Exploring PlanetScope Satellite Capabilities for Soil Salinity Estimation and Mapping in Arid Regions Oases
"> Figure 1
<p>Location of the study area. (<b>a</b>) The sampling area is in Xinjiang, China. (<b>b</b>) The study location is at the intersection of farmland and desert in the Ogan-Kucha River Oasis, with Digital Elevation Model (DEM) data in the background. (<b>c</b>) Locations of sampling sites. (<b>d</b>–<b>g</b>) The main surface types at the sampling sites, in order of preference, are desert, salt crust, desert vegetation, and cotton.</p> "> Figure 2
<p>A statistical plot of the actual measured soil salinity data.</p> "> Figure 3
<p>Reflectance spectra curves of soils with different electrical conductivity (EC) values in the study area.</p> "> Figure 4
<p>Relevance of the correlation between electrical conductivity (EC) and different soil salinity indices. (<b>a</b>) shows the Pearson correlation between the original salinity index and soil salinity. (<b>b</b>) shows the Pearson correlation between the new red-edge salinity index and soil salinity, and (<b>c</b>) shows the Pearson correlation between the new yellow-edge salinity index and soil salinity.</p> "> Figure 5
<p>Boruta’s algorithm determines the importance of the existing and new salinity indexes. The blue variables are shaded features, the green variables are essential, the yellow ones are undetermined, and the red ones are irrelevant.</p> "> Figure 6
<p>Random forest (RF) algorithm to determine the importance of the existing salinity index and the new salinity index.</p> "> Figure 7
<p>Extreme gradient boosting (XGBoost) algorithm to determine the importance of the existing salinity index and the new salinity index.</p> "> Figure 8
<p>Scatter plots of the measured versus estimated electrical conductivity (EC) using different models with various modeling strategies: (<b>a</b>) random forest partial least-squares regression (RF-PLSR), (<b>b</b>) Boruta-PLSR, (<b>c</b>) extreme gradient boosting (XGBoost)-PLSR.</p> "> Figure 9
<p>Digital soil electrical conductivity (EC) spatial distribution map.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Field Sampling and Data Acquisition
2.4. Spectral Salinity Indices
2.5. Modeling Strategy
2.5.1. Boruta Feature Selection
2.5.2. Random Forest (RF) for Waveform Selection
2.5.3. Extreme Gradient Boosting (XGBoost)
2.6. Model Evaluation
3. Results
3.1. Salinity Data Statistics
3.2. Determining the Optimal Band of PlanetScope Data for EC Salinity
3.3. Importance Screening of Spectral Indices
3.4. Model Estimation and Comparison
3.5. Soil Salinity Maps
4. Discussion
4.1. Influence of Spatial Resolution
4.2. Band Reflectance and Spectral Index
4.3. Soil Salinity Inversion Model
4.4. Research Limitations and Future Work
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gorji, T.; Sertel, E.; Tanik, A. Monitoring soil salinity via remote sensing technology under data scarce conditions: A case study from Turkey. Ecol. Indic. 2017, 74, 384–391. [Google Scholar] [CrossRef]
- Metternicht, G.I.; Zinck, J.A. Remote sensing of soil salinity: Potentials and constraints. Remote Sens. Environ. 2003, 85, 1–20. [Google Scholar] [CrossRef]
- Litalien, A.; Zeeb, B. Curing the earth: A review of anthropogenic soil salinization and plant-based strategies for sustainable mitigation. Sci. Total. Environ. 2020, 698, 134235. [Google Scholar] [CrossRef] [PubMed]
