Joint Detection, Tracking, and Classification of Multiple Extended Objects Based on the JDTC-PMBM-GGIW Filter
<p>The schematic figure summarising the processing steps of JDTC-PMBM filter.</p> "> Figure 2
<p>The flow chart of the proposed JDTC-PMBM-GGIW filter in <a href="#sec5-remotesensing-15-00887" class="html-sec">Section 5</a>.</p> "> Figure 3
<p>Simulation scenarios. (<b>a</b>) The first scenario: target 1, yellow ellipse, class 1; target 2, cyan ellipse, class 2; target 3, blue ellipse, class 1; target 4, green ellipse, class 1; target 5, purple ellipse, class 2. (<b>b</b>) The second scenario: target 1, yellow ellipse, class 1; target 2, cyan ellipse, class 2; target 3, blue ellipse, class 1.</p> "> Figure 4
<p>Tracking performance comparison of three RFS-based multiple extended objects JDTC algorithms in scenario 1. (<b>a</b>) Kinematic state OSPA distance; (<b>b</b>) Extended state OSPA distance; (<b>c</b>) Measurement rate OSPA distance; (<b>d</b>) Cardinality estimation of the targets.</p> "> Figure 4 Cont.
<p>Tracking performance comparison of three RFS-based multiple extended objects JDTC algorithms in scenario 1. (<b>a</b>) Kinematic state OSPA distance; (<b>b</b>) Extended state OSPA distance; (<b>c</b>) Measurement rate OSPA distance; (<b>d</b>) Cardinality estimation of the targets.</p> "> Figure 5
<p>Classification performance comparison of three RFS-based multiple extended objects JDTC algorithms in scenario 1. (<b>a</b>) The class probability mass function of the correct class for EO 1; (<b>b</b>) The class probability mass function of the correct class for EO 2; (<b>c</b>) The class probability mass function of the correct class for EO 3; (<b>d</b>) The class probability mass function of the correct class for EO 4; (<b>e</b>) The class probability mass function of the correct class for EO 5.</p> "> Figure 5 Cont.
<p>Classification performance comparison of three RFS-based multiple extended objects JDTC algorithms in scenario 1. (<b>a</b>) The class probability mass function of the correct class for EO 1; (<b>b</b>) The class probability mass function of the correct class for EO 2; (<b>c</b>) The class probability mass function of the correct class for EO 3; (<b>d</b>) The class probability mass function of the correct class for EO 4; (<b>e</b>) The class probability mass function of the correct class for EO 5.</p> "> Figure 6
<p>Tracking performance comparison of three RFS-based multiple extended objects JDTC algorithms in scenario 2. (<b>a</b>) Kinematic state OSPA distance; (<b>b</b>) Extended state OSPA distance; (<b>c</b>) Measurement rate OSPA distance; (<b>d</b>) Cardinality estimation of the targets.</p> "> Figure 6 Cont.
<p>Tracking performance comparison of three RFS-based multiple extended objects JDTC algorithms in scenario 2. (<b>a</b>) Kinematic state OSPA distance; (<b>b</b>) Extended state OSPA distance; (<b>c</b>) Measurement rate OSPA distance; (<b>d</b>) Cardinality estimation of the targets.</p> "> Figure 7
<p>Classification performance comparison of three RFS-based multiple extended objects JDTC algorithms in scenario 2. (<b>a</b>) The class probability mass function of the correct class for EO 1; (<b>b</b>) The class probability mass function of the correct class for EO 2; (<b>c</b>) The class probability mass function of the correct class for EO 3.</p> ">
Abstract
:1. Introduction
- (1)
- The JDTC-PMBM filter recursion is proposed to perform JDTC of multiple EOs;
- (2)
- The analytical and computationally feasible implementations of the proposed JDTC-PMBM filter are derived;
- (3)
- The performance of the proposed approach is assessed via simulations.
2. Related Work
3. Background
3.1. Dynamic Model
- -
- , where , represent the kinematic and extended states, respectively; denotes the Poisson measurement rate of such an EO.
