Rethinking Design and Evaluation of 3D Point Cloud Segmentation Models
<p>Definition of the robustness term <span class="html-italic">R</span>. Please note that m1 and m2 correspond to two different models, and class1 and class2 indicate two distinct classes. Additionally, the values in the cells of the last row are just example values.</p> "> Figure 2
<p>ShapeNet-part 3D point cloud objects [<a href="#B16-remotesensing-14-06049" class="html-bibr">16</a>].</p> "> Figure 3
<p>S3DIS dataset [<a href="#B17-remotesensing-14-06049" class="html-bibr">17</a>,<a href="#B45-remotesensing-14-06049" class="html-bibr">45</a>,<a href="#B46-remotesensing-14-06049" class="html-bibr">46</a>].</p> "> Figure 4
<p>Comparison of deep learning models in terms of <math display="inline"><semantics> <mrow> <mi>m</mi> <mi>I</mi> <mi>o</mi> <mi>U</mi> </mrow> </semantics></math> over all testing epochs. The bullet in the middle of each bar denotes the mean (<math display="inline"><semantics> <mi>μ</mi> </semantics></math>) and the bar shows the error interval (<math display="inline"><semantics> <mrow> <mo>±</mo> <mi>ϵ</mi> </mrow> </semantics></math> of the mean). Figure (<b>a</b>) shows the results in the ShapeNet-part dataset and Figure (<b>b</b>) the results in S3DIS.</p> "> Figure 5
<p>Nemenyi comparison of deep learning models. The bullets in the bars represent the mean ranks of each model and the vertical lines show the critical difference in the statistical test. Figure (<b>a</b>) shows the results in the ShapeNet-part dataset and Figure (<b>b</b>) the results in S3DIS.</p> ">
Abstract
:1. Introduction
- We conduct a multivariate analysis of well-known and representative 3D point cloud segmentation models using design and experimental properties;
- We assess the behavior of the individual inner model components and provide a correspondence between their design and experimental properties.
2. Related Work
2.1. 2D and 3D Imaging
2.2. Current State in 3D Point Cloud Analysis
2.3. Contextualising Our Work
3. Conceptual Analysis Framework
3.1. Design Properties
- Aggregation Level
- Local Aggregation operation features the models that focus on the local characteristics and structures of the point cloud object precisely capturing the points’ topology. Specifically, local aggregation enables the matching of features and relative positions of a neighborhood of points to a center point and outputs the transformed feature vector for this center point [14].
- Global Aggregation operation features the models that focus on the global characteristics and structure of the point cloud object. In order to aggregate information globally from all points, global aggregation operators analyze the input 3D point cloud using point-by-point transformations followed by a global pooling layer [14].
- Aggregation Type
- Adaptive Weight techniques conduct weighted point neighborhood aggregation by taking into account the relative placements of the points [15,36] or point density [37]. Such techniques mostly rely either on the design of specialized modules, which typically necessitate computationally costly parameter tuning for distinct applications, or on the execution of computationally expensive graph kernels. These adaptive weigh-based strategies are considered more accurate than point-wise methods but at the cost of increased computational complexity.
- Position Pooling aggregation combines neighboring point features through element-wise multiplication followed by an average pooling layer. It is a novel technique that uses no learnable weights while performing on par with the other operators [14].
- Neural Network Method
- MLP -based models utilize point-wise operations using fully connected layers in their design architecture. Shared MLPs are typically used as the basic units in point-wise MLP-based methods. Please note, that a shared MLP denotes the use of an identical MLP on each point in the point cloud, as utilized in PointNet [11].
- Convolution -based models use point-based convolutional operations in their network design to extract point cloud geometrical features.
- The Invariance of a model to permutations or affine transformations is denoted below in Equation (1).
- Permutation invariance refers to the invariability of the results of a model to permutations of the unordered input point cloud;
- Size invariance features the models that show regularity and non-variability to different sizes and scales of the input point cloud;
- Density invariance features the regularity and invariance to variable point density of the input point cloud;
- Rotation invariance refers to the constant and stable results of models in presence of geometrical transformations of a point cloud object;
- The Number of Parameters denotes the total amount of parameters of a model according to its initial design.
3.2. Experimental Properties
3.2.1. Accuracy
3.2.2. Efficiency
3.2.3. Robustness
3.2.4. Generalized Metrics
- ,
- ,
- ,
- ,
- ,
- ,
- .
3.2.5. Experimental Properties Summary
- Accuracy
- Per-Instance Accuracy shows the performance evaluation according to the metric.
- Per-Class Accuracy portrays the performance evaluation according to the metric.
- Efficiency
- Time Efficiency evaluates the models according to the , , and . Please remind that is the total run time of the learning process, and , the time spent to achieve the best and in the test set respectively and the number of epochs needed to achieve the aforementioned accuracy scores.
- GPU Memory Efficiency evaluates the models according to the , i.e., the average memory allocation in percentage values in the whole learning process.
- Robustness characterizes the per-class robust models in the testing phase of the learning process, based on a statistical ranking strategy.
- Generalized Performance
- Per-Class evaluates the models according to the metric, which incorporates per-class segmentation accuracy, time efficiency and memory efficiency, and robustness.
