Potential of ALOS2 Polarimetric Imagery to Support Management of Poplar Plantations in Northern Italy
"> Figure 1
<p>In the upper left box, the location of the study area in the Italian Po valley is shown. The main image is a RGB color composite obtained using the Yamaguchi decomposition of the quad-pol ALOS2 SAR scene (R: surface scattering: G: volumetric scattering; B: double bounce). The poplar stands used as ground truth in the classification models are evidenced in red.</p> "> Figure 2
<p>Results of the forest/non-forest binary classification of the 2018 dual-pol SAR image, with respect to the poplar stands age classes reported by the 2018 ground survey.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Field Data
2.2. Remote Sensing Images
2.3. Data Analysis and Classification Algorithms
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chianucci, F.; Puletti, N.; Grotti, M.; Bisaglia, C.; Giannetti, F.; Romano, E.; Brambilla, M.; Mattioli, W.; Cabassi, G.; Bajocco, S.; et al. Influence of image pixel resolution on canopy cover estimation in poplar plantations from field, aerial and satellite optical imagery. Ann. Silvic. Res. 2021, 46, 8–13. [Google Scholar] [CrossRef]
- Pra, A.; Pettenella, D. Investment returns from hybrid poplar plantations in northern Italy between 2001 and 2016: Are we losing a bio-based segment of the primary economy? Rev. Agric. Econ. 2019, 74, 49–71. [Google Scholar] [CrossRef]
- Porro, Z.; Odicino, M.; Bogliani, G.; Chiatante, G. Intensive forestry and biodiversity: Use of poplar plantations by woodpeckers in a lowland area of Northern Italy. For. Ecol. Manag. 2021, 497, 119490. [Google Scholar] [CrossRef]
- Puletti, N.; Grotti, M.; Scotti, R. Evaluating the eccentricities of poplar stem profiles with terrestrial laser scanning. Forests 2019, 10, 239. [Google Scholar] [CrossRef] [Green Version]
- D’Amico, G.; Francini, S.; Giannetti, F.; Vangi, E.; Travaglini, D.; Chianucci, F.; Mattioli, W.; Grotti, M.; Puletti, N.; Corona, P.; et al. A deep learning approach for automatic mapping of poplar plantations using Sentinel-2 imagery. GIsci. Remote Sens. 2021, 58, 1352–1368. [Google Scholar] [CrossRef]
- Marcelli, A.; Mattioli, W.; Puletti, N.; Chianucci, F.; Gianelle, D.; Grotti, M.; Chirici, G.; D’Amico, G.; Francini, S.; Travaglini, D.; et al. Large-scale two-phase estimation of wood production by poplar plantations exploiting Sentinel-2 data as auxiliary information. Silva Fenn. 2020, 54, 10247. [Google Scholar] [CrossRef] [Green Version]
- Corona, P.; Chianucci, F.; Marcelli, A.; Gianelle, D.; Fattorini, L.; Grotti, M.; Puletti, N.; Mattioli, W. Probabilistic sampling and estimation for large-scale assessment of fast-growing forest tree crops. The case of poplar plantations in Northern Italy. Eur. J. For. Res. 2020, 139, 981–988. [Google Scholar] [CrossRef]
- Marchi, M.; Bergante, S.; Ray, D.; Barbetti, R.; Facciotto, G.; Chiarabaglio, P.M.; Hynynen, J.; Nervo, G. Universal reaction norms for the sustainable cultivation of hybrid poplar clones under climate change in Italy. iForest 2022, 15, 47–55. [Google Scholar] [CrossRef]
