Rupture Process of the 2022 Mw6.6 Menyuan, China, Earthquake from Joint Inversion of Accelerogram Data and InSAR Measurements
<p>(<b>a</b>) Major active faults on the northeastern margin of the Tibetan Plateau. ATF: Altyn Tagh fault; KLF: Kunlun fault; QHF: Qianlian–Haiyuan fault. (<b>b</b>) Tectonic setting of the 2022 Menyuan earthquake, gray and purple dots are historical earthquakes. The red star is the epicenter of the 2022 Menyuan earthquake from the USGS. Black triangles are locations of intensity meter used in this study. Thick red line is the Tianzhu seismic gap. SNQLF: Sunan–Qilian fault; TLSF: Tuolaishan fault; LLLF: Lenglongling fault; JQHF: Jinqianghe fault; MMSF: Maomaoshan fault; LHSF: Laohushan fault.</p> "> Figure 2
<p>InSAR line-of-sight (LOS) displacement field from ascending (<b>a</b>) and descending (<b>b</b>) tracks with the distribution of intensity meter (black triangles) shown. InSAR LOS displacement field of ascending (<b>c</b>) and descending (<b>d</b>) tracks sampled by quadtree. The black lines mark the surface trace of the fault hosing the Menyuan earthquake. Red ellipses mark the fault bifurcation at the western end of the rupture.</p> "> Figure 3
<p>(<b>a</b>) Three components of accelerogram at the station, C007 (see location in <a href="#remotesensing-14-05104-f001" class="html-fig">Figure 1</a>). (<b>b</b>) The effect of baseline correction for displacement waveform at the same station, C007 as (<b>a</b>). Solid lines are the displacement waveforms after baseline correction, and dashed lines are the displacement waveforms without baseline corrections. Two black vertical lines mark the start and end time of the 2022 Menyuan earthquake.</p> "> Figure 4
<p>Comparison of static displacement between InSAR and accelerogram data projected in the line-of-sight (LOS) direction. The red shows the observation from InSAR ascending track and the black demonstrate the observation from InSAR descending track. The numbers in the figure correspond to the distance from each station to the epicenter.</p> "> Figure 5
<p>Fault surface trace and relocated aftershocks distribution. (<b>a</b>) Optically recognized surface rupture trace (red line), surface trace of fault geometry used in inversion (blue line) and aftershock distributions (gray dots). (<b>b</b>) Cross sections of aftershock distributions along profile AB. Courtesy to Hongfeng Yang from the Chinese University of Hong Kong.</p> "> Figure 6
<p>InSAR line-of-sight (LOS) displacement residual from ascending (<b>a</b>) and descending (<b>b</b>) tracks using only single fault (main fault only) inversion. The blue line is the fault geometry used in the modelling. Black ellipse in (<b>a</b>) and (<b>b</b>) marks significant residuals at the western end of the main fault, implying a secondary fault strand.</p> "> Figure 7
<p>(<b>a</b>,<b>b</b>) Slip distributions from accerogram data only. (<b>c</b>,<b>d</b>) Slip distribution from InSAR data only. (<b>e</b>,<b>f</b>) Slip distribution from a joint inversion. (<b>g</b>) Three−dimension view of fault slip distribution from the joint inversion, shown in (<b>e</b>,<b>f</b>).</p> "> Figure 8