- Per-Instance evaluates the models according to the metric, which embodies per-instance segmentation accuracy, time efficiency and memory efficiency, and robustness.
- Generalized evaluates the models according to the generalized metric, i.e., the arithmetic mean of and .
3.3. Models
4. Evaluation
4.1. Evaluation Protocol
4.2. Data
4.3. Analysis of Results
4.3.1. Accuracy
4.3.2. Efficiency
4.3.3. Robustness
4.3.4. Generalized Metrics
4.3.5. Relation between Design and Experimental Properties
5. Discussion & Limitations
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhou, W.; Berrio, J.S.; Worrall, S.; Nebot, E. Automated Evaluation of Semantic Segmentation Robustness for Autonomous Driving. IEEE Trans. Intell. Transp. Syst. 2020, 21, 1951–1963. [Google Scholar] [CrossRef] [Green Version]
- Cui, Y.; Chen, R.; Chu, W.; Chen, L.; Tian, D.; Li, Y.; Cao, D. Deep Learning for Image and Point Cloud Fusion in Autonomous Driving: A Review. IEEE Trans. Intell. Transp. Syst. 2022, 23, 722–739. [Google Scholar] [CrossRef]
- Bello, S.A.; Yu, S.; Wang, C.; Adam, J.M.; Li, J. Review: Deep Learning on 3D Point Clouds. Remote Sens. 2020, 12, 1729. [Google Scholar] [CrossRef]
- Cai, Y.; Fan, L.; Atkinson, P.M.; Zhang, C. Semantic Segmentation of Terrestrial Laser Scanning Point Clouds Using Locally Enhanced Image-Based Geometric Representations. IEEE Trans. Geosci. Remote. Sens. 2022, 60, 5702815. [Google Scholar] [CrossRef]
- Poux, F.; Mattes, C.; Selman, Z.; Kobbelt, L. Automatic region-growing system for the segmentation of large point clouds. Autom. Constr. 2022, 138, 104250. [Google Scholar] [CrossRef]
- Wang, Q.; Tan, Y.; Mei, Z. Computational Methods of Acquisition and Processing of 3D Point Cloud Data for Construction Applications. Arch. Comput. Methods Eng. 2020, 27, 479–499. [Google Scholar] [CrossRef]
- Grilli, E.; Remondino, F. Classification of 3D Digital Heritage. Remote Sens. 2019, 11, 847. [Google Scholar] [CrossRef] [Green Version]
- Saiti, E.; Theoharis, T. Multimodal registration across 3D point clouds and CT-volumes. Comput. Graph. 2022, 106, 259–266. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, H.; Hu, Q.; Liu, H.; Liu, L.; Bennamoun, M. Deep Learning for 3D Point Clouds: A Survey. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 43, 4338–4364. [Google Scholar] [CrossRef]
- Nguyen, A.; Le, B. 3D point cloud segmentation: A survey. In Proceedings of the 6th IEEE Conference on Robotics, Automation and Mechatronics (RAM), Manila, Philippines, 12–15 November 2013; pp. 225–230. [Google Scholar] [CrossRef]
- Qi, C.R.; Su, H.; Mo, K.; Guibas, L.J. PointNet: Deep learning on point sets for 3D classification and segmentation. In Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 77–85. [Google Scholar] [CrossRef] [Green Version]
- Qi, C.R.; Yi, L.; Su, H.; Guibas, L.J.; Li, C.R.Q.; Hao, Y.; Leonidas, S.; Guibas, J. PointNet++: Deep hierarchical feature learning on point sets in a metric space. In Proceedings of the Advances in Neural Information Processing Systems. Neural Information Processing Systems Foundation, Long Beach, CA, USA, 4–9 December 2017; pp. 5100–5109. [Google Scholar] [CrossRef]
- Thomas, H.; Qi, C.R.; Deschaud, J.E.; Marcotegui, B.; Goulette, F.; Guibas, L. KPConv: Flexible and deformable convolution for point clouds. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019; pp. 6410–6419. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Hu, H.; Cao, Y.; Zhang, Z.; Tong, X. A Closer Look at Local Aggregation Operators in Point Cloud Analysis. In Proceedings of the European Conference on Computer Vision (ECCV), Glasgow, UK, 23–28 August 2020; Volume 12368. LNCS. [Google Scholar] [CrossRef]