- Cantamessa, S.; Rosso, L.; Giorcelli, A.; Chiarabaglio, P.M. The environmental impact of poplar stand management: A life cycle assessment study of different scenarios. Forests 2022, 13, 464. [Google Scholar] [CrossRef]
- Ancona, V.; Caracciolo Barra, A.; Campanale, C.; Rascio, I.; Grenni, P.; Di Lenola, M.; Bagnuolo, G.; Uricchio, F.V. Heavy metal phytoremediation of a poplar clone in a contaminated soil in southern Italy. J. Chem. Technol. Biotechnol. 2020, 95, 940–949. [Google Scholar] [CrossRef]
- Hamrouni, Y.; Paillassa, E.; Chéret, V.; Monteil, C.; Sheeren, D. Sentinel-2 poplar index for operational mapping of poplar plantations over large areas. Remote Sens. 2022, 14, 3975. [Google Scholar] [CrossRef]
- Grignetti, A.; Coaloa, D.; Niccolini, G. Classification of poplar stand areas by high-resolution satellite images. Forest 2009, 6, 299–311. [Google Scholar] [CrossRef] [Green Version]
- Hamrouni, Y.; Paillassa, É.; Cheret, V.; Monteil, C.; Sheeren, D. Synergistic use of sentinel-1 and sentinel-2 time series for poplar plantations monitoring at large scale, 2020. In Proceedings of the 24th ISPRS Congress-Technical Commission III, Nice, France, 31 August–2 September 2020; pp. 1457–1461. [Google Scholar]
- Dong, X.; Quegan, S.; Yumiko, U.; Hu, C.; Zeng, T. Feasibility study of C-and L-band SAR time series data in tracking Indonesian plantation and natural forest cover changes. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 3692–3699. [Google Scholar] [CrossRef]
- Hashim, I.C.; Shariff, A.R.M.; Bejo, S.K.; Muharam, F.M.; Ahmad, K. Machine-Learning approach Using Sar data for the classification of oil palm trees that are non-infected and infected with the basal stem rot disease. Agronomy 2021, 11, 532. [Google Scholar] [CrossRef]
- Vaglio Laurin, G.; Del Frate, F.; Pasolli, L.; Notarnicola, C.; Guerriero, L.; Valentini, R. Discrimination of vegetation types in alpine sites with ALOS PALSAR-, RADARSAT-2-, and lidar-derived information. Int. J. Remote Sens. 2013, 34, 6898–6913. [Google Scholar] [CrossRef]
- Lehmann, E.A.; Caccetta, P.; Lowell, K.; Mitchell, A.; Zhou, Z.S.; Held, A.; Milne, T.; Tapley, I. SAR and optical remote sensing: Assessment of complementarity and interoperability in the context of a large-scale operational forest monitoring system. Remote Sens. Environ. 2015, 156, 335–348. [Google Scholar] [CrossRef]
- Sirro, L.; Häme, T.; Rauste, Y.; Kilpi, J.; Hämäläinen, J.; Gunia, K.; De Jong, B.; Paz Pellat, F. Potential of different optical and SAR data in forest and land cover classification to support REDD+ MRV. Remote Sens. 2018, 10, 942. [Google Scholar] [CrossRef] [Green Version]
- Vaglio Laurin, G.; Liesenberg, V.; Chen, Q.; Guerriero, L.; Del Frate, F.; Bartolini, A.; Coomes, D.; Wilebore, B.; Lindsell, J.; Valentini, R. Optical and SAR sensor synergies for forest and land cover mapping in a tropical site in West Africa. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 7–16. [Google Scholar] [CrossRef]
- Vaglio Laurin, G.; Francini, S.; Luti, T.; Chirici, G.; Pirotti, F.; Papale, D. Satellite open data to monitor forest damage caused by extreme climate-induced events: A case study of the Vaia storm in Northern Italy. Forestry 2021, 94, 407–416. [Google Scholar] [CrossRef]
