Coastline Recognition Algorithm Based on Multi-Feature Network Fusion of Multi-Spectral Remote Sensing Images
<p>Flow chart of the algorithm.</p> "> Figure 2
<p>DeeplabV3+ network.</p> "> Figure 3
<p>Spatial attention mechanism.</p> "> Figure 4
<p>Channel attention model.</p> "> Figure 5
<p>Double attentional network structure:(<b>a</b>) parallel network structure, and (<b>b</b>) series network structure.</p> "> Figure 6
<p>Hrnet.</p> "> Figure 7
<p>SOFTMAX classification: (<b>a</b>) traditional SOFTMAX classification; and (<b>b</b>) improved SOFTMAX classification.</p> "> Figure 8
<p>Schematic diagram of coastline straightening.</p> "> Figure 9
<p>Map of Sri Lanka.</p> "> Figure 10
<p>Database display: (<b>a</b>) short coastline; (<b>b</b>) long coastline; (<b>c</b>) multiple coastlines; and (<b>d</b>) cloud-sheltered coastline.</p> "> Figure 11
<p>Image enhancement effect: (<b>a</b>) short coastline image enhancement; (<b>b</b>) long coastline image enhancement; (<b>c</b>) multiple coastlines image enhancement; and (<b>d</b>) cloud-shielded coastline image enhancement.</p> "> Figure 11 Cont.
<p>Image enhancement effect: (<b>a</b>) short coastline image enhancement; (<b>b</b>) long coastline image enhancement; (<b>c</b>) multiple coastlines image enhancement; and (<b>d</b>) cloud-shielded coastline image enhancement.</p> "> Figure 11 Cont.
<p>Image enhancement effect: (<b>a</b>) short coastline image enhancement; (<b>b</b>) long coastline image enhancement; (<b>c</b>) multiple coastlines image enhancement; and (<b>d</b>) cloud-shielded coastline image enhancement.</p> "> Figure 12
<p>Effect of attention network: (<b>a</b>) short coastline; (<b>b</b>) long coastline; (<b>c</b>) multiple coastlines; and (<b>d</b>) cloud-sheltered coastline.</p> "> Figure 13
<p>Network convergence curve.</p> "> Figure 14
<p>Kapa curve of <span class="html-italic">β</span>.</p> "> Figure 15
<p>Results of HRnet network: (<b>a</b>) short coastline; (<b>b</b>) long coastline; (<b>c</b>) multiple coastlines; and (<b>d</b>) cloud-sheltered coastline.</p> "> Figure 15 Cont.
<p>Results of HRnet network: (<b>a</b>) short coastline; (<b>b</b>) long coastline; (<b>c</b>) multiple coastlines; and (<b>d</b>) cloud-sheltered coastline.</p> "> Figure 16
<p>Effect of coastline straightening: (<b>a</b>) short shoreline straightening effect; (<b>b</b>) long coastline straightening effect; (<b>c</b>) multi-shoreline straightening effect; and (<b>d</b>) coastline straightening effect of cloud occlusion.</p> ">
Abstract
:1. Introduction
2. Methods
2.1. Introduction to Basic Networks
2.2. Image Enhancement Based on PCA
2.3. Network Framework Based on Dual Attention
2.4. Segmentation Model Based on HRNet
2.5. Coastline Recognition Algorithm Based on Image Straightening
3. Experiment Analysis
3.1. Introduction to Evaluation Indicators
3.2. Image Enhancement
3.3. Attention Network Experiment
3.4. HRNet Network Experiment
3.5. Coastline Extraction Effect Display
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gervais, C.; Champion, C.; Pecl, G.T. Species on the move around the Australian coastline: A continental-scale review of climate-driven species redistribution in marine systems. Glob. Change Biol. 2021, 27, 3200–3217. [Google Scholar] [CrossRef]
- Chen, S.; Tang, Y.; Zou, X.; Huo, H.; Hu, K.; Hu, B.; Pan, Y. Identification and detection of biological information on tiny biological targets based on subtle differences. Machines 2022, 10, 996. [Google Scholar] [CrossRef]
- Wang, X.; Yan, F.; Su, F. Changes in coastline and coastal reclamation in the three most developed areas of China, 1980–2018. Ocean Coast. Manag. 2021, 204, 105542. [Google Scholar] [CrossRef]