- Liu, Y.; Fan, B.; Xiang, S.; Pan, C. Relation-Shape Convolutional Neural Network for Point Cloud Analysis. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 16–20 June 2019; pp. 8887–8896. [Google Scholar] [CrossRef] [Green Version]
- Yi, L.; Kim, V.G.; Ceylan, D.; Shen, I.C.; Yan, M.; Su, H.; Lu, C.; Huang, Q.; Sheffer, A.; Guibas, L. A scalable active framework for region annotation in 3D shape collections. ACM Trans. Graph. 2016, 35, 1–12. [Google Scholar] [CrossRef]
- Armeni, I.; Sener, O.; Zamir, A.R.; Jiang, H.; Brilakis, I.; Fischer, M.; Savarese, S. 3D semantic parsing of large-scale indoor spaces. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 1534–1543. [Google Scholar] [CrossRef]
- Minaee, S.; Boykov, Y.Y.; Porikli, F.; Plaza, A.J.; Kehtarnavaz, N.; Terzopoulos, D. Image Segmentation Using Deep Learning: A Survey. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 44, 3523–3542. [Google Scholar] [CrossRef] [PubMed]
- Akkus, Z.; Galimzianova, A.; Hoogi, A.; Rubin, D.L.; Erickson, B.J. Deep Learning for Brain MRI Segmentation: State of the Art and Future Directions. J. Digit. Imaging 2017, 30, 449–459. [Google Scholar] [CrossRef] [Green Version]
- Dou, Q.; Chen, H.; Yu, L.; Zhao, L.; Qin, J.; Wang, D.; Mok, V.C.; Shi, L.; Heng, P.A. Automatic Detection of Cerebral Microbleeds from MR Images via 3D Convolutional Neural Networks. IEEE Trans. Med. Imaging 2016, 35, 1182–1195. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Garcia, A.; Orts-Escolano, S.; Oprea, S.; Villena-Martinez, V.; Martinez-Gonzalez, P.; Garcia-Rodriguez, J. A survey on deep learning techniques for image and video semantic segmentation. Appl. Soft Comput. 2018, 70, 41–65. [Google Scholar] [CrossRef]
- Kamann, C.; Rother, C. Benchmarking the Robustness of Semantic Segmentation Models with Respect to Common Corruptions. Int. J. Comput. Vis. 2020, 129, 462–483. [Google Scholar] [CrossRef]
- Kamann, C.; Rother, C. Increasing the Robustness of Semantic Segmentation Models with Painting-by-Numbers. In Proceedings of the European Conference on Computer Vision (ECCV), Glasgow, UK, 23–28 August 2020; Springer: Cham, Switzerland; Volume 12355. LNCS. [Google Scholar] [CrossRef]
- Isensee, F.; Jaeger, P.F.; Kohl, S.A.A.; Petersen, J.; Maier-Hein, K.H. nnU-Net: A self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 2020, 18, 203–211. [Google Scholar] [CrossRef]
- Weinmann, M.; Jutzi, B.; Hinz, S.; Mallet, C. Semantic point cloud interpretation based on optimal neighborhoods, relevant features and efficient classifiers. ISPRS J. Photogramm. Remote Sens. 2015, 105, 286–304. [Google Scholar] [CrossRef]
- Xie, Y.; Tian, J.; Zhu, X.X. Linking Points with Labels in 3D: A Review of Point Cloud Semantic Segmentation. IEEE Geosci. Remote Sens. Mag. 2020, 8, 38–59. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Zhao, X.; Chen, Z.; Lu, Z. A Review of Deep Learning-Based Semantic Segmentation for Point Cloud. IEEE Access 2019, 7, 179118–179133. [Google Scholar] [CrossRef]
- Chen, L.; Xu, Z.; Fu, Y.; Huang, H.; Wang, S.; Li, H. DAPnet: A Double Self-attention Convolutional Network for Point Cloud Semantic Labeling. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 14, 9680–9691. [Google Scholar] [CrossRef]
- Hegde, S.; Gangisetty, S. PIG-Net: Inception based deep learning architecture for 3D point cloud segmentation. Comput. Graph. 2021, 95, 13–22. [Google Scholar] [CrossRef]