- Hassani, A.; Azapagic, A.; Shokri, N. Global predictions of primary soil salinization under changing climate in the 21st century. Nat. Commun. 2021, 12, 6663. [Google Scholar] [CrossRef]
- Wu, J.; Vincent, B.; Yang, J.; Bouarfa, S.; Vidal, A. Remote Sensing Monitoring of Changes in Soil Salinity: A Case Study in Inner Mongolia, China. Sensors 2008, 8, 7035–7049. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Wang, S.; Zhuang, Q.; Jin, X.; Bian, Z.; Zhou, M.; Meng, Z.; Han, C.; Guo, X.; Jin, W.; et al. A Review on Carbon Source and Sink in Arable Land Ecosystems. Land 2022, 11, 580. [Google Scholar] [CrossRef]
- Wang, J.; Ding, J.; Yu, D.; Ma, X.; Zhang, Z.; Ge, X.; Teng, D.; Li, X.; Liang, J.; Guo, Y.; et al. Machine learning-based detection of soil salinity in an arid desert region, Northwest China: A comparison between Landsat-8 OLI and Sentinel-2 MSI. Sci. Total. Environ. 2020, 707, 136092. [Google Scholar] [CrossRef]
- Yahiaoui, I.; Douaoui, A.; Zhang, Q.; Ziane, A. Soil salinity prediction in the Lower Cheliff plain (Algeria) based on remote sensing and topographic feature analysis. J. Arid. Land 2015, 7, 794–805. [Google Scholar] [CrossRef]
- Ge, X.; Ding, J.; Teng, D.; Wang, J.; Huo, T.; Jin, X.; Wang, J.; He, B.; Han, L. Updated soil salinity with fine spatial resolution and high accuracy: The synergy of Sentinel-2 MSI, environmental covariates and hybrid machine learning approaches. Catena 2022, 212, 106054. [Google Scholar] [CrossRef]
- Zinck, A. Applications of Hyperspectral Imagery to Soil Salinity Mapping. In Remote Sensing of Soil Salinization; CRC Press: Boca Raton, FL, USA, 2008; pp. 127–154. [Google Scholar]
- Yang, H.; Wang, Z.; Cao, J.; Wu, Q.; Zhang, B. Estimating soil salinity using Gaofen-2 imagery: A novel application of combined spectral and textural features. Environ. Res. 2023, 217, 114870. [Google Scholar] [CrossRef]
- Avdan, U.; Kaplan, G.; Matcı, D.K.; Avdan, Z.Y.; Erdem, F.; Mızık, E.T.; Demirtaş, İ. Soil salinity prediction models constructed by different remote sensors. Phys. Chem. Earth Parts A/B/C 2022, 128, 103230. [Google Scholar] [CrossRef]
- Shi, H.; Hellwich, O.; Luo, G.; Chen, C.; He, H.; Ochege, F.U.; Van de Voorde, T.; Kurban, A.; de Maeyer, P. A Global Meta-Analysis of Soil Salinity Prediction Integrating Satellite Remote Sensing, Soil Sampling, and Machine Learning. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4505815. [Google Scholar] [CrossRef]
- Peng, J.; Biswas, A.; Jiang, Q.; Zhao, R.; Hu, J.; Hu, B.; Shi, Z. Estimating soil salinity from remote sensing and terrain data in southern Xinjiang Province, China. Geoderma 2019, 337, 1309–1319. [Google Scholar] [CrossRef]
- Howari, F.M.; Goodell, P.C.; Miyamoto, S. Spectral Properties of Salt Crusts Formed on Saline Soils. J. Environ. Qual. 2002, 31, 1453–1461. [Google Scholar] [CrossRef] [Green Version]
- Fourati, H.T.; Bouaziz, M.; Benzina, M.; Bouaziz, S. Modeling of soil salinity within a semi-arid region using spectral analysis. Arab. J. Geosci. 2015, 8, 11175–11182. [Google Scholar] [CrossRef]
- Gorji, T.; Yildirim, A.; Hamzehpour, N.; Tanik, A.; Sertel, E. Soil salinity analysis of Urmia Lake Basin using Landsat-8 OLI and Sentinel-2A based spectral indices and electrical conductivity measurements. Ecol. Indic. 2020, 112, 106173. [Google Scholar] [CrossRef]