- -
- denotes the class state of an EO, is the total number of categories for the EOs.
3.2. The Measurement Analysis for JDTC
- Clutter is independent of the target-originated measurements and pseudo measurements;
- The sensor has a linear Gaussian measurement model;
- The measurements generated by each EO are independent of each other.
4. PMBM Filter for JDTC
4.1. Association Events
4.2. PMBM Density for JDTC
4.3. JDTC-PMBM Filter Recursion
4.3.1. Prediction of JDTC-PMBM Filter
4.3.2. Updated Density of JDTC-PMBM Filter
4.4. Class Probability Mass Function
5. The Implementation Process of the Proposed JDTC-PMBM Filter
5.1. Prediction of JDTC-PMBM-GGIW
5.2. Update of JDTC-PMBM-GGIW
- (1)
- Update of PPP: the undetected targets
- (2)
- Update of PPP: the first detected target
- (3)
- Update of Bernoulli: the detected target
- (4)
- Update of Bernoulli: the missed target
6. Results
6.1. Performance Evaluation Metrics
6.2. Simulation Scenario Setting
- -
- NCV Model:
- -
- NCT Model:
- -
- In scenario 1, there are five EOs in the surveillance area, The actual trajectory of each EO is shown in Figure 3a. The trajectory parameters of each EO of scenario 1 are described in Table 3. The mixture GGIW and class parameters of initial birth PPP intensity are given by
- -
- In scenario 2, there are three EOs in the surveillance area, The actual trajectory of each EO is shown in Figure 3b. The trajectory parameters of each EO of scenario 2 are described in Table 4. The mixture GGIW and class parameters of initial birth PPP intensity are given by
6.3. Simulation Results
6.3.1. Scenario 1
6.3.2. Scenario 2
6.3.3. The Average Execution Time
6.3.4. Overall Performance Analysis
7. Discussion
7.1. Complexity
7.2. Complexity Reduction and State Extraction
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Abbreviations | Full Name |
RFS | Random Finite Set |
PHD | Probability Hypothesis Density |
CPHD | Cardinalized Probability Hypothesis Density |
GIW | Gaussian Inverse Wishart |
GGIW | Gamma Gaussian Inverse Wishart |
GLMB | Generalized Labeled Multi-Bernoulli |
MB | Multi-Bernoulli |
SPD | Symmetric Positive Define |
MBM | Multi-Bernoulli Mixture |
MR | Measurement Rate |
PPP | Poisson Point Process |
PMBM | Poisson Multi-Bernoulli Mixture |
JDTC | Joint Detection, Tracking and Classification |
PMF | Probability Mass Function |
EOs | Extended Objects |
OSPA | Optimal Sub-Pattern Assignment |
Probability Density Function | |
Symbols | Description |
Kinematic state | |
Extended state | |
Poisson measurement rate of an EO | |
Class of an EO | |
The total number of categories for EOs | |
Generalized Labeled Multi-Bernoulli | |
Direction matrix of an EO | |
Scale matrix of the c-th EO; Pseudo measurement | |
Poisson distribution | |
Wishart distribution | |
Gaussian distribution | |
Gamma distribution | |
Inverse Wishart distribution | |
The real measurement set corresponding to the target | |
The likelihood function corresponding to measurement set | |
The pseudo measurement likelihood function | |
The received real measurement set | |
The j-th predicted global hypothesis index space | |
The target index space in the j-th global hypothesis | |
The index space of real measurement | |
The intensity function of a PPP | |
The existence probability of the i-th Bernoulli in the j-th global hypothesis | |