- Peyghambarzadeh, S.M.; Azizmalayeri, F.; Khotanlou, H.; Salarpour, A. Point-PlaneNet: Plane kernel based convolutional neural network for point clouds analysis. Digit. Signal Process. 2020, 98, 102633. [Google Scholar] [CrossRef]
- Hu, Q.; Yang, B.; Khalid, S.; Xiao, W.; Trigoni, N.; Markham, A. Towards Semantic Segmentation of Urban-Scale 3D Point Clouds: A Dataset, Benchmarks and Challenges. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 19–25 June 2021; pp. 4975–4985. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, Q.; Kailkhura, B.; Yu, Z.; Xiao, C.; Mao, Z.M. Benchmarking Robustness of 3D Point Cloud Recognition Against Common Corruptions. arXiv 2022, arXiv:2201.12296. [Google Scholar] [CrossRef]
- Mao, J.; Wang, X.; Li, H. Interpolated convolutional networks for 3D point cloud understanding. In Proceedings of the IEEE International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 1578–1587. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Hua, B.S.; Yeung, S.K. ShellNet: Efficient Point Cloud Convolutional Neural Networks Using Concentric Shells Statistics. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019; pp. 1607–1616. [Google Scholar] [CrossRef] [Green Version]
- Tatarchenko, M.; Park, J.; Koltun, V.; Zhou, Q.Y. Tangent Convolutions for Dense Prediction in 3D. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 3887–3896. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Suo, S.; Ma, W.C.; Pokrovsky, A.; Urtasun, R. Deep Parametric Continuous Convolutional Neural Networks. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 2589–2597. [Google Scholar] [CrossRef]
- Wu, W.; Qi, Z.; Fuxin, L. PointCONV: Deep convolutional networks on 3D point clouds. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 9613–9622. [Google Scholar] [CrossRef] [Green Version]
- Qiu, Z.; Li, Y.; Wang, Y.; Pan, Y.; Yao, T.; Mei, T. SPE-Net: Boosting Point Cloud Analysis via Rotation Robustness Enhancement. In Proceedings of the European Conference of Computer Vision (ECCV), Tel Aviv, Israel, 23–27 October 2022; Springer: Cham, Switzerland; pp. 593–609. [Google Scholar] [CrossRef]
- Lin, H.; Fan, B.; Liu, Y.; Yang, Y.; Pan, Z.; Shi, J.; Pan, C.; Xie, H. PointSpherical: Deep Shape Context for Point Cloud Learning in Spherical Coordinates. In Proceedings of the 2020 25th International Conference on Pattern Recognition (ICPR), Milan, Italy, 10–15 January 2021; pp. 10266–10273. [Google Scholar] [CrossRef]
- Demšar, J. Statistical Comparisons of Classifiers over Multiple Data Sets. J. Mach. Learn. Res. 2006, 7, 1–30. [Google Scholar] [CrossRef]
- Wilcox, R.R. Rank-based and nonparametric methods. In Applying Contemporary Statistical Techniques; Academic Press: Cambridge, CA, USA, 2003; pp. 557–608. [Google Scholar] [CrossRef]
- Zoumpekas, T.; Molina, G.; Salamó, M.; Puig, A. Benchmarking Deep Learning Models on Point Cloud Segmentation. In Artificial Intelligence Research and Development; IOS Press: Amsterdam, The Netherlands, 2021; Volume 339, pp. 335–344. [Google Scholar] [CrossRef]
- Chaton, T.; Chaulet, N.; Horache, S.; Landrieu, L. Torch-Points3D: A Modular Multi-Task Framework for Reproducible Deep Learning on 3D Point Clouds. In Proceedings of the 2020 International Conference on 3D Vision (3DV), Fukuoka, Japan, 25–28 November 2020; pp. 190–199. [Google Scholar] [CrossRef]
- Tian, F.; Jiang, Z.; Jiang, G. DNet: Dynamic Neighborhood Feature Learning in Point Cloud. Sensors 2021, 21, 2327. [Google Scholar] [CrossRef]
- Armeni, I.; Sax, S.; Zamir, A.R.; Savarese, S. Joint 2D-3D-Semantic Data for Indoor Scene Understanding. arXiv 2017, arXiv:1702.01105. [Google Scholar] [CrossRef]
