Exploring the Spatio-Temporal Characteristics of Urban Thermal Environment during Hot Summer Days: A Case Study of Wuhan, China
<p>Study area. (<b>a</b>) Grid points of the air temperature; (<b>b</b>) Land uses.</p> "> Figure 2
<p>The mean air temperature isotherm of an extended area including the city of Wuhan from 17 July to 23 July. (<b>a</b>) Nighttime; (<b>b</b>) daytime.</p> "> Figure 3
<p>The mean air temperature profiles along line AB.</p> "> Figure 4
<p>UHI index of the city of Wuhan in the summer of 2018.</p> "> Figure 5
<p>The SDEs of the city of Wuhan. (<b>a</b>) 17 July; (<b>b</b>) 18 July; (<b>c</b>) 19 July; (<b>d</b>) 20 July; (<b>e</b>) 21 July; (<b>f</b>) 22 July; (<b>g</b>) 23 July.</p> "> Figure 6
<p>Local spatial pattern of the air temperature at 06:00 (significant level at 0.05). (<b>a</b>) 17 July; (<b>b</b>) 18 July; (<b>c</b>) 19 July; (<b>d</b>) 20 July; (<b>e</b>) 21 July; (<b>f</b>) 22 July; (<b>g</b>) 23 July.</p> "> Figure 7
<p>Local spatial pattern of the air temperature at 14:00 (significant level at 0.05). (<b>a</b>) 17 July; (<b>b</b>) 18 July; (<b>c</b>) 19 July; (<b>d</b>) 20 July; (<b>e</b>) 21 July; (<b>f</b>) 22 July; (<b>g</b>) 23 July.</p> "> Figure 8
<p>Local spatial pattern of the air temperature at 22:00 (significant level at 0.05). (<b>a</b>) 17 July; (<b>b</b>) 18 July; (<b>c</b>) 19 July; (<b>d</b>) 20 July; (<b>e</b>) 21 July; (<b>f</b>) 22 July; (<b>g</b>) 23 July.</p> "> Figure 9
<p>Proportions of land uses in the local spatial patterns. (<b>a</b>) HH cluster; (<b>b</b>) LL cluster; (<b>c</b>) no significance cluster.</p> "> Figure 10
<p>Comparison of UHI index and the standard deviation of the air temperature (<span class="html-italic">Ta</span>-SD) in the study area.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data Source
2.2. Standard Deviational Ellipse and Urban Heat Island Index
2.3. Spatial Pattern Analysis
2.4. Regression Analysis
3. Results
3.1. General Spatio-Temporal Distribution of the Thermal Environment
3.2. Local Spatial Pattern of the Thermal Environment
3.3. Land Uses Contributing to Air Temperature Variation
4. Discussion
4.1. Advantage of the UHI Index
4.2. Thermal Environment in Relation to Weather Condition
4.3. Limitations of the Regression Models
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jedlovec, G.; Crane, D.; Quattrochi, D. Urban heat wave hazard and risk assessment. Results Phys. 2017, 7, 4294–4295. [Google Scholar] [CrossRef]
- He, B.J.; Wang, J.S.; Liu, H.M.; Ulpiani, G. Localized synergies between heat waves and urban heat islands: Implications on human thermal comfort and urban heat management. Environ. Res. 2021, 193, 18. [Google Scholar] [CrossRef]
- Li, D.; Bou-Zeid, E. Synergistic Interactions between Urban Heat Islands and Heat Waves: The Impact in Cities Is Larger than the Sum of Its Parts. J. Appl. Meteorol. Climatol. 2013, 52, 2051–2064. [Google Scholar] [CrossRef] [Green Version]