- Wang, P.; Bayram, B.; Sertel, E. A comprehensive review on deep learning based remote sensing image super-resolution methods. Earth Sci. Rev. 2022, 232, 104110. [Google Scholar] [CrossRef]
- Zhang, D.; Zhao, J.; Chen, J.; Zhou, Y.; Shi, B.; Yao, R. Edge-aware and spectral-spatial information aggregation network for multispectral image semantic segmentation. Eng. Appl. Artif. Intell. 2022, 114, 105070. [Google Scholar] [CrossRef]
- Yao, D.; Zhi-li, Z.; Xiao-feng, Z.; Wei, C.; Fang, H.; Yao-ming, C.; Cai, W.W. Deep hybrid: Multi-graph neural network collaboration for hyperspectral image classification. Def. Technol. 2022, in press. [CrossRef]
- Bai, X.; Zhou, F.; Xue, B. Image enhancement using multi scale image features extracted by top-hat transform. Opt. Laser Technol. 2012, 44, 328–336. [Google Scholar] [CrossRef]
- Rubel, A.; Lukin, V.; Uss, M.; Vozel, B.; Pogrebnyak, O.; Egiazarian, K. Efficiency of texture image enhancement by DCT-based filtering. Neurocomputing 2016, 175, 948–965. [Google Scholar] [CrossRef] [Green Version]
- Lee, E.; Kim, S.; Kang, W.; Seo, D.; Paik, J. Contrast enhancement using dominant brightness level analysis and adaptive intensity transformation for remote sensing images. IEEE Geosci. Remote Sens. Lett. 2012, 10, 62–66. [Google Scholar] [CrossRef]
- Fu, X.; Liao, Y.; Zeng, D.; Huang, Y.; Zhang, X.P.; Ding, X. A probabilistic method for image enhancement with simultaneous illumination and reflectance estimation. IEEE Trans. Image Process. 2015, 24, 4965–4977. [Google Scholar] [CrossRef] [PubMed]
- Zhong, S.; Jiang, X.; Wei, J.; Wei, Z. Image enhancement based on wavelet transformation and pseudo-color coding with phase-modulated image density processing. Infrared Phys. Technol. 2013, 58, 56–63. [Google Scholar] [CrossRef]
- Wang, M.; Zheng, X.; Feng, C. Color constancy enhancement for multi-spectral remote sensing images. In Proceedings of the 2013 IEEE International Geoscience and Remote Sensing Symposium-IGARSS, Melbourne, VIC, Australia, 21–26 July 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 864–867. [Google Scholar]
- Wong, C.Y.; Jiang, G.; Rahman, M.A.; Liu, S.; Lin, S.C.F.; Kwok, N.; Wu, T. Histogram equalization and optimal profile compression based approach for colour image enhancement. J. Vis. Commun. Image Represent. 2016, 201638, 802–813. [Google Scholar] [CrossRef]
- Li, J. Application of image enhancement method for digital images based on Retinex theory. Optik 2013, 124, 5986–5988. [Google Scholar] [CrossRef]
- Rubel, A.; Naumenko, A.; Lukin, V. A neural network based predictor of filtering efficiency for image enhancement. In Proceedings of the 2014 IEEE Microwaves, Radar and Remote Sensing Symposium (MRRS), Kiev, Ukraine, 23–25 September 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 14–17. [Google Scholar]
- Li, L.; Si, Y.; Jia, Z. Remote sensing image enhancement based on non-local means filter in NSCT domain. Algorithms 2017, 10, 116. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.; Fang, H.; Li, Q.; Li, Z.; Zhang, T.; Sang, N.; Li, Y. Optical remote sensing image enhancement with weak structure preservation via spatially adaptive gamma correction. Infrared Phys. Technol. 2018, 94, 38–47. [Google Scholar] [CrossRef]
- Park, S.; Yu, S.; Moon, B.; Ko, S.; Paik, J. Low-light image enhancement using variational optimization-based retinex model. IEEE Trans. Consum. Electron. 2017, 63, 178–184. [Google Scholar] [CrossRef]
- Pathak, S.S.; Dahiwale, P.; Padole, G. A combined effect of local and global method for contrast image enhancement. In Proceedings of the 2015 IEEE International Conference on Engineering and Technology (ICETECH), Coimbatore, India, 20 March 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1–5. [Google Scholar]