- Liang, X.; Fu, Z.; Sun, C.; Hu, Y. MHIBS-Net: Multiscale hierarchical network for indoor building structure point clouds semantic segmentation. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102449. [Google Scholar] [CrossRef]
- Hu, Q.; Yang, B.; Xie, L.; Rosa, S.; Guo, Y.; Wang, Z.; Trigoni, N.; Markham, A. RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 11105–11114. [Google Scholar] [CrossRef]
- Lei, H.; Akhtar, N.; Mian, A. Spherical Kernel for Efficient Graph Convolution on 3D Point Clouds. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 43, 3664–3680. [Google Scholar] [CrossRef] [Green Version]
- Landrieu, L.; Boussaha, M. Point Cloud Oversegmentation with Graph-Structured Deep Metric Learning. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 7432–7441. [Google Scholar] [CrossRef]
- Hackel, T.; Savinov, N.; Ladicky, L.; Wegner, J.D.; Schindler, K.; Pollefeys, M. Semantic3D.net: A new Large-scale Point Cloud Classification Benchmark. ISPRS Ann. Photogramm. Remote. Sens. Spat. Inf. Sci. 2017, 4, 91–98. [Google Scholar] [CrossRef]
- Sahin, Y.H.; Mertan, A.; Unal, G. ODFNet: Using orientation distribution functions to characterize 3D point clouds. Comput. Graph. 2020, 102, 610–618. [Google Scholar] [CrossRef]
- Zhang, Z.; Hua, B.S.; Yeung, S.K. RIConv++: Effective Rotation Invariant Convolutions for 3D Point Clouds Deep Learning. Int. J. Comput. Vis. 2022, 130, 1228–1243. [Google Scholar] [CrossRef]
- Bai, X.; Luo, Z.; Zhou, L.; Fu, H.; Quan, L.; Tai, C.L. D3Feat: Joint Learning of Dense Detection and Description of 3D Local Features. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 6358–6366. [Google Scholar] [CrossRef]
- Fujiwara, K.; Hashimoto, T. Neural implicit embedding for point cloud analysis. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 11731–11740. [Google Scholar] [CrossRef]
- Lin, Z.H.; Huang, S.Y.; Wang, Y.C.F. Learning of 3D Graph Convolution Networks for Point Cloud Analysis. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 44, 4212–4224. [Google Scholar] [CrossRef] [PubMed]
Evaluation Dimensions | Experimental Properties |
---|---|
Accuracy | , |
Efficiency | , , , , |
Robustness | ranking based on |
Generalized Performance | , , |
Model | Aggregation Level | Aggregation Type | NN Method | Invariance | # of Parameters |
---|---|---|---|---|---|
PointNet | Global | Point-wise | MLP | Rot, Per | 3.5 M |
PointNet++ | Local | Point-wise | MLP | Rot, Per, Size, Dens | 1.4 M |
KPConv | Local | Pseudo Grid | Conv | Rot, Per, Size, Dens | 14.2 M |
PPNet | Local | Position Pooling | Conv | Per, Size, Dens | 18.5 M |
RSConv | Local | Adaptive Weight | Conv | Rot, Perm, Size, Dens | 3.5 M |
n | Training | Validation | Test | Total | |
---|---|---|---|---|---|
Aeroplane | 4 | 1958 | 391 | 341 | 2690 |
Bag | 2 | 54 | 8 | 14 | 76 |
Cap | 2 | 39 | 5 | 11 | 55 |
Car | 4 | 659 | 81 | 158 | 898 |
Chair | 4 | 2658 | 396 | 704 | 3758 |
Earphone | 3 | 49 | 6 | 14 | 69 |
Guitar | 3 | 550 | 78 | 159 | 787 |
Knife | 2 | 277 | 35 | 80 | 392 |
Lamp | 4 | 1118 | 143 | 286 | 1547 |
Laptop | 2 | 324 | 44 | 83 | 451 |
Motorbike | 6 | 125 | 26 | 51 | 202 |
Mug | 2 | 130 | 16 | 38 | 184 |
Pistol | 3 | 209 | 30 | 44 | 283 |
Rocket | 3 | 46 | 8 | 12 | 66 |
Skateboard | 3 | 106 | 15 | 31 | 152 |
Table | 3 | 3835 | 588 | 848 | 5271 |
Total | 50 | 12,137 | 1870 | 2874 | 16,881 |
(a) ShapeNet-part dataset. | |||||||
Data | Metric | PointNet | PointNet++ | KPConv | PPNet | RSConv | |
Training Set | 89.80 | 90.45 | 91.99 | 92.37 | 91.53 | ||