- Tan, J.G.; Zheng, Y.F.; Tang, X.; Guo, C.Y.; Li, L.P.; Song, G.X.; Zhen, X.R.; Yuan, D.; Kalkstein, A.J.; Li, F.R.; et al. The urban heat island and its impact on heat waves and human health in Shanghai. Int. J. Biometeorol. 2010, 54, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.G.; Bai, X.M.; Briggs, J.M. Global change and the ecology of cities. Science 2008, 319, 756–760. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.L.; Zhao, H.M.; Li, P.X.; Yin, Z.Y. Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes. Remote Sens. Environ. 2006, 104, 133–146. [Google Scholar] [CrossRef]
- Xian, G.; Shi, H.; Auch, R.; Gallo, K.; Zhou, Q.; Wu, Z.T.; Kolian, M. The effects of urban land cover dynamics on urban heat Island intensity and temporal trends. GISci. Remote Sens. 2021, 58, 501–515. [Google Scholar] [CrossRef]
- Radhi, H.; Fikry, F.; Sharples, S. Impacts of urbanisation on the thermal behaviour of new built up environments: A scoping study of the urban heat island in Bahrain. Landsc. Urban Plan. 2013, 113, 47–61. [Google Scholar] [CrossRef]
- Connors, J.P.; Galletti, C.S.; Chow, W.T.L. Landscape configuration and urban heat island effects: Assessing the relationship between landscape characteristics and land surface temperature in Phoenix, Arizona. Landscape Ecol. 2013, 28, 271–283. [Google Scholar] [CrossRef]
- Hart, M.; Sailor, D. Quantifying the influence of land-use and surface characteristics on spatial variability in the urban heat island. Theor. Appl. Climatol. 2009, 95, 397–406. [Google Scholar] [CrossRef]
- Morini, E.; Touchaei, A.G.; Castellani, B.; Rossi, F.; Cotana, F. The Impact of Albedo Increase to Mitigate the Urban Heat Island in Terni (Italy) Using the WRF Model. Sustainability 2016, 8, 999. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.S.; Wang, X.Q.; Balzter, H.; Qiu, B.W.; Cheng, J.Y. Directional and Zonal Analysis of Urban Thermal Environmental Change in Fuzhou as an Indicator of Urban Landscape Transformation. Remote Sens. 2019, 11, 2810. [Google Scholar] [CrossRef] [Green Version]
- Maimaitiyiming, M.; Ghulam, A.; Tiyip, T.; Pla, F.; Latorre-Carmona, P.; Halik, U.; Sawut, M.; Caetano, M. Effects of green space spatial pattern on land surface temperature: Implications for sustainable urban planning and climate change adaptation. ISPRS-J. Photogramm. Remote Sens. 2014, 89, 59–66. [Google Scholar] [CrossRef] [Green Version]
- Kong, F.H.; Yin, H.W.; James, P.; Hutyra, L.R.; He, H.S. Effects of spatial pattern of greenspace on urban cooling in a large metropolitan area of eastern China. Landsc. Urban Plan. 2014, 128, 35–47. [Google Scholar] [CrossRef]
- Masoudi, M.; Tan, P.Y. Multi-year comparison of the effects of spatial pattern of urban green spaces on urban land surface temperature. Landsc. Urban Plan. 2019, 184, 44–58. [Google Scholar] [CrossRef]
- Nakayama, T.; Hashimoto, S. Analysis of the ability of water resources to reduce the urban heat island in the Tokyo megalopolis. Environ. Pollut. 2011, 159, 2164–2173. [Google Scholar] [CrossRef]
- Lin, Y.; Wang, Z.F.; Jim, C.Y.; Li, J.B.; Deng, J.S.; Liu, J.G. Water as an urban heat sink: Blue infrastructure alleviates urban heat island effect in mega-city agglomeration. J. Clean. Prod. 2020, 262, 8. [Google Scholar] [CrossRef]
- Steeneveld, G.J.; Koopmans, S.; Heusinkveld, B.G.; Theeuwes, N.E. Refreshing the role of open water surfaces on mitigating the maximum urban heat island effect. Landsc. Urban Plan. 2014, 121, 92–96. [Google Scholar] [CrossRef]