The spatial PDF of the i-th Bernoulli in the j-th global hypothesis | |
The weight of the j-th MB |
Appendix A. Proof of the Class PMF
Appendix B. Proof of the Update JDTC-PMBM-GGIW Parameters
References
- Paul, M.M.; Sergiu, N.; Radu, D. Robust Data Association Using Fusion of Data-Driven and Engineered Features for Real-Time Pedestrian Tracking in Thermal Images. Sensors 2021, 21, 8005. [Google Scholar] [CrossRef]
- Mahler, R. Statistical Multisource-Multitarget Information Fusion; Artech House: Norwood, MA, USA, 2007. [Google Scholar]
- Bar-Shalom, Y.; Kumar, A.; Blair, W.D.; Groves, G.W. Tracking low elevation targets in the presence of multipath propagation. IEEE Trans. Aerosp. Electron. Syst. 1994, 30, 973–979. [Google Scholar] [CrossRef]
- Angle, R.B.; Streit, R.L.; Efe, M. Multiple Target Tracking With Unresolved Measurements. IEEE Signal Process. Lett. 2021, 28, 319–323. [Google Scholar] [CrossRef]
- Gilholm, K.; Godsill, S.; Maskell, S.; Salmond, D. Poisson models for extended target and group tracking. Signal Data Process. Small Targets 2005, 5913, 59130R. [Google Scholar] [CrossRef]
- Feldmann, M.; Franken, D.; Koch, W. Tracking of extended objects and group targets using random matrices. IEEE Trans. Signal Process. 2011, 59, 1409–1420. [Google Scholar] [CrossRef]
- Lan, J.; Li, X.R. Tracking of extended object or target group using random matrix: New model and approach. IEEE Trans. Aerosp. Electron. Syst. 2016, 52, 2973–2989. [Google Scholar] [CrossRef]
- Richter, T.; Seiler, J.; Schnurrer, W.; Kaup, A. Robust super-resolution for mixed-resolution multiview image plus depth data. IEEE TRansactions Circuits Syst. Video Technol. 2016, 26, 814–828. [Google Scholar] [CrossRef]
- Liu, A.; Wang, F.; Xu, H.; Li, L. N-SAR: A new multichannel multimode polarimetric airborne SAR. IEEE J. Sel. Top. Appl. Earth Observations Remote. Sens. 2018, 11, 3155–3166. [Google Scholar] [CrossRef]
- Granström, K.; Lundquist, C.; Orguner, U. Tracking rectangular and elliptical extended targets using laser measurements. In Proceedings of the International Conference Information Fusion, Chicago, IL, USA, 5–8 July 2011; pp. 1–8. [Google Scholar]
- Aftab, W.; Hostettler, R.; Freitas, A.D.; Arvaneh, M.; Mihaylova, L. Spatio-temporal Gaussian process models for extended and group object tracking with irregular shapes. IEEE Trans. Veh. Technol. 2019, 68, 2137–2151. [Google Scholar] [CrossRef]
- Gao, L.; Battistelli, G.; Chisci, L.; Farina, A. Fusion-Based Multidetection Multitarget Tracking With Random Finite Sets. IEEE Trans. Aerosp. Electron. Syst. 2021, 57, 2438–2458. [Google Scholar] [CrossRef]
- Gao, L.; Battistelli, G.; Chisci, L. PHD-SLAM 2.0: Efficient SLAM in the Presence of Missdetections and Clutter. IEEE Trans. Robot. 2021, 37, 1834–1843. [Google Scholar] [CrossRef]
- Gao, L.; Battistelli, G.; Chisci, L. Fusion of Labeled RFS Densities With Minimum Information Loss. IEEE Trans. Signal Process. 2020, 68, 5855–5868. [Google Scholar] [CrossRef]
- Gao, L.; Sun, W.; Wei, P. Extensions of the CBMeMBer filter for joint detection, tracking, and classification of multiple maneuvering targets. Digit. Signal Process. 2016, 56, 35–42. [Google Scholar] [CrossRef]