182 | 181 | 189 | 174 | 194 | |||
89.81 | 90.85 | 91.91 | 92.89 | 92.39 | |||
183 | 185 | 188 | 179 | 177 | |||
Validation Set | 86.39 | 86.83 | 86.61 | 86.46 | 87.12 | ||
169 | 144 | 54 | 46 | 66 | |||
79.87 | 83.08 | 82.43 | 82.56 | 82.82 | |||
167 | 174 | 166 | 174 | 123 | |||
Test Set | 84.24 | 84.93 | 84.22 | 83.87 | 85.47 | ||
170 | 88 | 53 | 167 | 71 | |||
79.03 | 82.50 | 82.39 | 82.50 | 82.73 | |||
178 | 146 | 189 | 151 | 194 | |||
(b) S3DIS dataset | |||||||
Data | Metric | PointNet | PointNet++ | KPConv | PPNet | RSConv | |
Training set | Areas 2, 3, 4, 5, 6 | 93.24 | 94.65 | 95.66 | 96.46 | 96.22 | |
196 | 198 | 183 | 194 | 175 | |||
Test Set | Area 1 | 60.64 | 66.62 | 69.21 | 70.89 | 68.00 | |
140 | 166 | 186 | 169 | 124 | |||
Training Set | Areas 1, 3, 4, 5, 6 | 92.91 | 94.82 | 95.46 | 96.58 | 96.13 | |
196 | 188 | 197 | 190 | 185 | |||
Test Set | Area 2 | 34.41 | 42.28 | 45.38 | 45.24 | 47.34 | |
131 | 74 | 64 | 38 | 26 | |||
Training Set | Areas 1, 2, 4, 5, 6 | 93.78 | 95.00 | 95.63 | 96.59 | 96.31 | |
196 | 197 | 187 | 191 | 196 | |||
Test Set | Area 3 | 44.52 | 50.28 | 57.43 | 57.55 | 53.41 | |
183 | 111 | 180 | 175 | 80 | |||
Training Set | Areas 1, 2, 3, 5, 6 | 93.18 | 94.45 | 95.52 | 96.51 | 96.09 | |
198 | 193 | 197 | 175 | 189 | |||
Test Set | Area 4 | 62.49 | 69.73 | 72.64 | 75.00 | 71.98 | |
144 | 130 | 70 | 136 | 119 | |||
Training Set | Areas 1, 2, 3, 4, 6 | 92.94 | 94.31 | 95.19 | 96.38 | 95.87 | |
195 | 190 | 194 | 196 | 197 | |||
Test Set | Area 5 | 69.93 | 74.99 | 76.51 | 77.35 | 75.68 | |
170 | 185 | 158 | 143 | 90 | |||
Training Set | Areas 1, 2, 3, 4, 5 | 93.14 | 94.94 | 95.60 | 96.46 | 96.27 | |
195 | 194 | 198 | 193 | 194 | |||
Test Set | Area 6 | 45.08 | 50.92 | 56.32 | 55.87 | 52.30 | |
174 | 41 | 86 | 131 | 161 |
(a) ShapeNet-part Dataset. | ||||||
PointNet | PointNet++ | KPConv | PPNet | RSConv | Object Avg ± | |
Airplane | 82.55 | 82.63 | 81.90 | 82.36 | 83.23 | 82.53 ± 0.58 |
Bag | 80.22 | 81.79 | 82.77 | 81.35 | 83.73 | 81.97 ± 1.64 |
Cap | 76.03 | 85.83 | 83.85 | 82.64 | 83.47 | 82.36 ± 4.53 |
Car | 75.91 | 77.99 | 79.15 | 79.84 | 79.03 | 78.39 ± 1.96 |
Chair | 90.21 | 90.55 | 90.46 | 90.69 | 90.40 | 90.46 ± 0.20 |
Earphone | 68.80 | 79.34 | 72.36 | 76.69 | 73.65 | 74.17 ± 5.45 |
Guitar | 91.50 | 91.27 | 91.87 | 91.58 | 91.87 | 91.62 ± 0.28 |
Knife | 87.14 | 85.23 | 87.22 | 86.95 | 85.31 | 86.36 ± 1.17 |
Lamp | 80.92 | 83.11 | 80.88 | 80.73 | 83.90 | 81.91 ± 1.81 |
Laptop | 95.78 | 95.32 | 95.50 | 95.48 | 95.47 | 95.51 ± 0.18 |
Motorbike | 61.32 | 70.97 | 74.27 | 74.77 | 74.98 | 71.26 ± 8.13 |
Mug | 91.91 | 94.22 | 95.94 | 95.40 | 95.34 | 94.56 ± 1.70 |
Pistol | 79.73 | 81.99 | 81.93 | 82.58 | 83.90 | 82.03 ± 1.84 |
Rocket | 46.34 | 61.56 | 63.50 | 65.34 | 61.71 | 59.69 ± 12.76 |
Table | 81.68 | 81.26 | 78.89 | 77.65 | 81.59 | 80.21 ± 2.29 |
79.03 ± 15.82 | 82.50 ± 10.37 | 82.39 ± 10.42 | 82.50 ± 9.75 | 82.73 ± 10.44 | ∅ | |
(b) S3DIS Dataset. | ||||||
PointNet | PointNet++ | KPConv | PPNet | RSConv | Area Avg | |
Area 1 | 60.64 | 66.62 | 69.21 | 70.89 | 68.00 | 67.07 ± 5.85 |
Area 2 | 34.41 | 42.28 | 45.38 | 45.24 | 47.34 | 42.93 ± 11.86 |
Area 3 | 44.52 | 50.28 | 57.43 | 57.55 | 53.41 | 52.64 ± 10.37 |
Area 4 | 62.49 | 69.73 | 72.64 | 75.00 | 71.98 | 70.37 ± 6.80 |
Area 5 | 69.93 | 74.99 | 76.51 | 77.35 | 75.68 | 74.89 ± 3.89 |
Area 6 | 45.08 | 50.92 | 56.32 | 55.87 | 52.30 | 52.10 ± 8.73 |
Model Avg ± | 52.84 ± 25.60 | 59.14 ± 22.05 | 62.91 ± 18.81 | 63.65 ± 19.94 | 61.45 ± 19.31 | ∅ |
(a) ShapeNet-part dataset. | |||||||||
Method | |||||||||
PointNet | 5.55 | 4.77 | 170 | 4.99 | 178 | 33.7 | |||