- Oke, T.R.; Mills, G.; Christen, A.; Voogt, J.A. Urban Climates, 1st ed.; Cambridge University Press: Cambridge, UK, 2017; pp. 197–200. [Google Scholar]
- Schwarz, N.; Schlink, U.; Franck, U.; Grossmann, K. Relationship of land surface and air temperatures and its implications for quantifying urban heat island indicators-An application for the city of Leipzig (Germany). Ecol. Indic. 2012, 18, 693–704. [Google Scholar] [CrossRef]
- Sun, T.; Sun, R.H.; Chen, L.D. The Trend Inconsistency between Land Surface Temperature and Near Surface Air Temperature in Assessing Urban Heat Island Effects. Remote Sens. 2020, 12, 1271. [Google Scholar] [CrossRef]
- Venter, Z.S.; Chakraborty, T.; Lee, X.H. Crowdsourced air temperatures contrast satellite measures of the urban heat island and its mechanisms. Sci. Adv. 2021, 7, 9. [Google Scholar] [CrossRef] [PubMed]
- Azevedo, J.A.; Chapman, L.; Muller, C.L. Quantifying the Daytime and Night-Time Urban Heat Island in Birmingham, UK: A Comparison of Satellite Derived Land Surface Temperature and High Resolution Air Temperature Observations. Remote Sens. 2016, 8, 153. [Google Scholar] [CrossRef] [Green Version]
- Oke, T.R. City size and urban heat island. Atmos. Environ. 1973, 7, 769–779. [Google Scholar] [CrossRef]
- Earl, N.; Simmonds, I.; Tapper, N. Weekly cycles in peak time temperatures and urban heat island intensity. Environ. Res. Lett. 2016, 11, 10. [Google Scholar] [CrossRef]
- Stewart, I.D. A systematic review and scientific critique of methodology in modern urban heat island literature. Int. J. Climatol. 2011, 31, 200–217. [Google Scholar] [CrossRef]
- Du, H.Y.; Wang, D.D.; Wang, Y.Y.; Zhao, X.L.; Qin, F.; Jiang, H.; Cai, Y.L. Influences of land cover types, meteorological conditions, anthropogenic heat and urban area on surface urban heat island in the Yangtze River Delta Urban Agglomeration. Sci. Total Environ. 2016, 571, 461–470. [Google Scholar] [CrossRef]
- Cui, Y.P.; Xu, X.L.; Dong, J.W.; Qin, Y.C. Influence of Urbanization Factors on Surface Urban Heat Island Intensity: A Comparison of Countries at Different Developmental Phases. Sustainability 2016, 8, 706. [Google Scholar] [CrossRef] [Green Version]
- Deilami, K.; Kamruzzaman, M.; Hayes, J.F. Correlation or Causality between Land Cover Patterns and the Urban Heat Island Effect? Evidence from Brisbane, Australia. Remote Sens. 2016, 8, 716. [Google Scholar] [CrossRef] [Green Version]
- Estoque, R.C.; Murayama, Y.; Myint, S.W. Effects of landscape composition and pattern on land surface temperature: An urban heat island study in the megacities of Southeast Asia. Sci. Total Environ. 2017, 577, 349–359. [Google Scholar] [CrossRef]
- Yao, R.; Wang, L.C.; Huang, X.; Zhang, W.W.; Li, J.L.; Niu, Z.G. Interannual variations in surface urban heat island intensity and associated drivers in China. J. Environ. Manag. 2018, 222, 86–94. [Google Scholar] [CrossRef]
- Yao, R.; Wang, L.C.; Huang, X.; Gong, W.; Xia, X.G. Greening in Rural Areas Increases the Surface Urban Heat Island Intensity. Geophys. Res. Lett. 2019, 46, 2204–2212. [Google Scholar] [CrossRef]