- Wang, N.; Peng, J.; Chen, S.; Huang, J.; Li, H.; Biswas, A.; He, Y.; Shi, Z. Improving remote sensing of salinity on topsoil with crop residues using novel indices of optical and microwave bands. Geoderma 2022, 422, 115935. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, F.; Liu, C.; Kung, H.-T.; Johnson, V.C. Soil salinity inversion based on novel spectral index. Environ. Earth Sci. 2021, 80, 501. [Google Scholar] [CrossRef]
- Allbed, A.; Kumar, L.; Aldakheel, Y.Y. Assessing soil salinity using soil salinity and vegetation indices derived from IKONOS high-spatial resolution imageries: Applications in a date palm dominated region. Geoderma 2014, 230–231, 1–8. [Google Scholar] [CrossRef]
- Yengoh, G.T.; Dent, D.; Olsson, L.; Tengberg, A.E.; Tucker, C.J., III. Use of the Normalized Difference Vegetation Index (NDVI) to Assess Land Degradation at Multiple Scales: Current Status, Future Trends, and Practical Considerations; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Douaoui, A.E.K.; Nicolas, H.; Walter, C. Detecting salinity hazards within a semiarid context by means of combining soil and remote-sensing data. Geoderma 2006, 134, 217–230. [Google Scholar] [CrossRef]
- Roy, D.P.; Huang, H.; Houborg, R.; Martins, V.S. A global analysis of the temporal availability of PlanetScope high spatial resolution multi-spectral imagery. Remote Sens. Environ. 2021, 264, 112586. [Google Scholar] [CrossRef]
- Kpienbaareh, D.; Sun, X.; Wang, J.; Luginaah, I.; Kerr, R.B.; Lupafya, E.; Dakishoni, L. Crop Type and Land Cover Mapping in Northern Malawi Using the Integration of Sentinel-1, Sentinel-2, and PlanetScope Satellite Data. Remote Sens. 2021, 13, 700. [Google Scholar] [CrossRef]
- Wang, J.; Lee, C.K.; Zhu, X.; Cao, R.; Gu, Y.; Wu, S.; Wu, J. A new object-class based gap-filling method for PlanetScope satellite image time series. Remote Sens. Environ. 2022, 280, 113136. [Google Scholar] [CrossRef]
- Pisman, T.I.; Erunova, M.G.; Botvich, I.Y.; Shevyrnogov, A.P. Spatial Distribution of NDVI Seeds of Cereal Crops with Different Levels of Weediness According to PlanetScope Satellite Data. J. Sib. Fed. Univ. Eng. Technol. 2020, 13, 578–585. [Google Scholar] [CrossRef]
- Sagan, V.; Maimaitijiang, M.; Bhadra, S.; Maimaitiyiming, M.; Brown, D.R.; Sidike, P.; Fritschi, F.B. Field-scale crop yield prediction using multi-temporal WorldView-3 and PlanetScope satellite data and deep learning. ISPRS J. Photogramm. Remote Sens. 2021, 174, 265–281. [Google Scholar] [CrossRef]
- Francini, S.; McRoberts, R.E.; Giannetti, F.; Mencucci, M.; Marchetti, M.; Mugnozza, G.S.; Chirici, G. Near-real time forest change detection using PlanetScope imagery. Eur. J. Remote Sens. 2020, 53, 233–244. [Google Scholar] [CrossRef]
- Qayyum, N.; Ghuffar, S.; Ahmad, H.M.; Yousaf, A.; Shahid, I. Glacial Lakes Mapping Using Multi Satellite PlanetScope Imagery and Deep Learning. ISPRS Int. J. Geo-Inf. 2020, 9, 560. [Google Scholar] [CrossRef]
- Mansaray, A.; Dzialowski, A.; Martin, M.; Wagner, K.; Gholizadeh, H.; Stoodley, S. Comparing PlanetScope to Landsat-8 and Sentinel-2 for Sensing Water Quality in Reservoirs in Agricultural Watersheds. Remote Sens. 2021, 13, 1847. [Google Scholar] [CrossRef]
- Pickering, J.; Tyukavina, A.; Khan, A.; Potapov, P.; Adusei, B.; Hansen, M.; Lima, A. Using Multi-Resolution Satellite Data to Quantify Land Dynamics: Applications of PlanetScope Imagery for Cropland and Tree-Cover Loss Area Estimation. Remote Sens. 2021, 13, 2191. [Google Scholar] [CrossRef]
