşcu, M.; Nita, I.-A.; Săvulescu, I.; Birsan, M.-V.; Bandoc, G. Arable lands under the pressure of multiple land degradation processes. A global perspective. Environ. Res. 2021, 194, 110697. [Google Scholar] [CrossRef] [PubMed]
- Le, Q.B.; Nkonya, E.; Mirzabaev, A. Biomass Productivity-Based Mapping of Global Land Degradation Hotspots. In Economics of Land Degradation and Improvement—A Global Assessment for Sustainable Development; Nkonya, E., Mirzabaev, A., von Braun, J., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 55–84. [Google Scholar]
- Bakker, M.M.; Govers, G.; Rounsevell, M.D.A. The crop productivity–erosion relationship: An analysis based on experimental work. Catena 2004, 57, 55–76. [Google Scholar] [CrossRef]
- Amelung, W.; Bossio, D.; de Vries, W.; Kögel-Knabner, I.; Lehmann, J.; Amundson, R.; Bol, R.; Collins, C.; Lal, R.; Leifeld, J.; et al. Towards a global-scale soil climate mitigation strategy. Nat. Commun. 2020, 11, 5427. [Google Scholar] [CrossRef] [PubMed]
- Lal, R. Soil carbon sequestration to mitigate climate change. Geoderma 2004, 123, 1–22. [Google Scholar] [CrossRef]
- Cowie, A.L.; Orr, B.J.; Castillo Sanchez, V.M.; Chasek, P.; Crossman, N.D.; Erlewein, A.; Louwagie, G.; Maron, M.; Metternicht, G.I.; Minelli, S.; et al. Land in balance: The scientific conceptual framework for Land Degradation Neutrality. Environ. Sci. Policy 2018, 79, 25–35. [Google Scholar] [CrossRef]
- Liu, B.; Xie, Y.; Li, Z.; Liang, Y.; Zhang, W.; Fu, S.; Yin, S.; Wei, X.; Zhang, K.; Wang, Z.; et al. The assessment of soil loss by water erosion in China. Int. Soil Water Conserv. Res. 2020, 8, 430–439. [Google Scholar] [CrossRef]
- Borrelli, P.; Robinson, D.A.; Panagos, P.; Lugato, E.; Yang, J.E.; Alewell, C.; Wuepper, D.; Montanarella, L.; Ballabio, C. Land use and climate change impacts on global soil erosion by water (2015–2070). Proc. Natl. Acad. Sci. USA 2020, 117, 21994–22001. [Google Scholar] [CrossRef]
- Borrelli, P.; Alewell, C.; Alvarez, P.; Anache, J.A.A.; Baartman, J.; Ballabio, C.; Bezak, N.; Biddoccu, M.; Cerdà, A.; Chalise, D.; et al. Soil erosion modelling: A global review and statistical analysis. Sci. Total Environ. 2021, 780, 146494. [Google Scholar] [CrossRef]
- Alewell, C.; Borrelli, P.; Meusburger, K.; Panagos, P. Using the USLE: Chances, challenges and limitations of soil erosion modelling. Int. Soil Water Conserv. Res. 2019, 7, 203–225. [Google Scholar] [CrossRef]
- Van Oost, K.; Govers, G.; de Alba, S.; Quine, T.A. Tillage erosion: A review of controlling factors and implications for soil quality. Prog. Phys. Geog. 2006, 30, 443–466. [Google Scholar] [CrossRef] [Green Version]
- Van Oost, K.; Govers, G.; Desmet, P. Evaluating the effects of changes in landscape structure on soil erosion by water and tillage. Landsc. Ecol. 2000, 15, 577–589. [Google Scholar] [CrossRef]
- Morgan, R.P.C.; Quinton, J.N.; Smith, R.E.; Govers, G.; Poesen, J.W.A.; Auerswald, K.; Chisci, G.; Torri, D.; Styczen, M.E. The European Soil Erosion Model (EUROSEM): A dynamic approach for predicting sediment transport from fields and small catchments. Earth Surf. Process. Landf. 1998, 23, 527–544. [Google Scholar] [CrossRef]
- Jetten, V.; Govers, G.; Hessel, R. Erosion models: Quality of spatial predictions. Hydrol. Process. 2003, 17, 887–900. [Google Scholar] [CrossRef]