- Han, S.; Liu, B.C.; Shi, C.X.; Liu, Y.; Qiu, M.J.; Sun, S. Evaluation of CLDAS and GLDAS Datasets for Near-Surface Air Temperature over Major Land Areas of China. Sustainability 2020, 12, 4311. [Google Scholar] [CrossRef]
- Huang, X.L.; Han, S.; Shi, C.X. Evaluation of Three Air Temperature Reanalysis Datasets in the Alpine Region of the Qinghai-Tibet Plateau. Remote Sens. 2022, 14, 4447. [Google Scholar] [CrossRef]
- Leng, P.; Li, Z.L.; Duan, S.B.; Gao, M.F.; Huo, H.Y. A practical approach for deriving all-weather soil moisture content using combined satellite and meteorological data. ISPRS-J. Photogramm. Remote Sens. 2017, 131, 40–51. [Google Scholar] [CrossRef]
- Zhou, W.; Peng, B.; Shi, J.C.; Wang, T.X.; Dhital, Y.P.; Yao, R.Z.; Yu, Y.C.; Lei, Z.T.; Zhao, R. Estimating High Resolution Daily Air Temperature Based on Remote Sensing Products and Climate Reanalysis Datasets over Glacierized Basins: A Case Study in the Langtang Valley, Nepal. Remote Sens. 2017, 9, 959. [Google Scholar] [CrossRef] [Green Version]
- Rao, Y.H.; Liang, S.L.; Wang, D.D.; Yu, Y.Y.; Song, Z.; Zhou, Y.; Shen, M.G.; Xu, B.Q. Estimating daily average surface air temperature using satellite land surface temperature and top-of-atmosphere radiation products over the Tibetan Plateau. Remote Sens. Environ. 2019, 234, 14. [Google Scholar] [CrossRef]
- Chen, Y.; Liang, S.L.; Ma, H.; Li, B.; He, T.; Wang, Q. An all-sky 1 km daily land surface air temperature product over mainland China for 2003–2019 from MODIS and ancillary data. Earth Syst. Sci. Data 2021, 13, 4241–4261. [Google Scholar] [CrossRef]
- Ran, Y.H.; Li, X.; Lu, L. Evaluation of four remote sensing based land cover products over China. Int. J. Remote Sens. 2010, 31, 391–401. [Google Scholar] [CrossRef]
- Lefever, D.W. Measuring geographic concentration by means of the standard deviational ellipse. Am. J. Sociol. 1926, 32, 88–94. [Google Scholar] [CrossRef]
- Johnson, D.P.; Wilson, J.S. The socio-spatial dynamics of extreme urban heat events: The case of heat-related deaths in Philadelphia. Appl. Geogr. 2009, 29, 419–434. [Google Scholar] [CrossRef]
- Xu, J.H.; Zhao, Y.; Zhong, K.W.; Zhang, F.F.; Liu, X.L.; Sun, C.G. Measuring spatio-temporal dynamics of impervious surface in Guangzhou, China, from 1988 to 2015, using time-series Landsat imagery. Sci. Total Environ. 2018, 627, 264–281. [Google Scholar] [CrossRef] [PubMed]
- Anselin, L. Local indicators of spatial association—LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Anselin, L.; Rey, S. Properties of tests for spatial dependence in linear-regression models. Geogr. Anal. 1991, 23, 112–131. [Google Scholar] [CrossRef]
- Oke, T.R. The energetic basis of the urban heat-island. Q. J. R. Meteorol. Soc. 1982, 108, 1–24. [Google Scholar] [CrossRef]
- Basara, J.B.; Hall, P.K.; Schroeder, A.J.; Illston, B.G.; Nemunaitis, K.L. Diurnal cycle of the Oklahoma City urban heat island. J. Geophys. Res.-Atmos. 2008, 113, 16. [Google Scholar] [CrossRef]
- Wolters, D.; Brandsma, T. Estimating the Urban Heat Island in Residential Areas in the Netherlands Using Observations by Weather Amateurs. J. Appl. Meteorol. Climatol. 2012, 51, 711–721. [Google Scholar] [CrossRef]