<p>Rupture process in the first 9.2 s during the 2022 Menyuan earthquake. (<b>a</b>–<b>h</b>) Snapshots of the rupture process during sequential periods. Red stars indicate the hypocenter of the Menyuan earthquake. (<b>i</b>) Source time function showing the evolution of moment rate over time.</p> "> Figure 9
<p>Data fitting using the preferred rupture model (<a href="#remotesensing-14-05104-f007" class="html-fig">Figure 7</a>) of the 2022 Menyuan earthquake between the displacement waveforms (black lines) and model predictions (red lines). The peaks of corresponding data are marked on each subplot.</p> "> Figure 10
<p>(<b>a</b>,<b>d</b>) The downsampled InSAR LOS displacements. (<b>b</b>,<b>e</b>) The modelled LOS displacements from the joint inversion. (<b>c</b>,<b>f</b>) Residuals based on the preferred rupture model (<a href="#remotesensing-14-05104-f007" class="html-fig">Figure 7</a>). Blue lines are surface projections of the fault model used in the joint inversion.</p> "> Figure 11
<p>Static Coulomb stress change in surrounding region caused by the 2022 Menyuan earthquake. Static Coulomb stress change at a depth of 5 km. (<b>a</b>) Static Coulomb stress change at a depth of 10 km. (<b>b</b>) TLSF: Tuolaishan fault; LLLF: Lenglongling fault; SNQLF: Sunan–Qilian fault.</p> ">
Abstract
:1. Introduction
2. Data and Methods
2.1. InSAR Data and Processing
2.2. Baseline Correction of Accelerogram Data
2.3. Coulomb Stress Change Calculation Method
3. Rupture Process Inversion
3.1. Fault Geometry
3.2. Inversion Method
4. Inversion Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liang, K.; He, Z.T.; Jiang, W.L.; Li, Y.S.; Liu, Z.M. Surface rupture characteristics of the Menyuan, M.6.9 earthquake on January 8, 2022, Qinghai Province. Seismol. Geol. 2022, 44, 256–278. [Google Scholar]
- Shi, Y.; Gao, Y.; Shen, X.Z.; Liu, K.H. Multiscale spatial distribution of crustal seismic anisotropy beneath the northeastern margin of the Tibetan plateau and tectonic implications of the Haiyuan fault. Tectonophysics 2020, 774, 228274. [Google Scholar] [CrossRef]
- Zheng, W.J.; Zhang, P.Z.; He, W.G.; Yuan, D.Y.; Shao, Y.X.; Zheng, D.W.; Ge, W.P.; Min, W. Transformation of displacement between strike-slip and crustal shortening in the northern margin of the Tibetan Plateau: Evidence from decadal GPS measurements and late Quaternary slip rates on faults. Tectonophysics 2013, 584, 267–280. [Google Scholar] [CrossRef]
- Gaudemer, Y.; Tapponnier, P.; Meyer, B.; Peltzer, G.; Shunmin, G.; Zhitai, C.; Huagung, D.; Cifuentes, I. Partitioning of crustal slip be-tween linked, active faults in the eastern Qilian Shan, and evidence for a majorseismic gap, the‘Tianzhu gap’, on the western Haiyuan Fault, Gansu (China). Geophys. J. Int. 1995, 120, 599–645. [Google Scholar] [CrossRef] [Green Version]
- Lasserre, C.; Gaudemer, Y.; Tapponnier, P.; Mériaux, A.S.; Van der Woerd, J.; Daoyang, Y.; Ryerson, F.J.; Finkel, R.C.; Caffee, M.W. Fast late Pleistocene slip rate on the Leng Long Ling segment of the Haiyuan fault, Qinghai, China. J. Geophys. Res. Solid Earth 2002, 107, ETG 4-1–ETG 4-15. [Google Scholar] [CrossRef]
- Hou, K. Characteristics of ground ruptures caused by 1927 Gulang M8earthquake and their causative mechanisms. Seism. Geol. 1998, 20, 19–26. [Google Scholar]