- Balz, T.; Sörgel, U.; Crespi, M.; Osmanoglu, B. Editorial for Special Issue “Advances in SAR: Sensors, Methodologies, and Applications”. Remote Sens. 2018, 10, 1233. [Google Scholar] [CrossRef]
- Hou, W.; Zhao, F.; Liu, X.; Zhang, H.; Wang, R. A unified framework for comparing the classification performance between quad-, compact-, and dual-polarimetric SARs. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5204814. [Google Scholar] [CrossRef]
- Yang, J.; Yamaguchi, Y.; Lee, J.S.; Touzi, R.; Boerner, W.M. Applications of polarimetric SAR. J. Sens. 2015, 2, 31639. [Google Scholar] [CrossRef]
- Freeman, A.; Durden, S.L. A three-component scattering model for polarimetric SAR data. IEEE Trans. Geosci. Remote Sens 1998, 36, 963–973. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, Y.; Moriyama, T.; Ishido, M.; Yamada, H. Four-component scattering model for polarimetric SAR image decomposition. IEEE Trans. Geosci. Remote Sens. 2005, 43, 1699–1706. [Google Scholar] [CrossRef]
- Parida, B.R.; Mandal, S.P. Polarimetric decomposition methods for LULC mapping using ALOS L-band PolSAR data in Western parts of Mizoram, Northeast India. SN Appl. Sci. 2020, 2, 1049. [Google Scholar] [CrossRef]
- Varghese, A.O.; Suryavanshi, A.; Joshi, A.K. Analysis of different polarimetric target decomposition methods in forest density classification using C band SAR data. Int. J. Remote Sens. 2016, 37, 694–709. [Google Scholar] [CrossRef]
- Kobayashi, S.; Omura, Y.; Sanga-Ngoie, K.; Widyorini, R.; Kawai, S.; Supriadi, B.; Yamaguchi, Y. Characteristics of decomposition powers of L-band multi-polarimetric SAR in assessing tree growth of industrial plantation forests in the tropics. Remote Sens. 2012, 4, 3058–3077. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.H.; Kim, H.O.; Wdowinski, S.; Feliciano, E. Evaluation of polarimetric SAR decomposition for classifying wetland vegetation types. Remote Sens. 2015, 7, 8563–8585. [Google Scholar] [CrossRef] [Green Version]
- Lawrence, R.L.; Wright, A. Rule-based classification systems using classification and regression tree (CART) analysis. Photogramm. Eng. Remote Sens. 2001, 67, 1137–1142. [Google Scholar]
- Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees, 1st ed.; Routledge: London, UK, 2017. [Google Scholar] [CrossRef]
- Wu, Q.; Zhou, D.X. Analysis of support vector machine classification. J. Comput. Anal. Appl. 2006, 8, 99–119. [Google Scholar]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Gómez, C.; Wulder, M.A.; Montes, F.; Delgado, J.A. Modeling forest structural parameters in the mediterranean pines of central Spain using QuickBird-2 imagery and classification and regression tree analysis (CART). Remote Sens. 2012, 4, 135–159. [Google Scholar] [CrossRef] [Green Version]
- Sheykhmousa, M.; Mahdianpari, M.; Ghanbari, H.; Mohammadimanesh, F.; Ghamisi, P.; Homayouni, S. Support vector machine versus random forest for remote sensing image classification: A meta-analysis and systematic review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 6308–6325. [Google Scholar] [CrossRef]