- Hardin, A.W.; Liu, Y.; Cao, G.; Vanos, J.K. Urban heat island intensity and spatial variability by synoptic weather type in the northeast U.S. Urban Clim. 2018, 24, 747–762. [Google Scholar] [CrossRef]
- Morris, C.J.G.; Simmonds, I.; Plummer, N. Quantification of the influences of wind and cloud on the nocturnal urban heat island of a large city. J. Appl. Meteorol. 2001, 40, 169–182. [Google Scholar] [CrossRef]
- Ngarambe, J.; Oh, J.W.; Su, M.A.; Santamouris, M.; Yun, G.Y. Influences of wind speed, sky conditions, land use and land cover characteristics on the magnitude of the urban heat island in Seoul: An exploratory analysis. Sust. Cities Soc. 2021, 71, 22. [Google Scholar] [CrossRef]
- Myint, S.W.; Brazel, A.; Okin, G.; Buyantuyev, A. Combined Effects of Impervious Surface and Vegetation Cover on Air Temperature Variations in a Rapidly Expanding Desert City. GISci. Remote Sens. 2010, 47, 301–320. [Google Scholar] [CrossRef]
- Schatz, J.; Kucharik, C.J. Urban climate effects on extreme temperatures in Madison, Wisconsin, USA. Environ. Res. Lett. 2015, 10, 13. [Google Scholar] [CrossRef] [Green Version]
- Coseo, P.; Larsen, L. Accurate Characterization of Land Cover in Urban Environments: Determining the Importance of Including Obscured Impervious Surfaces in Urban Heat Island Models. Atmosphere 2019, 10, 347. [Google Scholar] [CrossRef] [Green Version]
- Tsin, P.K.; Knudby, A.; Krayenhoff, E.S.; Brauer, M.; Henderson, S.B. Land use regression modeling of microscale urban air temperatures in greater Vancouver, Canada. Urban Clim. 2020, 32, 12. [Google Scholar] [CrossRef]
Date | Weather Condition |
---|---|
17 July | Cloudy |
18 July | Cloudy |
19 July | Sunny |
20 July | Sunny |
21 July | Sunny |
22 July | Cloudy |
23 July | Cloudy |
Date | Time | Constant | PWDA | PWBA | PISA | Max VIF | R2 | Adjusted R2 |
---|---|---|---|---|---|---|---|---|
17 July | 06:00 | 26.77 *** | −1.202 *** | 1.223 *** | 2.594 *** | 1.207 | 0.430 | 0.422 |
14:00 | 35.67 *** | −0.963 *** | 1.026 *** | 1.145 *** | 1.207 | 0.408 | 0.399 | |
22:00 | 30.33 *** | −2.247 *** | 1.175 *** | 2.756 *** | 1.207 | 0.614 | 0.608 | |
18 July | 06:00 | 27.12 *** | −1.590 *** | 1.279 *** | 3.009 *** | 1.207 | 0.499 | 0.492 |
14:00 | 37.02 *** | −1.517 *** | - | - | - | 0.329 | 0.326 | |
22:00 | 30.82 *** | −2.860 *** | 1.287 *** | 2.877 *** | 1.207 | 0.555 | 0.548 | |
19 July | 06:00 | 27.19 *** | −1.749 *** | 1.488 *** | 2.995 *** | 1.207 | 0.522 | 0.515 |
14:00 | 37.45 *** | −1.061 *** | - | 0.327 ** | 1.068 | 0.335 | 0.328 | |
22:00 | 30.75 *** | −2.710 *** | 1.749 *** | 3.367 *** | 1.207 | 0.523 | 0.516 | |
20 July | 06:00 | 27.10 *** | −2.375 *** | 1.742 *** | 3.160 *** | 1.207 | 0.504 | 0.497 |
14:00 | 37.68 *** | −1.568 *** | - | −0.634 *** | 1.068 | 0.373 | 0.367 | |
22:00 | 30.47 *** | −3.102 *** | 2.048 *** | 2.960 *** | 1.207 | 0.546 | 0.539 | |
21 July | 06:00 | 27.34 *** | −2.751 *** | 1.630 *** | 2.902 *** | 1.207 | 0.591 | 0.585 |
14:00 | 38.34 *** | −0.895 *** | - | - | - | 0.169 | 0.165 | |
22:00 | 30.99 *** | −3.622 *** | 2.528 *** | 3.152 *** | 1.207 | 0.526 | 0.519 | |