- Han, S.; Wu, Z.H.; Gao, Y.; Lu, H. Surface rupture investigation of the 2022 Menyuan MS 6.9 earthquake, Qinghai, China: Implications for the fault behavior of the Lenglongling fault and regional intense earthquake risk. J. Geomech. 2022, 28, 155–169. [Google Scholar] [CrossRef]
- Fu, Z.X.; Liu, G.P.; Chen, Q.F. Dynamic analysis on interaction between the Haiyuan-Gulang-Changma great earthquake inthe north boundary of the Tibetan Plateau. Seismol. Geol. 2001, 23, 35–42. [Google Scholar]
- Wan, Y.G.; Shen, Z.K.; Zeng, Y.H.; Sheng, S.Z. Evolution of cumulative Coulomb failure stress in northeastern Qinghai-Xizang (Tibetan) Plateau and its effect on large earthquake occurrence. Acta Seismol. Sin. 2007, 20, 117–132. [Google Scholar] [CrossRef]
- Zhu, L.; Dai, Y.; Shi, F.Q.; Shao, H.C. Coulomb stress evolution and seismic hazard along the Qilian-Haiyuan faultzone. Acta Seismol. Sin. 2022, 44, 223–236. [Google Scholar] [CrossRef]
- Li, Y.; Shan, X.; Qu, C.; Zhang, Y.; Song, X.; Jiang, Y.; Zhang, G.; Nocquet, J.M.; Gong, W.; Gan, W.; et al. Elastic block and strain modeling of GPS data around the Haiyuan-Liupanshan fault, northeastern Tibetan Plateau. J. Asian Earth Sci. 2017, 150, 87–97. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, Z.; Xu, C.; Wen, Y.; Liu, H. Dual threshold search method for asperity boundary determination based on geodetic and seismic catalog data. Geod. Geodyn. 2022, 13, 301–310. [Google Scholar] [CrossRef]
- Yagi, Y.; Fukahata, Y. Rupture process of the 2011 Tohoku-oki earthquake and absolute elastic strain release. Geophys. Res. Lett. 2011, 38, L19307. [Google Scholar] [CrossRef]
- Chousianitis, K.; Konca, A.O. Rupture Process of the 2020 Mw7.0 Samos Earthquake and its Effect on Surrounding Active Faults. Geophys. Res. Lett. 2021, 48, e2021GL094162. [Google Scholar] [CrossRef]
- Yue, H.; Shen, Z.K.; Zhao, Z.; Wang, T.; Cao, B.; Li, Z.; Bao, X.; Zhao, L.; Song, X.; Ge, Z.; et al. Rupture process of the 2021 M7.4 Maduo earthquake and implication for deformation mode of the Songpan-Ganzi terrane in Tibetan Plateau. Proc. Natl. Acad. Sci. USA 2022, 119, e2116445119. [Google Scholar] [CrossRef] [PubMed]
- Fialko, Y.; Simons, M.; Agnew, D. The complete (3-D) surface displacement field in the epicentral area of the 1999MW7.1 Hector Mine Earthquake, California, from space geodetic observations. Geophys. Res. Lett. 2001, 28, 3063–3066. [Google Scholar] [CrossRef] [Green Version]
- Haeussler, P.J.; Schwartz, D.P.; Dawson, T.E.; Stenner, H.D.; Lienkaemper, J.J.; Sherrod, B.; Cinti, F.R.; Montone, P.; Craw, P.A.; Crone, A.J.; et al. Personius. Surface Rupture and Slip Distribution of the Denali and Totschunda Faults in the 3 November 2002 M 7.9 Earthquake, Alaska. Bull. Seismol. Soc. Am. 2004, 94, 23–52. [Google Scholar] [CrossRef]
- Jin, Z.; Fialko, Y. Finite Slip Models of the 2019 Ridgecrest Earthquake Sequence Constrained by Space Geodetic Data and Aftershock Locations. Bull. Seismol. Soc. Am. 2020, 110, 1660–1679. [Google Scholar] [CrossRef]