- Florian, T.; Shishan, Y.; Marcus, B. GM-PHD filter for multiple extended object tracking based on the multiplicative error shape model and network flow labeling. In Proceedings of the IEEE Intelligent Vehicles Symposium (IV), Los Angeles, CA, USA, 11–14 June 2017; pp. 7–12. [Google Scholar]
- Granstrom, K.; Orguner, U. A PHD filter for tracking multiple extended targets using random matrices. IEEE Trans. Signal Process. 2012, 60, 5657–5671. [Google Scholar] [CrossRef]
- Granstrom, K.; Orguner, U. Estimation and maintenance of measurement rates for multiple extended target tracking. In Proceedings of the International Conference Information Fusion, Singapore, 9–12 July 2012; pp. 2170–2176. [Google Scholar]
- Baum, M.; Hanebeck, U.D. Extended object tracking with random hypersurface models. IEEE Trans. Aerosp. Electron. Syst. 2014, 50, 149–159. [Google Scholar] [CrossRef]
- Wahlström, N.; Özkan, E. Extended target tracking using Gaussian processes. IEEE Trans. Signal Process. 2015, 63, 4165–4178. [Google Scholar] [CrossRef]
- Nil, G.; Alessio, F.; Angelo, C.; Henk, W.; Canan, A.; Rico, M.; Gonzalo, S. Cramér-Rao Bound analysis of Radars for extended vehicular targets with known and unknown shape. IEEE Trans. Signal Process. 2022, 70, 3280–3295. [Google Scholar] [CrossRef]
- Cao, X.; Lan, J.; Rong Li, X. Extension-Deformation approach to extended object tracking. IEEE Trans. Aerosp. Electron. Syst. 2021, 57, 866–881. [Google Scholar] [CrossRef]
- Mahler, R. PHD filters for nonstandard targets, I: Extended targets. In Proceedings of the International Conference Information Fusion, Seattle, WA, USA, 6–9 July 2009; pp. 915–921. [Google Scholar]
- Vo, B.; Ma, W. The Gaussian mixture probability hypothesis density filter. IEEE Trans. Signal Process. 2006, 54, 4091–4104. [Google Scholar] [CrossRef]
- Viktor, E.; Maria, A.; Granström, K.; Fredrik, G. Pedestrian group tracking using the GM-PHD filter. In Proceedings of the 21st European Signal Processing Conference (EUSIPCO 2013), Marrakech, Morocco, 9–13 September 2013; pp. 1–5. [Google Scholar]
- Lundquist, C.; Granström, K.; Orguner, U. An extended target CPHD filter and a gamma Gaussian inverse Wishart implementation. IEEE J. Sel. Top Signal Process. 2013, 7, 472–483. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Lian, F.; Han, C. CBMeMBer filters for nonstandard targets, I: Extended targets. In Proceedings of the International Conference Information Fusion, Salamanca, Spain, 7–10 July 2014; pp. 1–6. [Google Scholar]
- Hu, Q.; Ji, H.; Zhang, Y. Tracking multiple extended targets with multi-Bernoulli filter. IET Signal Process. 2019, 13, 443–455. [Google Scholar] [CrossRef]
- Beard, M.; Reuter, S.; Granström, K.; Vo, B.; Vo, B.; Scheel, A. Multiple extended target tracking with labeled random finite sets. IEEE Trans. Signal Process. 2016, 64, 1638–1653. [Google Scholar] [CrossRef]
- Beard, M.; Reuter, S.; Granström, K.; Vo, B.-T.; Vo, B.-N.; Scheel, A. A generalised labelled multi-Bernoulli filter for extended multi-target tracking. In Proceedings of the International Conference Information Fusion, Washington, DC, USA, 6–9 July 2015; pp. 991–998. [Google Scholar]
- Fernández, F.; Williams, J.L.; Granström, K.; Svensson, L. Poisson multi-bernoulli mixture filter: Direct derivation and implementation. IEEE Trans. Aerosp. Electron. Syst. 2018, 54, 1883–1901. [Google Scholar] [CrossRef]