- Agrawal, S.; Panda, R. An efficient algorithm for gray level image enhancement using cuckoo search. In Proceedings of the International Conference on Swarm, Evolutionary, and Memetic Computing, Bhubaneswar, India, 20–22 December 2012; Springer: Berlin/Heidelberg, Germany, 2012; pp. 82–89. [Google Scholar]
- Riaz, M.M.; Ghafoor, A. Principle component analysis and fuzzy logic based through wall image enhancement. Prog. Electromagn. Res. 2012, 127, 461–478. [Google Scholar] [CrossRef] [Green Version]
- Liejun, W.; Ting, Y. A new approach of image enhancement based on improved fuzzy domain algorithm. In Proceedings of the 2014 International Conference on Multisensor Fusion and Information Integration for Intelligent Systems (MFI), Beijing, China, 28–29 September 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 1–5. [Google Scholar]
- Muniyappan, S.; Allirani, A.; Saraswathi, S. A novel approach for image enhancement by using contrast limited adaptive histogram equalization method. In Proceedings of the 2013 4th International Conference on Computing, Communications and Networking Technologies (ICCCNT), Tiruchengode, India, 4–6 July 2013; pp. 1–6. [Google Scholar]
- Fu, X.; Wang, J.; Zeng, D.; Huang, Y.; Ding, X. Remote sensing image enhancement using regularized-histogram equalization and DCT. IEEE Geosci. Remote Sens. Lett. 2015, 12, 2301–2305. [Google Scholar] [CrossRef]
- Abramova, V.V.; Abramov, S.K.; Lukin, V.V.; Egiazarian, K.O.; Astola, J.T. On required accuracy of mixed noise parameter estimation for image enhancement via denoising. EURASIP J. Image Video Process. 2014, 1, 3. [Google Scholar] [CrossRef] [Green Version]
- Bhandari, A.K.; Maurya, S.; Meena, A.K. Social spider optimization based optimally weighted Otsu thresholding for image enhancement. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 1–13. [Google Scholar] [CrossRef]
- Somvanshi, S.S.; Kunwar, P.; Tomar, S.; Singh, M. Comparative statistical analysis of the quality of image enhancement techniques. Int. J. Image Data Fusion 2018, 9, 131–151. [Google Scholar] [CrossRef]
- Md Noor, S.S.; Michael, K.; Marshall, S.; Ren, J. Hyperspectral image enhancement and mixture deep-learning classification of corneal epithelium injuries. Sensors 2017, 17, 2644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramkumar, G.; Ayyadurai, M.; Senthilkumar, C. An effectual underwater image enhancement using deep learning algorithm. In Proceedings of the 2021 5th International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India, 6–8 May 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1507–1511. [Google Scholar]
- Park, S.; Yu, S.; Kim, M.; Park, K.; Paik, J. Dual autoencoder network for retinex-based low-light image enhancement. IEEE Access 2018, 6, 22084–22093. [Google Scholar] [CrossRef]
- Jiang, K.; Wang, Z.; Yi, P.; Wang, G.; Lu, T.; Jiang, J. Edge-enhanced GAN for remote sensing image superresolution. IEEE Trans. Geosci. Remote Sens. 2019, 57, 5799–5812. [Google Scholar] [CrossRef]
- Munadi, K.; Muchtar, K.; Maulina, N.; Pradhan, B. Image enhancement for tuberculosis detection using deep learning. IEEE Access 2020, 8, 217897–217907. [Google Scholar] [CrossRef]
- Kuang, X.; Sui, X.; Liu, Y.; Chen, Q.; Gu, G. Single infrared image enhancement using a deep convolutional neural network. Neurocomputing 2019, 332, 119–128. [Google Scholar] [CrossRef]
- Guo, Y.; Zhou, M.; Wang, Y.; Wu, G.; Shibasaki, R. Learn to Be Clear and Colorful: An End-to-End Network for Panchromatic Image Enhancement. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Zheng, C.; Wang, L.; Chen, R.; Chen, X. Image segmentation using multiregion-resolution MRF model. IEEE Geosci. Remote Sens. Lett. 2012, 10, 816–820. [Google Scholar] [CrossRef]