PointNet++ | 4.55 | 2.03 | 88 | 3.36 | 146 | 36.3 | |||
KPConv | 23.01 | 6.21 | 53 | 21.96 | 189 | 60.4 | |||
PPNet | 29.28 | 24.71 | 167 | 22.33 | 151 | 89.0 | |||
RSConv | 12.06 | 4.35 | 71 | 11.81 | 194 | 55.5 | |||
(b) Area 1—S3DIS dataset. | (c) Area 2—S3DIS dataset. | ||||||||
Method | Method | ||||||||
PointNet | 3.98 | 2.80 | 140 | 31.8 | PointNet | 3.94 | 2.59 | 131 | 33.8 |
PointNet++ | 3.37 | 2.81 | 166 | 32.8 | PointNet++ | 3.24 | 1.20 | 74 | 32.7 |
KPConv | 17.34 | 16.21 | 186 | 46.8 | KPConv | 16.91 | 5.44 | 64 | 53.6 |
PPNet | 22.50 | 19.11 | 169 | 77.3 | PPNet | 21.57 | 4.12 | 38 | 89.0 |
RSConv | 8.89 | 5.54 | 124 | 53.1 | RSConv | 8.93 | 1.17 | 26 | 54.8 |
(d) Area 3—S3DIS dataset. | (e) Area 4—S3DIS dataset. | ||||||||
Method | Method | ||||||||
PointNet | 4.08 | 3.75 | 183 | 30.2 | PointNet | 4.29 | 3.10 | 144 | 29.8 |
PointNet++ | 3.38 | 1.89 | 111 | 32.9 | PointNet++ | 3.54 | 2.31 | 130 | 34.2 |
KPConv | 17.73 | 16.04 | 180 | 46.4 | KPConv | 18.75 | 6.60 | 70 | 43.0 |
PPNet | 22.57 | 19.85 | 175 | 75.7 | PPNet | 24.25 | 16.57 | 136 | 94.0 |
RSConv | 9.07 | 3.65 | 80 | 52.1 | RSConv | 9.61 | 5.75 | 119 | 51.8 |
Method | Method | ||||||||
PointNet | 4.05 | 3.46 | 170 | 31.3 | PointNet | 3.75 | 3.28 | 174 | 30.6 |
PointNet++ | 3.32 | 3.09 | 185 | 34.1 | PointNet++ | 3.23 | 0.67 | 41 | 33.3 |
KPConv | 17.57 | 13.95 | 158 | 48.6 | KPConv | 15.66 | 6.77 | 86 | 48.3 |
PPNet | 22.33 | 16.05 | 143 | 77.1 | PPNet | 20.10 | 13.23 | 131 | 80.5 |
RSConv | 8.92 | 4.03 | 90 | 53.2 | RSConv | 8.22 | 6.65 | 161 | 52.4 |
(a) ShapeNet-part dataset. | |||||
Class | PointNet | PointNet++ | KPConv | PPNet | RSConv |
Airplane | 79.88 ± 4.12 | 81.59 ± 2.27 | 81.81 ± 2.21 | 81.90 ± 1.57 | 82.48 ± 1.82 |
Bag | 71.44 ± 14.50 | 79.00 ± 6.21 | 81.24 ± 3.00 | 80.39 ± 3.73 | 80.60 ± 4.51 |
Cap | 75.57 ± 5.44 | 84.38 ± 4.59 | 83.98 ± 2.65 | 81.74 ± 2.14 | 82.60 ± 2.50 |
Car | 71.16 ± 8.06 | 76.81 ± 4.87 | 77.43 ± 3.48 | 78.65 ± 2.91 | 77.95 ± 2.86 |
Chair | 88.71 ± 1.88 | 90.21 ± 1.23 | 90.19 ± 0.69 | 90.30 ± 0.91 | 90.50 ± 0.72 |
Earphone | 64.28 ± 9.35 | 73.72 ± 5.47 | 68.64 ± 4.84 | 74.46 ± 4.46 | 72.76 ± 3.55 |
Guitar | 88.18 ± 5.09 | 91.05 ± 1.44 | 90.85 ± 1.55 | 90.97 ± 1.59 | 91.50 ± 0.83 |
Knife | 84.07 ± 2.96 | 84.34 ± 2.87 | 86.42 ± 2.06 | 86.01 ± 2.12 | 85.45 ± 1.31 |
Lamp | 78.99 ± 3.38 | 82.68 ± 1.87 | 80.72 ± 1.58 | 80.14 ± 1.67 | 83.35 ± 1.22 |
Laptop | 94.97 ± 0.90 | 95.66 ± 0.31 | 95.44 ± 0.22 | 95.64 ± 0.21 | 95.45 ± 0.33 |
Motorbike | 51.63 ± 21.54 | 66.27 ± 15.08 | 70.04 ± 9.70 | 71.79 ± 7.79 | 70.97 ± 11.51 |
Mug | 87.11 ± 9.81 | 92.76 ± 4.33 | 94.39 ± 1.77 | 94.98 ± 1.29 | 94.35 ± 1.88 |
Pistol | 76.30 ± 7.34 | 79.66 ± 4.66 | 80.26 ± 3.13 | 81.09 ± 1.98 | 82.58 ± 1.92 |
Rocket | 43.40 ± 17.26 | 57.86 ± 10.22 | 60.11 ± 7.10 | 59.91 ± 6.86 | 59.26 ± 7.26 |
Skateboard | 68.67 ± 6.47 | 74.63 ± 4.11 | 75.53 ± 2.26 | 75.48 ± 2.46 | 75.19 ± 2.59 |
Table | 80.86 ± 2.11 | 81.21 ± 1.29 | 78.51 ± 1.81 | 77.78 ± 1.56 | 82.09 ± 0.86 |
Ranking | 4.88 | 3.13 | 2.56 | 2.31 | 2.13 |
(b) S3DIS dataset. | |||||
Area | PointNet | PointNet++ | KPConv | PPNet | RSConv |
1 | 56.49 ± 6.42 | 64.39 ± 4.52 | 66.85 ± 4.03 | 68.06 ± 3.96 | 66.11 ± 3.42 |
2 | 31.78 ± 4.49 | 39.17 ± 3.98 | 42.27 ± 3.98 | 41.75 ± 3.36 | 43.21 ± 2.89 |
3 | 40.93 ± 6.69 | 48.12 ± 3.85 | 54.77 ± 5.16 | 55.63 ± 3.71 | 51.45 ± 3.56 |
4 | 59.12 ± 6.84 | 67.29 ± 4.47 | 69.89 ± 3.93 | 72.25 ± 4.08 | 68.92 ± 3.66 |
5 | 64.77 ± 8.42 | 72.09 ± 4.63 | 73.77 ± 4.70 | 74.85 ± 4.13 | 73.35 ± 3.93 |