- Granström, K.; Fatemi, M.; Svensson, L. Poisson multi-Bernoulli mixture conjugate prior for multiple extended target filtering. IEEE Trans. Aerosp. Electron. Syst. 2020, 56, 208–225. [Google Scholar] [CrossRef]
- Williams, J.L. Marginal multi-Bernoulli filters: RFS derivation of MHT, JIPDA, and association-based member. IEEE Trans. Aerosp. Electron. Syst. 2015, 51, 1664–1687. [Google Scholar] [CrossRef]
- Granström, K.; Fatemi, M.; Svensson, L. Gamma gaussian inverse-wishart poisson multi-Bernoulli filter for extended target tracking. In Proceedings of the International Conference Information Fusion, Heidelberg, Germany, 5–8 July 2016; pp. 893–900. [Google Scholar]
- Li, Y.; Wei, P.; Li, G.; Chen, Y.; Gao, L.; Zhang, H. Joint detection, tracking and classification of multiple extended objects based on the JDTC-GIW-MeMBer filter. Signal Process. 2021, 178, 107800. [Google Scholar] [CrossRef]
- Hu, Q.; Ji, H.; Zhang, Y. A standard PHD filter for joint tracking and classification of maneuvering extended targets using random matrix. Signal Process. 2018, 144, 352–363. [Google Scholar] [CrossRef]
- Sun, L.; Lan, J.; Li, X.R. Joint tracking and classification of extended object based on support functions. IET Radar Sonar Navig. 2018, 12, 685–693. [Google Scholar] [CrossRef]
- Yang, W.; Wang, Z.; Fu, Y.; Pan, X.; Li, X. Joint detection, tracking and classification of a manoeuvring target in the finite set statistics framework. IET Signal Process. 2015, 9, 10–20. [Google Scholar] [CrossRef]
- Dan, L.; Wong, K.D.; Hu, H.; Sayeed, A.M. Detection, classification, and tracking of targets. IEEE Signal Process. Mag. 2002, 19, 17–29. [Google Scholar] [CrossRef] [Green Version]
- Chavez-Garcia, R.O.; Aycard, O. Multiple sensor fusion and classification for moving object detection and tracking. IEEE Trans. Intell. Transp. Syst. 2016, 17, 525–534. [Google Scholar] [CrossRef]
- Li, Y.; Wei, P.; Wei, Y.; Gao, L.; Zhang, H. Loopy sum-product algorithm based joint detection, tracking and classification of extended objects with analytic implementations. Signal Process. 2022, 196, 108520. [Google Scholar] [CrossRef]
- Okello, N.; Thorns, G. Threat assessment using Bayesian networks. In Proceedings of the International Conference Information Fusion, Cairns, QLD, Australia, 8–11 July 2003; pp. 1102–1109. [Google Scholar]
- Nguyen, X.T. Threat assessment in tactical airborne environments. In Proceedings of the International Conference Information Fusion, CAnnapolis, MD, USA, 8–11 July 2002; pp. 1300–1307. [Google Scholar]
- Jiang, H.; Xu, L.; Zhan, K. Joint tracking and classification based on aerodynamic model and radar cross section. Pattern Recognit. 2014, 47, 3096–3105. [Google Scholar] [CrossRef]
- Xu, K.; Kong, D.; Chen, J. Target threat assessment based on improved RBF neural network. In Proceedings of the Chinese Intelligent Automation Conference, Fuzhou, China, 30 March 2015; pp. 559–566. [Google Scholar] [CrossRef]
- Lan, J.; Li, X. Joint tracking and classification of extended object using random matrix. In Proceedings of the International Conference Information Fusion, Istanbul, Turkey, 9–12 July 2013; pp. 1550–1557. [Google Scholar]
- Granström, K.; Svensson, L.; Reuter, S.; Xia, Y.; Fatemi, M. Likelihood-based data association for extended object tracking using sampling methods. IEEE Trans. Intell. Veh. 2018, 3, 30–45. [Google Scholar] [CrossRef]