- Miaozhong, X.; Ming, C.; Lijuan, W.; Tianpeng, X.; Xiaoling, Z. A methodology of image segmentation for high resolution remote sensing image based on visual system and Markov random field. Acta Geod. Cartogr. Sin. 2015, 44, 198. [Google Scholar]
- Ming, D.; Ci, T.; Cai, H.; Li, L.; Qiao, C.; Du, J. Semivariogram-based spatial bandwidth selection for remote sensing image segmentation with mean-shift algorithm. IEEE Geosci. Remote Sens. Lett. 2012, 9, 813–817. [Google Scholar] [CrossRef]
- Deng, C.; Li, S.; Bian, F.; Yang, Y. Remote sensing image segmentation based on mean shift algorithm with adaptive bandwidth. In Proceedings of the International Conference on Geo-Informatics in Resource Management and Sustainable Ecosystem, Ypsilanti, MI, USA, 3–5 October 2014; Springer: Berlin/Heidelberg, Germany, 2014; pp. 179–185. [Google Scholar]
- Yuan, J.; Wang, D.; Li, R. Remote sensing image segmentation by combining spectral and texture features. IEEE Trans. Geosci. Remote Sens. 2013, 52, 16–24. [Google Scholar] [CrossRef]
- Liu, S.; Luk, W. Towards an efficient accelerator for DNN-based remote sensing image segmentation on FPGAs. In Proceedings of the 2019 29th International Conference on Field Programmable Logic and Applications (FPL), Barcelona, Spain, 8–12 September 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 187–193. [Google Scholar]
- Li, N.; Huo, H.; Zhao, Y.M.; Chen, X.; Fang, T. A spatial clustering method with edge weighting for image segmentation. IEEE Geosci. Remote Sens. Lett. 2013, 10, 1124–1128. [Google Scholar]
- Fang, L.; Wang, X.; Sun, Y.; Xu, K. Remote sensing image segmentation using active contours based on intercorrelation of nonsubsampled contourlet coefficients. J. Electron. Imaging 2016, 25, 061405. [Google Scholar] [CrossRef]
- Huang, Z.; Zhang, J.; Li, X.; Zhang, H. Remote sensing image segmentation based on dynamic statistical region merging. Optik 2014, 125, 870–875. [Google Scholar] [CrossRef]
- Wang, Y.; Qi, Q.; Liu, Y.; Jiang, L.; Wang, J. Unsupervised segmentation parameter selection using the local spatial statistics for remote sensing image segmentation. Int. J. Appl. Earth Obs. Geoinf. 2019, 81, 98–109. [Google Scholar] [CrossRef]
- Yang, Y.; Li, H.T.; Han, Y.S.; Gu, H.Y. High resolution remote sensing image segmentation based on graph theory and fractal net evolution approach. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, 40, 197. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Li, G.; Du, S. Multi-scale dense networks for hyperspectral remote sensing image classification. IEEE Trans. Geosci. Remote Sens. 2019, 57, 9201–9222. [Google Scholar] [CrossRef]
- Yang, J.; He, Y.; Caspersen, J. A self-adapted threshold-based region merging method for remote sensing image segmentation. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 6320–6323. [Google Scholar]
- He, P.; Shi, W.; Zhang, H.; Hao, M. A novel dynamic threshold method for unsupervised change detection from remotely sensed images. Remote Sens. Lett. 2014, 5, 396–403. [Google Scholar] [CrossRef]
- Basaeed, E.; Bhaskar, H.; Al-Mualla, M. Supervised remote sensing image segmentation using boosted convolutional neural networks. Knowl. Based Syst. 2016, 99, 19–27. [Google Scholar] [CrossRef]
- Alam, F.I.; Zhou, J.; Liew, A.W.C.; Jia, X. CRF learning with CNN features for hyperspectral image segmentation. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 6890–6893. [Google Scholar]
- Lv, X.; Ming, D.; Chen, Y.; Wang, M. Very high resolution remote sensing image classification with SEEDS-CNN and scale effect analysis for superpixel CNN classification. Int. J. Remote Sens. 2019, 40, 506–531. [Google Scholar] [CrossRef]