- de Vente, J.; Poesen, J.; Verstraeten, G.; Govers, G.; Vanmaercke, M.; Van Rompaey, A.; Arabkhedri, M.; Boix-Fayos, C. Predicting soil erosion and sediment yield at regional scales: Where do we stand? Earth-Sci. Rev. 2013, 127, 16–29. [Google Scholar] [CrossRef]
- Mabit, L.; Benmansour, M.; Walling, D.E. Comparative advantages and limitations of the fallout radionuclides 137Cs, 210Pbex and 7Be for assessing soil erosion and sedimentation. J. Environ. Radioact. 2008, 99, 1799–1807. [Google Scholar] [CrossRef]
- Zhang, X.C.; Zhang, G.H.; Wei, X. How to make 137Cs erosion estimation more useful: An uncertainty perspective. Geoderma 2015, 239, 186–194. [Google Scholar] [CrossRef]
- Walling, D.E.; Quine, T.A. Use of 137cs Measurements to Investigate Soil-Erosion on Arable Fields in the Uk—Potential Applications and Limitations. J. Soil. Sci. 1991, 42, 147–165. [Google Scholar] [CrossRef]
- Vågen, T.-G.; Winowiecki, L.A. Predicting the Spatial Distribution and Severity of Soil Erosion in the Global Tropics using Satellite Remote Sensing. Remote Sens. 2019, 11, 1800. [Google Scholar] [CrossRef] [Green Version]
- Tziolas, N.; Tsakiridis, N.; Chabrillat, S.; Demattê, J.A.M.; Ben-Dor, E.; Gholizadeh, A.; Zalidis, G.; van Wesemael, B. Earth Observation Data-Driven Cropland Soil Monitoring: A Review. Remote Sens. 2021, 13, 4439. [Google Scholar] [CrossRef]
- Chabrillat, S.; Ben-Dor, E.; Cierniewski, J.; Gomez, C.; Schmid, T.; van Wesemael, B. Imaging Spectroscopy for Soil Mapping and Monitoring. Surv. Geophys. 2019, 40, 361–399. [Google Scholar] [CrossRef] [Green Version]
- Žížala, D.; Zádorová, T.; Kapička, J. Assessment of Soil Degradation by Erosion Based on Analysis of Soil Properties Using Aerial Hyperspectral Images and Ancillary Data, Czech Republic. Remote Sens. 2017, 9, 28. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.; Zhou, S.-L.; Wu, S.-H.; Zhu, Q.; Dang, Q. Spectral response of different eroded soils in subtropical china: A case study in Changting County, China. J. Mt. Sci. 2014, 11, 697–707. [Google Scholar] [CrossRef]
- Conforti, M.; Buttafuoco, G.; Leone, A.P.; Aucelli, P.P.C.; Robustelli, G.; Scarciglia, F. Studying the relationship between water-induced soil erosion and soil organic matter using Vis-NIR spectroscopy and geomorphological analysis: A case study in southern Italy. Catena 2013, 110, 44–58. [Google Scholar] [CrossRef]
- Viscarra Rossel, R.A.; Behrens, T.; Ben-Dor, E.; Brown, D.J.; Dematte, J.A.M.; Shepherd, K.D.; Shi, Z.; Stenberg, B.; Stevens, A.; Adamchuk, V.; et al. A global spectral library to characterize the world’s soil. Earth-Sci. Rev. 2016, 155, 198–230. [Google Scholar] [CrossRef] [Green Version]
- Nocita, M.; Stevens, A.; van Wesemael, B.; Aitkenhead, M.; Bachmann, M.; Barthes, B.; Ben Dor, E.; Brown, D.J.; Clairotte, M.; Csorba, A.; et al. Soil Spectroscopy: An Alternative to Wet Chemistry for Soil Monitoring. Adv. Agron. 2015, 132, 139–159. [Google Scholar] [CrossRef]
- Soriano-Disla, J.M.; Janik, L.J.; Rossel, R.A.V.; Macdonald, L.M.; McLaughlin, M.J. The Performance of Visible, Near-, and Mid-Infrared Reflectance Spectroscopy for Prediction of Soil Physical, Chemical, and Biological Properties. Appl. Spectrosc. Rev. 2014, 49, 139–186. [Google Scholar] [CrossRef]