- Zhao, Y.; Lee, C.K.; Wang, Z.; Wang, J.; Gu, Y.; Xie, J.; Law, Y.K.; Song, G.; Bonebrake, T.C.; Yang, X.; et al. Evaluating fine-scale phenology from PlanetScope satellites with ground observations across temperate forests in eastern North America. Remote Sens. Environ. 2022, 283, 113310. [Google Scholar] [CrossRef]
- Dechant, B.; Ryu, Y.; Badgley, G.; Köhler, P.; Rascher, U.; Migliavacca, M.; Zhang, Y.; Tagliabue, G.; Guan, K.; Rossini, M.; et al. NIRVP: A robust structural proxy for sun-induced chlorophyll fluorescence and photosynthesis across scales. Remote Sens. Environ. 2022, 268, 112763. [Google Scholar] [CrossRef]
- Kong, J.; Ryu, Y.; Liu, J.; Dechant, B.; Rey-Sanchez, C.; Shortt, R.; Szutu, D.; Verfaillie, J.; Houborg, R.; Baldocchi, D.D. Matching high resolution satellite data and flux tower footprints improves their agreement in photosynthesis estimates. Agric. For. Meteorol. 2022, 316, 108878. [Google Scholar] [CrossRef]
- Gorji, T.; Tanik, A.; Sertel, E. Soil Salinity Prediction, Monitoring and Mapping Using Modern Technologies. Procedia Earth Planet Sci. 2015, 15, 507–512. [Google Scholar] [CrossRef] [Green Version]
- Muller, S.J.; van Niekerk, A. Identification of WorldView-2 spectral and spatial factors in detecting salt accumulation in cultivated fields. Geoderma 2016, 273, 1–11. [Google Scholar] [CrossRef]
- Han, L.; Ding, J.; Ge, X.; He, B.; Wang, J.; Xie, B.; Zhang, Z. Using spatiotemporal fusion algorithms to fill in potentially absent satellite images for calculating soil salinity: A feasibility study. Int. J. Appl. Earth Obs. Geoinf. 2022, 111, 102839. [Google Scholar] [CrossRef]
- Khan, S.; Abbas, A. Using remote sensing techniques for appraisal of irrigated soil salinity. In Proceedings of the MODSIM07 International Congress on Modelling and Simulation: Land, Water & Environmental Management: Integrated Systems for Sustain, Christchurch, New Zealand, 10–13 December 2007; pp. 2632–2638. [Google Scholar]
- Pettorelli, N.; Vik, J.O.; Mysterud, A.; Gaillard, J.-M.; Tucker, C.J.; Stenseth, N.C. Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol. Evol. 2005, 20, 503–510. [Google Scholar] [CrossRef]
- Bannari, A.; Guedon, A.M.; El-Harti, A.; Cherkaoui, F.Z.; El-Ghmari, A. Characterization of Slightly and Moderately Saline and Sodic Soils in Irrigated Agricultural Land using Simulated Data of Advanced Land Imaging (EO-1) Sensor. Commun. Soil Sci. Plant Anal. 2008, 39, 2795–2811. [Google Scholar] [CrossRef]
- Abdi, H. Partial least square regression (PLS regression). Encycl. Res. Methods Soc. Sci. 2003, 6, 792–795. [Google Scholar]
- Wang, Z.; Zhang, F.; Zhang, X.; Chan, N.W.; Kung, H.-T.; Ariken, M.; Zhou, X.; Wang, Y. Regional suitability prediction of soil salinization based on remote-sensing derivatives and optimal spectral index. Sci. Total. Environ. 2021, 775, 145807. [Google Scholar] [CrossRef] [PubMed]
- Zovko, M.; Romić, D.; Colombo, C.; Di Iorio, E.; Romić, M.; Buttafuoco, G.; Castrignanò, A. A geostatistical Vis-NIR spectroscopy index to assess the incipient soil salinization in the Neretva River valley, Croatia. Geoderma 2018, 332, 60–72. [Google Scholar] [CrossRef]
- Gopalakrishnan, T.; Kumar, L. Modeling and Mapping of Soil Salinity and Its Impact on Paddy Lands in Jaffna Peninsula, Sri Lanka. Sustainability 2020, 12, 8317. [Google Scholar] [CrossRef]