- Hamida, A.B.; Benoit, A.; Lambert, P.; Amar, C.B. 3-D deep learning approach for remote sensing image classification. IEEE Trans. Geosci. Remote Sens. 2018, 56, 4420–4434. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Li, G.; Du, S.; Tan, W.; Gao, F. Three-dimensional densely connected convolutional network for hyperspectral remote sensing image classification. J. Appl. Remote Sens. 2019, 13, 016519. [Google Scholar] [CrossRef]
- Tang, Y.; Zhou, H.; Wang, H.; Zhang, Y. Fruit detection and positioning technology for a Camellia oleifera C. Abel orchard based on improved YOLOv4-tiny model and binocular stereo vision. Expert Syst. Appl. 2023, 211, 118573. [Google Scholar] [CrossRef]
- Tang, Z.; Peng, X.; Li, K.; Metaxas, D.N. Towards efficient u-nets: A coupled and quantized approach. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 42, 2038–2050. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Sun, T.; Yang, F.; Sun, H.; Guan, Y. An improved optimum-path forest clustering algorithm for remote sensing image segmentation. Comput. Geosci. 2018, 112, 38–46. [Google Scholar] [CrossRef]
- Hamada, M.A.; Kanat, Y.; Abiche, A.E. Multi-spectral image segmentation based on the K-means clustering. Int. J. Innov. Technol. Explor. Eng 2019, 9, 1016–1019. [Google Scholar] [CrossRef]
- Li, G.; Li, L.; Zhu, H.; Liu, X.; Jiao, L. Adaptive multiscale deep fusion residual network for remote sensing image classification. IEEE Trans. Geosci. Remote Sens. 2019, 57, 8506–8521. [Google Scholar] [CrossRef]
- Yusuf, Y.; Sri Sumantyo, J.T.; Kuze, H. Spectral information analysis of image fusion data for remote sensing applications. Geocarto Int. 2013, 28, 291–310. [Google Scholar] [CrossRef]
- Maurya, L.; Lohchab, V.; Mahapatra, P.K.; Abonyi, J. Contrast and brightness balance in image enhancement using Cuckoo Search-optimized image fusion. J. King Saud Univ. Comput. Inf. Sci. 2022, 34, 7247–7258. [Google Scholar] [CrossRef]
- Saichandana, B.; Ramesh, S.; Srinivas, K.; Kirankumar, R. Image fusion technique for remote sensing image enhancement. In ICT and Critical Infrastructure, Proceedings of the 48th Annual Convention of Computer Society of India, Visakhapatnam, India, 13–15 December 2013; Springer: Cham, Switzerland, 2014; Volume 2, pp. 235–242. [Google Scholar]
- Ma, J.; Fan, X.; Ni, J.; Zhu, X.; Xiong, C. Multi-scale retinex with color restoration image enhancement based on Gaussian filtering and guided filtering. Int. J. Mod. Phys. B 2017, 31, 1744077. [Google Scholar] [CrossRef]
- Li, B.; Zhang, H.; Xu, F. Water extraction in high resolution remote sensing image based on hierarchical spectrum and shape features. IOP Conf. Ser. Earth Environ. Sci. 2014, 17, 012123. [Google Scholar] [CrossRef] [Green Version]
- Pan, Y.; Pi, D.; Chen, J.; Meng, H. FDPPGAN: Remote sensing image fusion based on deep perceptual patchGAN. Neural Comput. Appl. 2021, 33, 9589–9605. [Google Scholar] [CrossRef]
- Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 834–848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jonnarth, A.; Felsberg, M. Importance sampling cams for weakly-supervised segmentation. In Proceedings of the ICASSP 2022–2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Singapore, 23–27 May 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 2639–2643. [Google Scholar]
- Song, D.; Tan, X.; Wang, B.; Zhang, L.; Shan, X.; Cui, J. Integration of super-pixel segmentation and deep-learning methods for evaluating earthquake-damaged buildings using single-phase remote sensing imagery. Int. J. Remote Sens. 2020, 41, 1040–1066. [Google Scholar] [CrossRef]
- Yurtkulu, S.C.; Şahin, Y.H.; Unal, G. Semantic segmentation with extended DeepLabv3 architecture. In Proceedings of the 2019 27th Signal Processing and Communications Applications Conference (SIU), Sivas, Turkey, 24–26 April 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–4. [Google Scholar]