22 July | 06:00 | 26.84 *** | −2.669 *** | 2.176 *** | 2.658 *** | 1.207 | 0.487 | 0.479 |
14:00 | 36.63 *** | −1.862 *** | - | - | - | 0.473 | 0.471 | |
22:00 | 30.44 *** | −2.325 *** | 1.862 *** | 2.431 *** | 1.207 | 0.495 | 0.487 | |
23 July | 06:00 | 26.97 *** | −2.218 *** | 1.847 *** | 2.715 *** | 1.207 | 0.463 | 0.455 |
14:00 | 36.72 *** | −0.923 *** | 0.362 *** | - | 1.113 | 0.355 | 0.349 | |
22:00 | 30.15 *** | −2.300 *** | 0.882 *** | 2.147 *** | 1.207 | 0.535 | 0.528 |
Date | Time | Lag Coefficient | Constant | PWDA | PWBA | PISA | R2 |
---|---|---|---|---|---|---|---|
17 July | 06:00 | 0.986 *** | 0.358 * | −0.264 *** | 0.068 | 0.154 * | 0.977 |
14:00 | 0.962 *** | 1.368 *** | −0.289 *** | 0.071 | 0.068 | 0.962 | |
22:00 | 0.965 *** | 1.057 *** | −0.373 *** | 0.040 | 0.221 *** | 0.986 | |
18 July | 06:00 | 0.984 *** | 0.429 * | −0.299 *** | 0.051 | 0.199 ** | 0.981 |
14:00 | 0.964 *** | 1.356 *** | −0.395 *** | - | - | 0.934 | |
22:00 | 0.972 *** | 0.862 *** | −0.388 *** | 0.016 | 0.202 *** | 0.990 | |
19 July | 06:00 | 0.982 *** | 0.476 ** | −0.329 *** | 0.049 | 0.184 ** | 0.982 |
14:00 | 0.956 *** | 1.682 *** | −0.388 *** | - | −0.009 | 0.892 | |
22:00 | 0.980 *** | 0.611 ** | −0.348 *** | 0.029 | 0.235 *** | 0.990 | |
20 July | 06:00 | 0.981 *** | 0.497 ** | −0.341 *** | 0.041 | 0.214 ** | 0.985 |
14:00 | 0.962 *** | 1.456 *** | −0.420 *** | - | −0.119 ** | 0.934 | |
22:00 | 0.970 *** | 0.894 ** | −0.301 *** | 0.099 | 0.254 *** | 0.989 | |
21 July | 06:00 | 0.963 *** | 1.005 *** | −0.404 *** | 0.077 | 0.215 *** | 0.987 |
14:00 | 0.973 *** | 1.074 ** | −0.331 *** | - | - | 0.900 | |
22:00 | 0.979 *** | 0.643 ** | −0.329 *** | 0.041 | 0.207 *** | 0.993 | |
22 July | 06:00 | 0.980 *** | 0.514 ** | −0.322 *** | 0.099 | 0.188 ** | 0.989 |
14:00 | 0.941 *** | 2.167 *** | −0.457 *** | - | - | 0.941 | |
22:00 | 0.974 *** | 0.793 ** | −0.340 *** | −0.003 | 0.213 *** | 0.984 | |
23 July | 06:00 | 0.980 *** | 0.531** | −0.320 *** | −0.004 | 0.191 *** | 0.990 |
14:00 | 0.947 *** | 1.952 *** | −0.334 *** | 0.011 | - | 0.891 | |
22:00 | 0.969 *** | 0.927 ** | −0.353 *** | 0.035 | 0.134 * | 0.970 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, W.; Hou, J.; Shen, X.; Xiang, R. Exploring the Spatio-Temporal Characteristics of Urban Thermal Environment during Hot Summer Days: A Case Study of Wuhan, China. Remote Sens. 2022, 14, 6084. https://doi.org/10.3390/rs14236084
Shi W, Hou J, Shen X, Xiang R. Exploring the Spatio-Temporal Characteristics of Urban Thermal Environment during Hot Summer Days: A Case Study of Wuhan, China. Remote Sensing. 2022; 14(23):6084. https://doi.org/10.3390/rs14236084
Chicago/Turabian StyleShi, Weifang, Jiaqi Hou, Xiaoqian Shen, and Rongbiao Xiang. 2022. "Exploring the Spatio-Temporal Characteristics of Urban Thermal Environment during Hot Summer Days: A Case Study of Wuhan, China" Remote Sensing 14, no. 23: 6084. https://doi.org/10.3390/rs14236084
APA StyleShi, W., Hou, J., Shen, X., & Xiang, R. (2022). Exploring the Spatio-Temporal Characteristics of Urban Thermal Environment during Hot Summer Days: A Case Study of Wuhan, China. Remote Sensing, 14(23), 6084. https://doi.org/10.3390/rs14236084