- Chen, K.; Xu, W.; Mai, P.M.; Gao, H.; Zhang, L.; Ding, X. The 2017 Mw 7.3 Sarpol Zahāb Earthquake, Iran: A compact blind shallow-dipping thrust event in the mountain front fault basement. Tectonophysics 2018, 747–748, 108–114. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Shan, X.; Delouis, B.; Qu, C.; Balestra, J.; Li, Z.; Liu, Y.; Zhang, G. Rupture history of the 2010 Ms 7.1 Yushu earthquake by joint inversion of teleseismic data and InSAR measurements. Tectonophysics 2013, 584, 129–137. [Google Scholar] [CrossRef]
- Gai, H.L.; Li, Z.M.; Yao, S.H.; Li, X. Preliminary investigation and research on surface rupture characteristics of the 2022 Qinghai Menyuan Ms 6.9 earthquake. Seismol. Geol. 2022, 44, 238–255. [Google Scholar]
- Li, Z.H.; Han, B.Q.; Liu, Z.J. Source Parameters and Slip Distributions of the 2016 and 2022 Menyuan, Qinghai Earthquakes Constrained by InSAR Observations. Geomat. Inf. Sci. Wuhan Univ. 2022, 47, 887–897. [Google Scholar] [CrossRef]
- Yang, H.; Wang, D.; Guo, R.; Xie, M.; Zang, Y.; Wang, Y.; Yao, Q.; Cheng, C.; An, Y.; Zhang, Y. Rapid report of the 8 January 2022 MS 6.9 Menyuan earthquake, Qinghai, China. Earthq. Res. Adv. 2022, 2, 100113. [Google Scholar] [CrossRef]
- Lazecký, M.; Spaans, K.; González, P.J.; Maghsoudi, Y.; Morishita, Y.; Albino, F.; Elliott, J.; Greenall, N.; Hatton, E.; Hooper, A.; et al. LiCSAR: An Automatic InSAR Tool for Measuring and Monitoring Tectonic and Volcanic Activity. Remote Sens. 2020, 12, 2430. [Google Scholar] [CrossRef]
- Lin, Y.; Zong, Z.; Tian, S.; Lin, J. A new baseline correction method for near-fault strong-motion records based on the target final displacement. Soil Dyn. Earthq. Eng. 2018, 114, 27–37. [Google Scholar] [CrossRef]
- Boore, D.M.; Stephens, C.D.; Joyner, W.B. Comments on Baseline Correction of Digital Strong-Motion Data:Examples from the 1999 Hector Mine, California, Earthquake. Bull. Seismol. Soc. Am. 2002, 92, 1543–1560. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Schurr, B.; Milkereit, C.; Shao, Z.; Jin, M. An Improved Automatic Scheme for Empirical Baseline Correction of Digital Strong-Motion Records. Bull. Seismol. Soc. Am. 2011, 101, 2029–2044. [Google Scholar] [CrossRef]
- Reeves, J.A.; Knight, R.; Zebker, H.A. An Analysis of the Uncertainty in InSAR Deformation Measurements for Groundwater Applications in Agricultural Areas. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2992–3001. [Google Scholar] [CrossRef]
- Toda, S. Forecasting the evolution of seismicity in southern California: Animations built on earthquake stress transfer. J. Geophys. Res. 2005, 110. [Google Scholar] [CrossRef]
- Cocco, M. Pore pressure and poroelasticity effects in Coulomb stress analysis of earthquake interactions. J. Geophys. Res. 2002, 107, ESE-2. [Google Scholar] [CrossRef]
- Luo, H.; Wang, T. Strain Partitioning on the Western Haiyuan Fault System Revealed by the Adjacent 2016 Mw 5.9 and 2022 Mw 6.7 Menyuan Earthquakes. Geophys. Res. Lett. 2022, 49, e2022GL099348. [Google Scholar] [CrossRef]
- Melgar, D.; Bock, Y. Kinematic earthquake source inversion and tsunami runup prediction with regional geophysical data. J. Geophys. Res. Solid Earth 2015, 120, 3324–3349. [Google Scholar] [CrossRef]
- Ide, S.; Takeo, M.; Yoshida, Y. Source process of the 1995 Kobe earthquake: Determination of spatio-temporal slip distribution by Bayesian modeling. Bull. Seismol. Soc. Am. 1996, 86, 547–566. [Google Scholar]