- Schmid, T.; Rodriguez-Rastrero, M.; Escribano, P.; Palacios-Orueta, A.; Ben-Dor, E.; Plaza, A.; Milewski, R.; Huesca, M.; Bracken, A.; Cicueudez, V.; et al. Characterization of Soil Erosion Indicators Using Hyperspectral Data From a Mediterranean Rainfed Cultivated Region. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 845–860. [Google Scholar] [CrossRef]
- Bracken, A.; Coburn, C.; Staenz, K.; Rochdi, N.; Segl, K.; Chabrillat, S.; Schmid, T. Detecting soil erosion in semi-arid Mediterranean environments using simulated EnMAP data. Geoderma 2019, 340, 164–174. [Google Scholar] [CrossRef] [Green Version]
- Vaudour, E.; Gholizadeh, A.; Castaldi, F.; Saberioon, M.; Borůvka, L.; Urbina-Salazar, D.; Fouad, Y.; Arrouays, D.; Richer-de-Forges, A.C.; Biney, J.; et al. Satellite Imagery to Map Topsoil Organic Carbon Content over Cultivated Areas: An Overview. Remote Sens. 2022, 14, 2917. [Google Scholar] [CrossRef]
- Helder, D.; Markham, B.; Morfitt, R.; Storey, J.; Barsi, J.; Gascon, F.; Clerc, S.; LaFrance, B.; Masek, J.; Roy, D.P.; et al. Observations and Recommendations for the Calibration of Landsat 8 OLI and Sentinel 2 MSI for Improved Data Interoperability. Remote Sens. 2018, 10, 1340. [Google Scholar] [CrossRef] [Green Version]
- Dvorakova, K.; Shi, P.; Limbourg, Q.; van Wesemael, B. Soil Organic Carbon Mapping from Remote Sensing: The Effect of Crop Residues. Remote Sens. 2020, 12, 1913. [Google Scholar] [CrossRef]
- Vaudour, E.; Gomez, C.; Lagacherie, P.; Loiseau, T.; Baghdadi, N.; Urbina-Salazar, D.; Loubet, B.; Arrouays, D. Temporal mosaicking approaches of Sentinel-2 images for extending topsoil organic carbon content mapping in croplands. Int. J. Appl. Earth Obs. Geoinf. 2021, 96, 102277. [Google Scholar] [CrossRef]
- Demattê, J.A.M.; Fongaro, C.T.; Rizzo, R.; Safanelli, J.L. Geospatial Soil Sensing System (GEOS3): A powerful data mining procedure to retrieve soil spectral reflectance from satellite images. Remote Sens. Environ. 2018, 212, 161–175. [Google Scholar] [CrossRef]
- Žížala, D.; Juřicová, A.; Zádorová, T.; Zelenková, K.; Minařík, R. Mapping soil degradation using remote sensing data and ancillary data: South-East Moravia, Czech Republic. Eur. J. Remote Sens. 2019, 52, 108–122. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Wang, D.; Li, Y.; Zhu, Y.; Wang, J.; Ma, J. A multi-faceted, location-specific assessment of land degradation threats to peri-urban agriculture at a traditional grain base in northeastern China. J. Environ. Manag. 2020, 271, 111000. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Li, S.; Wang, E.; Chen, X.; Deng, J.; Zhao, Y. Tillage erosion and its effect on spatial variations of soil organic carbon in the black soil region of China. Soil Tillage Res. 2018, 178, 72–81. [Google Scholar] [CrossRef]
- Hu, Y.; Li, X.; Guo, S.; Gao, X.; Ou, X.; Liu, B. On-site soil dislocation and localized CNP degradation: The real erosion risk faced by sloped cropland in northeastern China. Agric. Ecosyst. Environ. 2020, 302, 107088. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, Update 2015. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. FAO: Rome, Italy, 2015. [Google Scholar]