- Thanh Noi, P.; Kappas, M. Comparison of random forest, k-nearest neighbor, and support vector machine classifiers for land cover classification using Sentinel-2 imagery. Sensors 2017, 18, 18. [Google Scholar] [CrossRef] [Green Version]
- Vaglio Laurin, G.; Puletti, N.; Grotti, M.; Stereńczak, K.; Modzelewska, A.; Lisiewicz, M.; Sadkowski, R.; Kuberski, L.; Chirici, G.; Papale, D. Species dominance and above ground biomass in the Białowieża Forest, Poland, described by airborne hyperspectral and lidar data. Int. J. Appl. Earth Obs. Geoinf. 2020, 92, 102178. [Google Scholar] [CrossRef]
- Collino, E.; Bonelli, P.; Gilli, L. ST-AR (STorm-ARchive): A project developed to assess the ground effects of severe convective storms in the Po Valley. Atmos. Res. 2009, 93, 483–489. [Google Scholar] [CrossRef]
- Lapietra, G.; Coaloa, D.; Chiarabaglio, P.M. Rapporto annuale sulla pioppicoltura 1993. Cellul. Carta 1994, 45, 2–8. (In Italian) [Google Scholar]
- Chianucci, F.; Marchino, L.; Bidini, C.; Giorcelli, A.; Coaloa, D.; Chiarabaglio, P.; Giannetti, F.; Chirici, G.; Tattoni, C. Dataset of tree inventory and canopy structure in poplar plantations in Northern Italy. Ann. Silvic. Res. 2021, 46, 93–96. [Google Scholar] [CrossRef]
- Shimada, M. ALOS-2 Science Program. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium-IGARSS, Melbourne, Australia, 21–26 July 2013; pp. 2400–2403. [Google Scholar]
- Santoso, A.W.; Bayuaji, L.; Sze, L.T.; Lateh, H.; Zain, J.M. Comparison of various speckle noise reduction filters on synthetic aperture radar image. Int. J. Appl. Eng. Res. 2016, 11, 8760–8767. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria; Available online: https://www.R-project.org/ (accessed on 14 September 2022).
- Friedman, J.H. Multivariate adaptive regression splines. Ann. Stat. 1991, 19, 1–67. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R.; Friedman, J.H. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed.; Springer: New York, NY, USA, 2009; pp. 1–758. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Huang, W.; Sun, G.; Ni, W.; Zhang, Z.; Dubayah, R. Sensitivity of multi-source SAR backscatter to changes in forest aboveground biomass. Remote Sens. 2015, 7, 9587–9609. [Google Scholar] [CrossRef]
- Nguyen, L.V.; Tateishi, R.; Nguyen, H.T.; Sharma, R.C.; To, T.T.; Le, S.M. Estimation of tropical forest structural characteristics using ALOS-2 SAR data. Adv. Remote Sens. 2016, 5, 131–144. [Google Scholar] [CrossRef] [Green Version]
- Khati, U.; Kumar, V.; Bandyopadhyay, D.; Musthafa, M.; Singh, G. Identification of forest cutting in managed forest of Haldwani, India using ALOS-2/PALSAR-2 SAR data. J. Environ. Manag. 2018, 213, 503–512. [Google Scholar] [CrossRef]
- Ji, Y.; Huang, J.; Ju, Y.; Guo, S.; Yue, C. Forest structure dependency analysis of L-band SAR backscatter. PeerJ. 2020, 8, e10055. [Google Scholar] [CrossRef]
- Gao, S.; Niu, Z.; Wu, C. Multi-polarization Envisat-ASAR images as a function of leaf area index (LAI) of white poplar and desert date plantations. Int. J. Remote Sens. 2010, 31, 1095–1102. [Google Scholar] [CrossRef]