- Anowar, F.; Sadaoui, S.; Selim, B. Conceptual and empirical comparison of dimensionality reduction algorithms (pca, kpca, lda, mds, svd, lle, isomap, le, ica, t-sne). Comput. Sci. Rev. 2021, 40, 100378. [Google Scholar] [CrossRef]
- Wang, H.; Lin, Y.; Xu, X.; Chen, Z.; Wu, Z.; Tang, Y. A study on long-close distance coordination control strategy for Litchi picking. Agronomy 2022, 12, 1520. [Google Scholar] [CrossRef]
- Qiu, S.; Jin, Y.; Feng, S.; Zhou, T.; Li, Y. Dwarfism computer-aided diagnosis algorithm based on multimodal pyradiomics. Inf. Fusion 2022, 80, 137–145. [Google Scholar] [CrossRef]
- Huang, Z.; Zhao, H.; Zhan, J.; Li, H. A multivariate intersection over union of SiamRPN network for visual tracking. Vis. Comput. 2022, 38, 2739–2750. [Google Scholar] [CrossRef]
Algorithm | AG | SD | SF | IE |
---|---|---|---|---|
Original | 8.7 | 46.3 | 34.2 | 5.1 |
Histogram | 9.1 | 56.6 | 35.3 | 6.3 |
Gaussian filter | 8.8 | 48.1 | 47.1 | 5.6 |
Ours | 10.1 | 58.3 | 48.5 | 7.1 |
Algorithm | AG | SD | SF | IE |
---|---|---|---|---|
Original | 8.5 | 44.1 | 35.1 | 4.8 |
Histogram | 9.3 | 58.3 | 34.2 | 6.0 |
Gaussian filter | 9.1 | 49.2 | 48.5 | 5.3 |
Ours | 9.9 | 59.4 | 49.3 | 6.9 |
Algorithm | AG | SD | SF | IE |
---|---|---|---|---|
Original | 8.3 | 45.2 | 33.1 | 4.5 |
Histogram | 8.5 | 51.2 | 34.3 | 6.1 |
Gaussian filter | 8.3 | 46.2 | 46.3 | 5.4 |
Ours | 9.5 | 54.3 | 47.2 | 6.5 |
Algorithm | AG | SD | SF | IE |
---|---|---|---|---|
Original | 7.9 | 41.3 | 36.3 | 4.2 |
Histogram | 8.5 | 52.4 | 31.5 | 5.4 |
Gaussian filter | 8.1 | 48.5 | 42.1 | 5.7 |
Ours | 9.3 | 51.8 | 46.3 | 6.1 |
Algorithm | Number of Basic Network Layers | AOM | AVM | AUM | CM |
---|---|---|---|---|---|
Deeplabv3+ | 16 | 0.85 | 0.24 | 0.22 | 0.80 |
Deeplabv3+ | 32 | 0.91 | 0.21 | 0.19 | 0.84 |
In series | 32 | 0.93 | 0.18 | 0.16 | 0.86 |
In parallel | 32 | 0.95 | 0.16 | 0.14 | 0.88 |
Algorithm | Number of Basic Network Layers | AOM | AVM | AUM | CM |
---|---|---|---|---|---|
Deeplabv3+ | 16 | 0.78 | 0.33 | 0.31 | 0.71 |
Deeplabv3+ | 32 | 0.81 | 0.31 | 0.26 | 0.75 |
In series | 32 | 0.84 | 0.27 | 0.23 | 0.78 |
In parallel | 32 | 0.90 | 0.25 | 0.18 | 0.82 |
Algorithm | Number of Basic Network Layers | AOM | AVM | AUM | CM |
---|---|---|---|---|---|
Deeplabv3+ | 16 | 0.72 | 0.35 | 0.29 | 0.69 |
Deeplabv3+ | 32 | 0.78 | 0.32 | 0.24 | 0.74 |
In series | 32 | 0.83 | 0.28 | 0.23 | 0.77 |
In parallel | 32 | 0.88 | 0.24 | 0.19 | 0.82 |
Algorithm | Number of Basic Network Layers | AOM | AVM | AUM | CM |
---|---|---|---|---|---|
Deeplabv3+ | 16 | 0.83 | 0.29 | 0.25 | 0.76 |
Deeplabv3+ | 32 | 0.86 | 0.26 | 0.21 | 0.80 |
In series | 32 | 0.90 | 0.22 | 0.19 | 0.83 |
In parallel | 32 | 0.93 | 0.19 | 0.16 | 0.86 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, S.; Ye, H.; Liao, X. Coastline Recognition Algorithm Based on Multi-Feature Network Fusion of Multi-Spectral Remote Sensing Images. Remote Sens. 2022, 14, 5931. https://doi.org/10.3390/rs14235931
Qiu S, Ye H, Liao X. Coastline Recognition Algorithm Based on Multi-Feature Network Fusion of Multi-Spectral Remote Sensing Images. Remote Sensing. 2022; 14(23):5931. https://doi.org/10.3390/rs14235931
Chicago/Turabian StyleQiu, Shi, Huping Ye, and Xiaohan Liao. 2022. "Coastline Recognition Algorithm Based on Multi-Feature Network Fusion of Multi-Spectral Remote Sensing Images" Remote Sensing 14, no. 23: 5931. https://doi.org/10.3390/rs14235931
APA StyleQiu, S., Ye, H., & Liao, X. (2022). Coastline Recognition Algorithm Based on Multi-Feature Network Fusion of Multi-Spectral Remote Sensing Images. Remote Sensing, 14(23), 5931. https://doi.org/10.3390/rs14235931