- Zhu, Y.; Wang, D.; Wang, X.; Li, W.; Shi, P. Aggregate-associated soil organic carbon dynamics as affected by erosion and deposition along contrasting hillslopes in the Chinese Corn Belt. Catena 2021, 199, 105106. [Google Scholar] [CrossRef]
- Zhang, X.C.; Polyakov, V.O.; Liu, B.Y.; Nearing, M.A. Quantifying geostatistical properties of 137Cs and 210Pbex at small scales for improving sampling design and soil erosion estimation. Geoderma 2019, 334, 155–164. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Q.W.; Reicosky, D.C.; Bai, L.Y.; Lindstrom, M.J.; Li, L. Using 137Cs and 210Pbex for quantifying soil organic carbon redistribution affected by intensive tillage on steep slopes. Soil Tillage Res. 2006, 86, 176–184. [Google Scholar] [CrossRef]
- Zhang, X.; Li, S.; Wang, C.; Tan, W.; Zhao, Q.; Zhang, Y.; Yan, M.; Liu, Y.; Jiang, J.; Xiao, J.; et al. Study on the sediment sources in a small watershed of the Loess Plaetau using the cesium-137 method. Chin. Sci. Bull. 1989, 34, 210–213. [Google Scholar]
- Yan, B.; Tang, J. Study on reference cesium-137 inventory of black soil in Northeast China. J. Soil Water Conserv. 2004, 18, 33–36. [Google Scholar] [CrossRef]
- Shi, P.; Castaldi, F.; van Wesemael, B.; Van Oost, K. Vis-NIR spectroscopic assessment of soil aggregate stability and aggregate size distribution in the Belgian Loam Belt. Geoderma 2020, 357, 113958. [Google Scholar] [CrossRef]
- Chamizo, S.; Stevens, A.; Cantón, Y.; Miralles, I.; Domingo, F.; Van Wesemael, B. Discriminating soil crust type, development stage and degree of disturbance in semiarid environments from their spectral characteristics. Eur. J. Soil Sci. 2012, 63, 42–53. [Google Scholar] [CrossRef]
- Clark, R.N.; Roush, T.L. Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications. J. Geophys. Res. Solid Earth 1984, 89, 6329–6340. [Google Scholar] [CrossRef]
- Shi, P.; Six, J.; Sila, A.; Vanlauwe, B.; Van Oost, K. Towards spatially continuous mapping of soil organic carbon in croplands using multitemporal Sentinel-2 remote sensing. ISPRS J. Photogramm. Remote Sens. 2022, 193, 187–199. [Google Scholar] [CrossRef]
- Castaldi, F.; Hueni, A.; Chabrillat, S.; Ward, K.; Buttafuoco, G.; Bomans, B.; Vreys, K.; Brell, M.; van Wesemael, B. Evaluating the capability of the Sentinel 2 data for soil organic carbon prediction in croplands. ISPRS J. Photogramm. Remote Sens. 2019, 147, 267–282. [Google Scholar] [CrossRef]
- Thaler, E.A.; Larsen, I.J.; Yu, Q. The extent of soil loss across the US Corn Belt. Proc. Natl. Acad. Sci. USA 2021, 118, e1922375118. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, M.; Hu, S.; Zhang, X.; Ouyang, Z.; Zhang, G.; Huang, B.; Zhao, S.; Wu, J.; Xie, D.; et al. Economics- and policy-driven organic carbon input enhancement dominates soil organic carbon accumulation in Chinese croplands. Proc. Natl. Acad. Sci. USA 2018, 115, 4045–4050. [Google Scholar] [CrossRef] [Green Version]
- Ben-Dor, E.; Inbar, Y.; Chen, Y. The reflectance spectra of organic matter in the visible near-infrared and short wave infrared region (400–2500 nm) during a controlled decomposition process. Remote Sens. Environ. 1997, 61, 1–15. [Google Scholar] [CrossRef]
- Shi, P.; Castaldi, F.; van Wesemael, B.; Van Oost, K. Large-Scale, High-Resolution Mapping of Soil Aggregate Stability in Croplands Using APEX Hyperspectral Imagery. Remote Sens. 2020, 12, 666. [Google Scholar] [CrossRef] [Green Version]