- Pohl, C. Mapping palm oil expansion using SAR to study the impact on the CO2 cycle. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2014. [Google Scholar]
- Takeuchi, S.; Suga, Y.; Oguro, Y.; Konishi, T. Monitoring of new plantation development in tropical rain forests using JERS-1 SAR data. Adv. Space Res. 2000, 26, 1151–1154. [Google Scholar] [CrossRef]
- Maurya, H.; Kumar, A.; Mishra, A.K.; Panigrahi, R.K. Improved four-component based polarimetric synthetic aperture radar image decomposition. IET Radar Sonar Navig. 2020, 14, 619–627. [Google Scholar] [CrossRef]
- Rauste, Y.; Hame, T.; Pulliainen, J.; Heiska, K.; Hallikainen, M. Radar-based forest biomass estimation. Int. J. Remote Sens. 1994, 15, 2797–2808. [Google Scholar] [CrossRef]
- Rignot, E.J.; Williams, C.L.; Way, J.; Viereck, L.A. Mapping of forest types in Alaskan boreal forests using SAR imagery. IEEE Trans. Geosci. Remote Sens. 1994, 32, 1051–1059. [Google Scholar] [CrossRef] [Green Version]
- Ainsworth, T.L.; Kelly, J.P.; Lee, J.S. Classification comparisons between dual-pol, compact polarimetric and quad-pol SAR imagery. ISPRS J. Photogramm. Remote Sens. 2009, 64, 464–471. [Google Scholar] [CrossRef]
- Liesenberg, V.; Gloaguen, R. Evaluating SAR polarization modes at L-band for forest classification purposes in Eastern Amazon, Brazil. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 122–135. [Google Scholar] [CrossRef]
- Godinho Cassol, H.L.; De Oliveira, E.; Cruz De Aragão, L.E.; Moraes, E.C.; De Brito Carreiras, J.M.; Shimabukuro, Y.E. Quad-pol Advanced Land Observing Satellite/Phased Array L-band Synthetic Aperture Radar-2 (ALOS/PALSAR-2) data for modelling secondary forest above-ground biomass in the central Brazilian Amazon. Int. J. Remote Sens. 2021, 42, 4985–5009. [Google Scholar] [CrossRef]
- Golshani, P.; Maghsoudi, Y.; Sohrabi, H. Relating ALOS-2 PALSAR-2 parameters to biomass and structure of temperate broadleaf hyrcanian forests. J. Indian Soc. Remote Sens. 2019, 47, 749–761. [Google Scholar] [CrossRef]
- Nouri, A.; Shataee, S.; Mohammadi, J. Capatility of Alos-Palsar-2 radar quad polarization data for estimation of structural quantitative characteristics of planted forest, Arabdagh region, Iran. IJFPR 2019, 27, 451–463. [Google Scholar]
- Musthafa, M.; Khati, U.; Singh, G. Sensitivity of PolSAR decomposition to forest disturbance and regrowth dynamics in a managed forest. Adv. Space Res. 2020, 66, 1863–1875. [Google Scholar] [CrossRef]
4 Poplar Age Classes | ||
---|---|---|
Input | MARS | Random Forests |
Polarizations | OA: 0.681 F-score: 0.604 Mean_HV (100%) | OA: 0.686 F-score: 0.607 Mean_HV (100%) Mean_HH (40.1%) Min_HV (21.1%) |
Freeman-Durden decompositions | OA: 0.725 F-score: 0.664 Mean_volume (100%) Mean_ double_bounce (29%) | OA: 0.734 F-score: 0.724 Mean_volume (100%) StDev_double_bounce (40.1%) |
Yamaguchi decompositions | OA: 0.731 F-score: 0.685 Mean_volume (100%) Mean_double_bounce (31%) | OA: 0.725 F-score: 0.718 Mean_Helix (100%) Mean_volume (94.8%) StDev_Helix (53.8%) Mean_double_bounce (37.5%) |
3 Poplar Age Classes—Overall Accuracy [Class A ≤ 3 Years Age; Class B 4–6 Years Age; Class C ≥ 7 Years Age] | |||
---|---|---|---|
Input | MARS | Random Forests | SVM |