6 | 41.28 ± 6.77 | 48.76 ± 2.97 | 54.61 ± 3.32 | 53.83 ± 2.92 | 51.10 ± 2.53 |
Ranking | 5.00 | 4.00 | 1.83 | 1.50 | 2.67 |
(a) ShapeNet-part dataset. | ||||||
Scenario | Metric | PointNet | PointNet++ | KPConv | PPNet | RSConv |
, | 0.52 | 0.88 | 0.61 | 0.44 | 0.81 | |
0.57 | 0.82 | 0.47 | 0.25 | 0.81 | ||
0.55 | 0.85 | 0.54 | 0.34 | 0.81 | ||
, | 0.33 | 0.90 | 0.72 | 0.62 | 0.88 | |
0.44 | 0.76 | 0.38 | 0.16 | 0.88 | ||
0.38 | 0.83 | 0.55 | 0.39 | 0.88 | ||
, | 0.07 | 0.93 | 0.87 | 0.88 | 0.98 | |
0.27 | 0.68 | 0.25 | 0.03 | 0.98 | ||
0.17 | 0.81 | 0.56 | 0.45 | 0.98 | ||
(b) Area 1—S3DIS dataset. | ||||||
Scenario | Metric | PointNet | PointNet++ | KPConv | PPNet | RSConv |
, | 0.52 | 0.71 | 0.62 | 0.47 | 0.61 | |
, | 0.33 | 0.66 | 0.70 | 0.67 | 0.65 | |
, | 0.07 | 0.60 | 0.81 | 0.93 | 0.70 | |
(c) Area 2—S3DIS dataset. | ||||||
Scenario | Metric | PointNet | PointNet++ | KPConv | PPNet | RSConv |
, | 0.52 | 0.72 | 0.61 | 0.43 | 0.68 | |
, | 0.32 | 0.68 | 0.70 | 0.59 | 0.80 | |
, | 0.06 | 0.62 | 0.82 | 0.79 | 0.96 | |
(d) Area 3—S3DIS dataset. | ||||||
Scenario | Metric | PointNet | PointNet++ | KPConv | PPNet | RSConv |
, | 0.52 | 0.67 | 0.64 | 0.47 | 0.60 | |
, | 0.33 | 0.59 | 0.77 | 0.67 | 0.63 | |
, | 0.07 | 0.47 | 0.95 | 0.93 | 0.67 | |
(e) Area 4—S3DIS dataset. | ||||||
Scenario | Metric | PointNet | PointNet++ | KPConv | PPNet | RSConv |
, | 0.52 | 0.70 | 0.65 | 0.47 | 0.65 | |
, | 0.33 | 0.65 | 0.71 | 0.67 | 0.69 | |
, | 0.07 | 0.59 | 0.79 | 0.93 | 0.74 | |
(f) Area 5—S3DIS dataset. | ||||||
Scenario | Metric | PointNet | PointNet++ | KPConv | PPNet | RSConv |
, | 0.52 | 0.72 | 0.61 | 0.47 | 0.62 | |
, | 0.07 | 0.69 | 0.85 | 0.93 | 0.76 | |
(g) Area 6—S3DIS dataset. | ||||||
Scenario | Metric | PointNet | PointNet++ | KPConv | PPNet | RSConv |
, | 0.52 | 0.69 | 0.64 | 0.46 | 0.60 | |
, | 0.33 | 0.63 | 0.78 | 0.65 | 0.61 | |
, | 0.07 | 0.54 | 0.96 | 0.90 | 0.64 |
Method | Design Properties | Experimental Properties | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Agg Level | Agg Type | NN Method | Invariance | Rest | Accuracy | Efficiency | Robustness | Gen Performance | |||||||||||||
Local | Global | Point-wise | Pseudo Grid | Adaptive Weight | Position Pooling | Convolution | MLP | Rotation | Permutation | Size | Density | Parameters | Per-Instance Accuracy | Per-Class Accuracy | Time Efficiency | GPU Memory Efficiency | Robustness | Per-Class () | Per-Instance () | Generalized () | |
PointNet | ⋆ | ⋆ | ⋆ | ▿ | ⋆ | 3.5 M | 2, | 1, , | |||||||||||||
PointNet++ | ⋆ | ⋆ | ⋆ | ▿ | ⋆ | ⋆ | ▿ | 1.4 M | 2 | 2 | 1, | 2, , | 1 | 2 | 2 | ||||||
KPConv | ⋆ | ⋆ | ⋆ | ⋆ | ⋆ | ⋆ | ▿ | 14.2 M | , | 2 | , | ||||||||||
PPNet | ⋆ | ⋆ | ⋆ | ▿ | ⋆ | ⋆ | ▿ | 18.5 M | , | 2 | 2, 1 | ||||||||||
RSConv | ⋆ | ⋆ | ⋆ | ⋆ | ⋆ | ⋆ | ⋆ | 3.5 M | 1, | 1 | 1 | 2 | 1, , | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zoumpekas, T.; Salamó, M.; Puig, A. Rethinking Design and Evaluation of 3D Point Cloud Segmentation Models. Remote Sens. 2022, 14, 6049. https://doi.org/10.3390/rs14236049
Zoumpekas T, Salamó M, Puig A. Rethinking Design and Evaluation of 3D Point Cloud Segmentation Models. Remote Sensing. 2022; 14(23):6049. https://doi.org/10.3390/rs14236049
Chicago/Turabian StyleZoumpekas, Thanasis, Maria Salamó, and Anna Puig. 2022. "Rethinking Design and Evaluation of 3D Point Cloud Segmentation Models" Remote Sensing 14, no. 23: 6049. https://doi.org/10.3390/rs14236049
APA StyleZoumpekas, T., Salamó, M., & Puig, A. (2022). Rethinking Design and Evaluation of 3D Point Cloud Segmentation Models. Remote Sensing, 14(23), 6049. https://doi.org/10.3390/rs14236049