- Laske, G.; Masters, G.; Ma, Z.; Pasyanos, M. Update on CRUST1.0—A 1-degree Global Model of Earth’s Crust. Geophys. Res. Abstr. 2013, 15, 2013–2658. [Google Scholar]
- Zhu, L.; Rivera, L.A. A note on the dynamic and static displacements from a point source in multilayered media. Geophys. J. Int. 2002, 148, 619–627. [Google Scholar] [CrossRef]
- Stein, R.S. The Role of Stress Transfer in Earthquake Occurrence. Nature 1999, 402, 605–609. [Google Scholar] [CrossRef]
- Shan, B.; Zheng, Y.; Liu, C.; Xie, Z.; Kong, J. Coseismic Coulomb failure stress changes caused by the 2017 M7.0 Jiuzhaigou earthquake, and its relationship with the 2008 Wenchuan earthquake. Sci. China Earth Sci. 2017, 60, 2181–2189. [Google Scholar] [CrossRef]
- Ji, L.Y.; Liu, C.J.; Xu, J. InSAR Observation and Inversion of the Seismogenic Fault for the 2017 Jiuzhaigou Ms7.0 Earthquake in China. Chin. J. Geophys. 2017, 60, 4069–4082. [Google Scholar]
- Huang, Z.; Zhou, Y.; Qiao, X.; Zhang, P.; Cheng, X. Kinematics of the ∼1000 km Haiyuan fault system in northeastern Tibet from high-resolution Sentinel-1 InSAR velocities: Fault architecture, slip rates, and partitioning. Earth Planet. Sci. Lett. 2022, 583, 117450. [Google Scholar] [CrossRef]
- Guo, P.; Han, Z.; Gao, F.; Zhu, C.; Gai, H. A New Tectonic Model for the 1927 M8.0 Gulang Earthquake on the NE Tibetan Plateau. Tectonics 2020, 39, e2020TC006064. [Google Scholar] [CrossRef]
- Ou, Q.; Kulikova, G.; Yu, J.; Elliott, A.; Parsons, B.; Walker, R. Magnitude of the 1920 Haiyuan Earthquake Reestimated Using Seismological and Geomorphological Methods. J. Geophys. Res. Solid Earth 2020, 125, e2019JB019244. [Google Scholar] [CrossRef]
- Wang, H.; Liu-Zeng, J.; Ng, A.H.M.; Ge, L.; Javed, F.; Long, F.; Aoudia, A.; Feng, J.; Shao, Z. Sentinel-1 observations of the 2016 Menyuan earthquake: A buried reverse event linked to the left-lateral Haiyuan fault. Int. J. Appl. Earth Obs. Geoinf. 2017, 61, 14–21. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, C.; Zhang, G.; Zhao, D.; Shan, X.; Xie, C.; Tu, H.; Qu, C.; Zhu, C.; Han, N.; Chen, J. Rupture Process of the 2022 Mw6.6 Menyuan, China, Earthquake from Joint Inversion of Accelerogram Data and InSAR Measurements. Remote Sens. 2022, 14, 5104. https://doi.org/10.3390/rs14205104
Huang C, Zhang G, Zhao D, Shan X, Xie C, Tu H, Qu C, Zhu C, Han N, Chen J. Rupture Process of the 2022 Mw6.6 Menyuan, China, Earthquake from Joint Inversion of Accelerogram Data and InSAR Measurements. Remote Sensing. 2022; 14(20):5104. https://doi.org/10.3390/rs14205104
Chicago/Turabian StyleHuang, Chuanchao, Guohong Zhang, Dezheng Zhao, Xinjian Shan, Chaodi Xie, Hongwei Tu, Chunyan Qu, Chuanhua Zhu, Nana Han, and Junxian Chen. 2022. "Rupture Process of the 2022 Mw6.6 Menyuan, China, Earthquake from Joint Inversion of Accelerogram Data and InSAR Measurements" Remote Sensing 14, no. 20: 5104. https://doi.org/10.3390/rs14205104
APA StyleHuang, C., Zhang, G., Zhao, D., Shan, X., Xie, C., Tu, H., Qu, C., Zhu, C., Han, N., & Chen, J. (2022). Rupture Process of the 2022 Mw6.6 Menyuan, China, Earthquake from Joint Inversion of Accelerogram Data and InSAR Measurements. Remote Sensing, 14(20), 5104. https://doi.org/10.3390/rs14205104