Polarizations | OA: 0.79 F-score: 0.78 Mean_HV 100.0% | OA: 0.87 F-score: 0.76 Mean_HV 100.0% Mean_HH 34.5% Min_HV 20.8% | OA: 0.77 F-score: 0.74 NA |
Freeman-Durden decompositions | OA: 0.76 F-score: 0.74 Mean_volume 100.0% | OA: 0.78 F-score: 0.76 Mean_volume 100.0% StDev_double_bounce 38.3% Max_volume 21.4% | OA: 0.77 F-score: 0.75 NA |
Yamaguchi decompositions | OA: 0.77 F-score: 0.75 Mean_volume 100.0% | OA: 0.79 F-score: 0.77 Mean_Helix 100.0% Mean_volume 95.5% StDev_Helix 55.2% Mean_double_bounce 22.1% | OA: 0.79 F-score: 0.76 NA |
3 Poplar Age Classes—Confusion Matrices [Class A ≤ 3 Years Age; Class B 4–6 Years Age; Class C ≥ 7 Years Age] | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Input | MARS | Random Forests | SVM | |||||||||
Polarizations | classA | classB | classC | Tot | classA | classB | classC | Tot | classA | classB | classC | Tot |
125 | 14 | 2 | 141 | 125 | 13 | 3 | 141 | 121 | 15 | 3 | 139 | |
14 | 51 | 18 | 83 | 14 | 47 | 7 | 68 | 15 | 44 | 13 | 72 | |
5 | 24 | 113 | 142 | 5 | 29 | 123 | 157 | 7 | 31 | 117 | 155 | |
143 | 89 | 133 | 366 | 143 | 89 | 133 | 366 | 143 | 90 | 133 | 366 | |
Input | MARS | Random Forests | SVM | |||||||||
Freeman-Durden decomposition | classA | classB | classC | Tot | class A | classB | class C | Tot | classA | classB | classC | Tot |
119 | 18 | 2 | 139 | 127 | 17 | 1 | 145 | 125 | 16 | 3 | 144 | |
19 | 46 | 19 | 84 | 11 | 49 | 17 | 77 | 14 | 47 | 16 | 77 | |
5 | 25 | 113 | 143 | 5 | 24 | 115 | 144 | 6 | 26 | 113 | 145 | |
143 | 89 | 134 | 366 | 143 | 89 | 133 | 366 | 145 | 89 | 132 | 366 | |
Input | MARS | Random Forests | SVM | |||||||||
Yamaguchi decomposition | classA | classB | classC | Tot | classA | classB | classC | Tot | classA | classB | classC | Tot |
121 | 15 | 2 | 138 | 124 | 15 | 2 | 141 | 127 | 15 | 2 | 144 | |
16 | 51 | 23 | 90 | 14 | 49 | 14 | 77 | 12 | 46 | 15 | 73 | |
6 | 23 | 109 | 138 | 5 | 26 | 117 | 148 | 5 | 28 | 116 | 149 | |
143 | 89 | 134 | 366 | 143 | 89 | 133 | 366 | 144 | 89 | 133 | 366 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vaglio Laurin, G.; Mattioli, W.; Innocenti, S.; Lombardo, E.; Valentini, R.; Puletti, N. Potential of ALOS2 Polarimetric Imagery to Support Management of Poplar Plantations in Northern Italy. Remote Sens. 2022, 14, 5202. https://doi.org/10.3390/rs14205202
Vaglio Laurin G, Mattioli W, Innocenti S, Lombardo E, Valentini R, Puletti N. Potential of ALOS2 Polarimetric Imagery to Support Management of Poplar Plantations in Northern Italy. Remote Sensing. 2022; 14(20):5202. https://doi.org/10.3390/rs14205202
Chicago/Turabian StyleVaglio Laurin, Gaia, Walter Mattioli, Simone Innocenti, Emanuela Lombardo, Riccardo Valentini, and Nicola Puletti. 2022. "Potential of ALOS2 Polarimetric Imagery to Support Management of Poplar Plantations in Northern Italy" Remote Sensing 14, no. 20: 5202. https://doi.org/10.3390/rs14205202
APA StyleVaglio Laurin, G., Mattioli, W., Innocenti, S., Lombardo, E., Valentini, R., & Puletti, N. (2022). Potential of ALOS2 Polarimetric Imagery to Support Management of Poplar Plantations in Northern Italy. Remote Sensing, 14(20), 5202. https://doi.org/10.3390/rs14205202