- Scheel, A.; Granström, K.; Meissner, D.; Reuter, S.; Dietmayer, K. Tracking and data segmentation using a GGIW filter with mixture clustering. In Proceedings of the International Conference Information Fusion, Salamanca, Spain, 7–10 July 2014; pp. 1–8. [Google Scholar]
- Bar-Shalom, Y. Multitarget-Multisensor Tracking: Applications and Advances; Artech House: Norwood, MA, USA, 2000; Volume 3. [Google Scholar]
- Granström, K.; Lundquist, C.; Orguner, O. Extended target tracking using a Gaussian-mixture PHD filter. IEEE Trans. Aerosp. Electron. Syst. 2012, 48, 3268–3286. [Google Scholar] [CrossRef]
- Schuhmacher, D.; Vo, B.; Vo, B. A consistent metric for performance evaluation of multi-object filters. IEEE Trans. Signal Process. 2008, 56, 3447–3457. [Google Scholar] [CrossRef]
- Li, X.R.; Jilkov, V.P. Survey of maneuvering target tracking. Part V. Multiple-model methods. IEEE Trans. Aerosp. Electron. Syst. 2005, 41, 1255–1321. [Google Scholar] [CrossRef]
- Murty, K. An algorithm for ranking all the assignments in order of increasing cost. Oper. Res. 1968, 16, 682–687. [Google Scholar] [CrossRef]
- Williams, J.L. An efficient, variational approximation of the best fitting multi-Bernoulli filter. IEEE Trans. Signal Process. 2015, 63, 258–273. [Google Scholar] [CrossRef] [Green Version]
• The initial birth PPP intensity at time is given by |
---|
• The initial PPP intensity for undetected EOs at time is described as . |
• The initial MBM parameters: , and . |
• The spatial distribution of clutter is uniform, , where A is volume of the surveillance area. |
Target | Model | Birth Time | Death Time | Class |
---|---|---|---|---|
1 | NCV | 1 s | 80 s | 1 |
2 | NCV | 1 s | 80 s | 2 |
3 | NCV | 1 s | 80 s | 1 |
4 | NCV | 10 s | 30 s | 1 |
5 | NCV | 50 s | 70 s | 2 |
Target | Models | Model Duration Time | Birth Time | Death Time | Class |
---|---|---|---|---|---|
1 | NCV | 1–15 s, 32–50 s, 67–80 s | 1 s | 80 s | 1 |
NCT | 16–31 s, 51–66 s | ||||
2 | NCV | 1–15 s, 32–50 s, 67–80 s | 1 s | 80 s | 2 |
NCT | 16–31 s, 51–66 s | ||||
3 | NCV | 1–15 s, 32–50 s, 67–80 s | 1 s | 80 s | 1 |
NCT | 16–31 s, 51–66 s |
Algorithm | Scenario 1 | Scenario 2 |
---|---|---|
JDTC-PMBM-GGIW | 16.59 s | 8.89 s |
JDTC-GIW-MeMBer | 4.25 s | 2.18 s |
JDTC-GIW-PHD | 4.01 s | 1.94 s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Wei, P.; You, M.; Wei, Y.; Zhang, H. Joint Detection, Tracking, and Classification of Multiple Extended Objects Based on the JDTC-PMBM-GGIW Filter. Remote Sens. 2023, 15, 887. https://doi.org/10.3390/rs15040887
Li Y, Wei P, You M, Wei Y, Zhang H. Joint Detection, Tracking, and Classification of Multiple Extended Objects Based on the JDTC-PMBM-GGIW Filter. Remote Sensing. 2023; 15(4):887. https://doi.org/10.3390/rs15040887
Chicago/Turabian StyleLi, Yuansheng, Ping Wei, Mingyi You, Yifan Wei, and Huaguo Zhang. 2023. "Joint Detection, Tracking, and Classification of Multiple Extended Objects Based on the JDTC-PMBM-GGIW Filter" Remote Sensing 15, no. 4: 887. https://doi.org/10.3390/rs15040887
APA StyleLi, Y., Wei, P., You, M., Wei, Y., & Zhang, H. (2023). Joint Detection, Tracking, and Classification of Multiple Extended Objects Based on the JDTC-PMBM-GGIW Filter. Remote Sensing, 15(4), 887. https://doi.org/10.3390/rs15040887