- Castaldi, F.; Chabrillat, S.; Chartin, C.; Genot, V.; Jones, A.R.; van Wesemael, B. Estimation of soil organic carbon in arable soil in Belgium and Luxembourg with the LUCAS topsoil database. Eur. J. Soil Sci. 2018, 69, 592–603. [Google Scholar] [CrossRef]
- Nocita, M.; Stevens, A.; Noon, C.; van Wesemael, B. Prediction of soil organic carbon for different levels of soil moisture using Vis-NIR spectroscopy. Geoderma 2013, 199, 37–42. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, H.; Zhang, X.; Yu, S.; Dou, X.; Xie, Y.; Wang, N. Allocate soil individuals to soil classes with topsoil spectral characteristics and decision trees. Geoderma 2018, 320, 12–22. [Google Scholar] [CrossRef]
- Ogen, Y.; Goldshleger, N.; Ben-Dor, E. 3D spectral analysis in the VNIR–SWIR spectral region as a tool for soil classification. Geoderma 2017, 302, 100–110. [Google Scholar] [CrossRef]
- Öttl, L.K.; Wilken, F.; Auerswald, K.; Sommer, M.; Wehrhan, M.; Fiener, P. Tillage erosion as an important driver of in-field biomass patterns in an intensively used hummocky landscape. Land Degrad. Dev. 2021, 32, 3077–3091. [Google Scholar] [CrossRef]
Prediction | Observation | ||||
---|---|---|---|---|---|
Low | Moderate | Severe | Total | User’s Accuracy (%) | |
Low | 22 | 0 | 0 1 | 22 23 | 100.00 |
Moderate | 3 | 19 | 82.61 | ||
Severe | 0 | 0 | 27 28 | 27 72 | 100.00 |
Total | 25 | 19 | |||
Producer’s accuracy (%) | 88.00 | 100.00 | 96.43 | ||
Overall accuracy (%) | 94.00 | ||||
Kappa coefficient | 0.92 |
Prediction | Observation | ||||
---|---|---|---|---|---|
Low | Moderate | Severe | Total | User’s Accuracy (%) | |
Low | 25 | 0 | 0 0 | 25 19 | 100.00 |
Moderate | 0 | 19 | 100.00 | ||
Severe | 0 | 0 | 28 28 | 28 72 | 100.00 |
Total | 25 | 19 | |||
Producer’s accuracy (%) | 100.00 | 100.00 | 100.00 | ||
Overall accuracy (%) | 100.00 | ||||
Kappa coefficient | 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, L.; Shi, P.; Dvorakova, K.; Van Oost, K.; Sun, Q.; Yu, H.; van Wesemael, B. Detection of Soil Erosion Hotspots in the Croplands of a Typical Black Soil Region in Northeast China: Insights from Sentinel-2 Multispectral Remote Sensing. Remote Sens. 2023, 15, 1402. https://doi.org/10.3390/rs15051402
Qi L, Shi P, Dvorakova K, Van Oost K, Sun Q, Yu H, van Wesemael B. Detection of Soil Erosion Hotspots in the Croplands of a Typical Black Soil Region in Northeast China: Insights from Sentinel-2 Multispectral Remote Sensing. Remote Sensing. 2023; 15(5):1402. https://doi.org/10.3390/rs15051402
Chicago/Turabian StyleQi, Lulu, Pu Shi, Klara Dvorakova, Kristof Van Oost, Qi Sun, Hanqing Yu, and Bas van Wesemael. 2023. "Detection of Soil Erosion Hotspots in the Croplands of a Typical Black Soil Region in Northeast China: Insights from Sentinel-2 Multispectral Remote Sensing" Remote Sensing 15, no. 5: 1402. https://doi.org/10.3390/rs15051402
APA StyleQi, L., Shi, P., Dvorakova, K., Van Oost, K., Sun, Q., Yu, H., & van Wesemael, B. (2023). Detection of Soil Erosion Hotspots in the Croplands of a Typical Black Soil Region in Northeast China: Insights from Sentinel-2 Multispectral Remote Sensing. Remote Sensing, 15(5), 1402. https://doi.org/10.3390/rs15051402