- Wang, J.; Hu, X.; Shi, T.; He, L.; Hu, W.; Wu, G. Assessing toxic metal chromium in the soil in coal mining areas via proximal sensing: Prerequisites for land rehabilitation and sustainable development. Geoderma 2022, 405, 115399. [Google Scholar] [CrossRef]
- El-Hendawy, S.E.; Al-Suhaibani, N.A.; Hassan, W.; Dewir, Y.H.; Elsayed, S.; Al-Ashkar, I.; Abdella, K.A.; Schmidhalter, U. Evaluation of wavelengths and spectral reflectance indices for high-throughput assessment of growth, water relations and ion contents of wheat irrigated with saline water. Agric. Water Manag. 2019, 212, 358–377. [Google Scholar] [CrossRef]
- Xie, B.; Ding, J.; Ge, X.; Li, X.; Han, L.; Wang, Z. Estimation of Soil Organic Carbon Content in the Ebinur Lake Wetland, Xinjiang, China, Based on Multisource Remote Sensing Data and Ensemble Learning Algorithms. Sensors 2022, 22, 2685. [Google Scholar] [CrossRef] [PubMed]
- Abedi, F.; Amirian-Chakan, A.; Faraji, M.; Taghizadeh-Mehrjardi, R.; Kerry, R.; Razmjoue, D.; Scholten, T. Development. Salt dome related soil salinity in southern Iran: Prediction and mapping with averaging machine learning models. Land Degrad. Dev. 2021, 32, 1540–1554. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Ma, G.; Ding, J.; Han, L.; Zhang, Z.; Ran, S. Digital mapping of soil salinization based on Sentinel-1 and Sentinel-2 data combined with machine learning algorithms. Reg. Sustain. 2021, 2, 177–188. [Google Scholar] [CrossRef]
- Qi, G.; Chang, C.; Yang, W.; Zhao, G. Soil salinity inversion in coastal cotton growing areas: An integration method using satellite-ground spectral fusion and satellite-UAV collaboration. Land Degrad. Dev. 2022, 33, 2289–2302. [Google Scholar] [CrossRef]
- Kearns, M.; Ron, D. Algorithmic stability and sanity-check bounds for leave-one-out cross-validation. In Proceedings of the Tenth Annual Conference on Computational Learning Theory, Nashville, TN, USA, 6–9 July 1997; pp. 152–162. [Google Scholar]
- Chang, C.-W.; Laird, D.A.; Mausbach, M.J.; Hurburgh, C.R., Jr. Near-Infrared Reflectance Spectroscopy-Principal Components Regression Analyses of Soil Properties. Soil Sci. Soc. Am. J. 2001, 65, 480–490. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Chen, H.; Zhao, G.; Wang, Z.; Wang, D. Spectral Index Fusion for Salinized Soil Salinity Inversion Using Sentinel-2A and UAV Images in a Coastal Area. IEEE Access 2020, 8, 159595–159608. [Google Scholar] [CrossRef]
- Davis, E. Comparison of Sentinel-2 and Landsat 8 OLI in the Mapping of Soil Salinity in Hyde County, North Carolina. Ph.D Thesis, University of South Carolina, Columbia, SC, USA, 2018. [Google Scholar]
- Davis, E.; Wang, C.; Dow, K. Comparing Sentinel-2 MSI and Landsat 8 OLI in soil salinity detection: A case study of agricultural lands in coastal North Carolina. Int. J. Remote Sens. 2019, 40, 6134–6153. [Google Scholar] [CrossRef]
- Meti, S.; Lakshmi, P.D.; Nagaraja, M.S.; Shreepad, V. Hanumesh sentinel 2 and landsat-8 bands sensitivity analysis for mapping of alkaline soil in northern dry zone of Karnataka, India. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 42, 307–313. [Google Scholar] [CrossRef] [Green Version]
- Aldabaa, A.; Weindorf, D.C.; Chakraborty, S.; Sharma, A.; Li, B. Combination of proximal and remote sensing methods for rapid soil salinity quantification. Geoderma 2015, 239–240, 34–46. [Google Scholar] [CrossRef] [Green Version]
- Taghadosi, M.M.; Hasanlou, M.; Eftekhari, K. Retrieval of soil salinity from Sentinel-2 multispectral imagery. Eur. J. Remote Sens. 2019, 52, 138–154. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, R.P. Relating soil electrical conductivity to remote sensing and other soil properties for assessing soil salinity in northeast Thailand. Land Degrad. Dev. 2006, 17, 677–689. [Google Scholar] [CrossRef]
- Wang, J.; Ding, J.; Yu, D.; Ma, X.; Zhang, Z.; Ge, X.; Teng, D.; Li, X.; Liang, J.; Lizaga, I.; et al. Capability of Sentinel-2 MSI data for monitoring and mapping of soil salinity in dry and wet seasons in the Ebinur Lake region, Xinjiang, China. Geoderma 2019, 353, 172–187. [Google Scholar] [CrossRef]
- Bannari, A.; El-Battay, A.; Bannari, R.; Rhinane, H. Sentinel-MSI VNIR and SWIR Bands Sensitivity Analysis for Soil Salinity Discrimination in an Arid Landscape. Remote Sens. 2018, 10, 855. [Google Scholar] [CrossRef] [Green Version]
- Ge, X.; Ding, J.; Teng, D.; Xie, B.; Zhang, X.; Wang, J.; Han, L.; Bao, Q.; Wang, J. Exploring the capability of Gaofen-5 hyperspectral data for assessing soil salinity risks. Int. J. Appl. Earth Obs. Geoinf. 2022, 112, 102969. [Google Scholar] [CrossRef]
- Abood, S.; Maclean, A.; Falkowski, M. Soil Salinity Detection in the Mesopotamian Agricultural Plain Utilizing WorldView-2 imagery. Ph.D Thesis, Michigan Technological University Houghton, Houghton, MI, USA, 2011. [Google Scholar]
- Alexakis, D.D.; Daliakopoulos, I.N.; Panagea, I.S.; Tsanis, I.K. Assessing soil salinity using WorldView-2 multispectral images in Timpaki, Crete, Greece. Geocarto Int. 2016, 33, 321–338. [Google Scholar] [CrossRef]
- Allbed, A.; Kumar, L.; Sinha, P. Mapping and Modelling Spatial Variation in Soil Salinity in the Al Hassa Oasis Based on Remote Sensing Indicators and Regression Techniques. Remote Sens. 2014, 6, 1137–1157. [Google Scholar] [CrossRef]
- Yu, H.; Liu, M.; Du, B.; Wang, Z.; Hu, L.; Zhang, B. Mapping Soil Salinity/Sodicity by using Landsat OLI Imagery and PLSR Algorithm over Semiarid West Jilin Province, China. Sensors 2018, 18, 1048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sidike, A.; Zhao, S.; Wen, Y. Estimating soil salinity in Pingluo County of China using QuickBird data and soil reflectance spectra. Int. J. Appl. Earth Obs. Geoinf. 2014, 26, 156–175. [Google Scholar] [CrossRef]
- Wang, N.; Xue, J.; Peng, J.; Biswas, A.; He, Y.; Shi, Z. Integrating Remote Sensing and Landscape Characteristics to Estimate Soil Salinity Using Machine Learning Methods: A Case Study from Southern Xinjiang, China. Remote Sens. 2020, 12, 4118. [Google Scholar] [CrossRef]
- Wang, Y.; Xie, M.; Hu, B.; Jiang, Q.; Shi, Z.; He, Y.; Peng, J. Desert Soil Salinity Inversion Models Based on Field In Situ Spectroscopy in Southern Xinjiang, China. Remote Sens. 2022, 14, 4962. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Z.; Chen, J.; Chen, H.; Jin, J.; Han, J.; Wang, X.; Song, Z.; Wei, G. Estimating soil salinity with different fractional vegetation cover using remote sensing. Land Degrad. Dev. 2020, 32, 597–612. [Google Scholar] [CrossRef]
- Zhu, C.; Ding, J.; Zhang, Z.; Wang, Z. Exploring the potential of UAV hyperspectral image for estimating soil salinity: Effects of optimal band combination algorithm and random forest. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 279, 121416. [Google Scholar] [CrossRef] [PubMed]
- Abbas, A.; Khan, S.; Hussain, N.; Hanjra, M.A.; Akbar, S. Characterizing soil salinity in irrigated agriculture using a remote sensing approach. Phys. Chem. Earth Parts A/B/C 2013, 55–57, 43–52. [Google Scholar] [CrossRef]
Acronym | Band | Band Range/nm | Spatial Resolution/m |
---|---|---|---|
B1 | Coastal Blue | 431–452 | 3 m |
B2 | Blue | 465–515 | 3 m |
B3 | Green I | 513–549 | 3 m |
B4 | Green II | 547–583 | 3 m |
B5 | Yellow | 600–620 | 3 m |
B6 | Red | 650–680 | 3 m |
B7 | Red edge | 697–713 | 3 m |
B8 | NIR | 845–885 | 3 m |
Acronym | Spectral Index | Formula | Reference |
---|---|---|---|
S1 | Salinity index I | B/R | [38] |
S2 | Salinity index II | (B − R)/(B + R) | [38] |
S3_G1 | Salinity index III | (G1 × R)/B | [38] |
S3_G2 | Salinity index III | (G2 × R)/B | [38] |
S4 | Salinity index IV | [38] | |
S5-G1 | Salinity index V | (B × R)/G1 | [38] |
S5-G2 | Salinity index V | (B × R)/G2 | [38] |
S6_G1 | Salinity index VI | (R × NIR)/G1 | [38] |
S6_G2 | Salinity index VI | (R × NIR)/G2 | [38] |
SI | Salinity index | [39] | |
NDSI | Normalized Difference Salinity Index | (R − NIR)/(R + NIR) | [39] |
SI1_G1 | Salinity index 1 | [40] | |
SI1_G2 | Salinity index 1 | [40] | |
SI2_G1 | Salinity index 2 | [40] | |
SI2_G2 | Salinity index 2 | [40] | |
SI3_G1 | Salinity index 3 | [40] | |
SI3_G2 | Salinity index 3 | [40] | |
Int1_G1 | Intensity Index 1 | (G1 + R)/2 | [16] |
Int1_G2 | Intensity Index 1 | (G2 + R)/2 | [16] |
Int2_G1 | Intensity Index 2 | (G1 + R + NIR)/2 | [16] |
Int2_G2 | Intensity Index 2 | (G2 + R + NIR)/2 | [16] |
NDVI | Normalized Difference Vegetation Index | ( NIR − R)/(NIR + R) | [39] |
Acronym | Spectral Index | Formula | Acronym | Spectral Index | Formula |
---|---|---|---|---|---|
RS1 | Salinity index I | B/Red-edge | RSI | Salinity index | |
RS2 | Salinity index II | (B − Red-edge)/(B + Red-edge) | RSI1_G1 | Salinity index 1 | |
RS3_G1 | Salinity index III | (G1 × Red-edge)/B | RSI1_G2 | Salinity index 1 | |
RS3_G2 | Salinity index III | (G2 × Red-edge)/B | RSI2_G1 | Salinity index 2 | |
RS4 | Salinity index IV | RSI2_G2 | Salinity index 2 | ||
RS5-G1 | Salinity index V | (B × Red-edge)/G1 | RSI3_G1 | Salinity index 3 | |
RS5-G2 | Salinity index V | (B × Red-edge)/G2 | RSI3_G2 | Salinity index 3 | |
RS6_G1 | Salinity index VI | (Red-edge × NIR)/G1 | RInt1_G1 | Intensity Index 1 | (G1 + )/2 |
RS6_G2 | Salinity index VI | (Red-edge × NIR)/G2 | RInt1_G2 | Intensity Index 1 | (G2 + )/2 |
RNDSI | Normalized Difference Salinity Index | − + NIR) | RInt2_G1 | Intensity Index 2 | (G1 + + NIR)/2 |
RNDVI | Normalized Difference Vegetation Index | ) | RInt2_G2 | Intensity Index 2 | (G2 + + NIR)/2 |
Acronym | Spectral Index | Formula | Acronym | Spectral Index | Formula |
---|---|---|---|---|---|
YRS1 | Salinity index I | B/Y | YRNDVI | Normalized Difference Vegetation Index | (NIR − Y)/(NIR + Y) |
YRS2 | Salinity Index II | (B − Y)/(B + Y) | YBS1 | Salinity index I | Y/R |
YRS3_G1 | Salinity Index III | (G1 × Y)/B | YBS2 | Salinity Index II | (Y − R)/(Y + R) |
YRS3_G2 | Salinity Index III | (G2 × Y)/B | YBS4 | Salinity index IV | |
YRS4 | Salinity index IV | YBS5_G1 | Salinity index V | (Y × R)/G1 | |
YRS5_G1 | Salinity index V | (B × Y)/G1 | YBS5_G2 | Salinity index V | (Y × R)/G2 |
YRS5_G2 | Salinity index V | (B × Y)/G2 | YBSI | Salinity index | |
YRS6_G1 | Salinity index VI | (Y × NIR)/G1 | YGS3 | Salinity Index III | ( × R)/B |
YRS6_G2 | Salinity index VI | (Y × NIR)/G2 | YGSI1 | Salinity index 1 | |
YRSI | Salinity index | YGSI2 | Salinity index 2 | ||
YRSI1_G1 | Salinity index 1 | YGSI3 | Salinity index 3 | ||
YRSI1_G2 | Salinity index 1 | YGInt1 | Intensity Index 1 | ( + R)/2 | |
YRSI2_G1 | Salinity index 2 | YGInt2 | Intensity Index 2 | (Y + R + NIR)/2 | |
YRSI2_G2 | Salinity index 2 | YNS6_G1 | Salinity index VI | (R × Y)/G1 | |
YRSI3_G1 | Salinity index 3 | YNS6_G2 | Salinity index VI | (R × Y)/G2 | |
YRSI3_G2 | Salinity index 3 | YNSI2_G1 | Salinity index 2 | ||
YRInt1_G1 | Intensity Index 1 | (G1 + Y)/2 | YNSI2_G2 | Salinity index 2 | |
YRInt1_G2 | Intensity Index 1 | (G2 + Y)/2 | YNInt2_G1 | Intensity Index 2 | (G1 + R + Y)/2 |
YRInt2_G1 | Intensity Index 2 | (G1 + Y + NIR)/2 | YNInt2_G2 | Intensity Index 2 | (G2 + R + Y)/2 |
YRInt2_G2 | Intensity Index 2 | (G2 + Y + NIR)/2 | YNNDSI | Normalized Difference Salinity Index | (R − Y)/(R + Y) |
YRNDSI | Normalized Difference Salinity Index | (Y − NIR)/(Y + NIR) | YNNDVI | Normalized Difference Vegetation Index | (Y − R)/(Y + R) |
Count | Min | Max | Med | Avg | S.D. | CV | |
---|---|---|---|---|---|---|---|
All | 84 | 0.35 | 124.90 | 44.85 | 38.04 | 33.13 | 0.87 |
training set (t) | 59 | 0.35 | 116.80 | 45.80 | 39.77 | 32.73 | 0.82 |
validation set (v) | 25 | 0.45 | 124.90 | 35.10 | 33.97 | 34.40 | 1.01 |
Band | Linear Model | R | R2 | RPIQ |
---|---|---|---|---|
Coastal Blue (B1) | y = 0.0008x + 0.0733 | 0.725 ** | 0.525 | 2.654 |
Blue (B2) | y = 0.001x + 0.0764 | 0.736 ** | 0.542 | 2.691 |
Green I (B3) | y = 0.001x + 0.124 | 0.723 ** | 0.523 | 2.656 |
Green II (B4) | y = 0.0012x + 0.1056 | 0.729 ** | 0.531 | 2.686 |
Yellow (B5) | y = 0.0017x + 0.144 | 0.746 ** | 0.556 | 2.723 |
Red (B6) | y = 0.002x + 0.1095 | 0.754 ** | 0.568 | 0.519 |
Red edge (B7) | y = 0.0013x + 0.1561 | 0.721 ** | 0.520 | 2.661 |
NIR (B8) | y = −0.0024x + 0.4653 | −0.761 ** | 0.579 | 2.722 |
Acronym | Modeling Strategy | Parameters | LVs | R2c | RMSE (c) | R2v | RMSE (v) | RPD |
---|---|---|---|---|---|---|---|---|
Row-PLSR | —— | 84 | 6 | 0.603 | 21.620 | 0.729 | 15.290 | 1.920 |
Boruta-PLSR | Boruta | 20 | 4 | 0.568 | 22.540 | 0.795 | 13.300 | 2.210 |
RF-PLSR | RF | 20 | 5 | 0.567 | 23.020 | 0.809 | 12.850 | 2.280 |
XGBoost-PLSR | XGBoost | 20 | 5 | 0.540 | 23.020 | 0.832 | 12.050 | 2.440 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, J.; Ding, J.; Han, L.; Ge, X.; Wang, X.; Wang, J.; Wang, R.; Qin, S.; Zhang, Z.; Li, Y. Exploring PlanetScope Satellite Capabilities for Soil Salinity Estimation and Mapping in Arid Regions Oases. Remote Sens. 2023, 15, 1066. https://doi.org/10.3390/rs15041066
Tan J, Ding J, Han L, Ge X, Wang X, Wang J, Wang R, Qin S, Zhang Z, Li Y. Exploring PlanetScope Satellite Capabilities for Soil Salinity Estimation and Mapping in Arid Regions Oases. Remote Sensing. 2023; 15(4):1066. https://doi.org/10.3390/rs15041066
Chicago/Turabian StyleTan, Jiao, Jianli Ding, Lijing Han, Xiangyu Ge, Xiao Wang, Jiao Wang, Ruimei Wang, Shaofeng Qin, Zhe Zhang, and Yongkang Li. 2023. "Exploring PlanetScope Satellite Capabilities for Soil Salinity Estimation and Mapping in Arid Regions Oases" Remote Sensing 15, no. 4: 1066. https://doi.org/10.3390/rs15041066
APA StyleTan, J., Ding, J., Han, L., Ge, X., Wang, X., Wang, J., Wang, R., Qin, S., Zhang, Z., & Li, Y. (2023). Exploring PlanetScope Satellite Capabilities for Soil Salinity Estimation and Mapping in Arid Regions Oases. Remote Sensing, 15(4), 1066. https://doi.org/10.3390/rs15041066