The Atmospheric Correction of COCTS on the HY-1C and HY-1D Satellites
"> Figure 1
<p>The composite R<span class="html-italic"><sub>rs</sub></span> images of Bands 1–3 from the MODIS on 6 October 2020 with Terra (<b>a</b>) and Aqua (<b>b</b>); those from COCTS on HY-1C (<b>c</b>) and HY-1D (<b>d</b>), where the red cross marks the position of the MOBY site and two blue lines (A and B) are used to demonstrate the structures of spectra along the lines in Figures 12 and 13; the spectral R<span class="html-italic"><sub>rs</sub></span> comparison of the in situ measurements at the MOBY site (red line) and the satellite-retrieved images (green line) for HY-1C (<b>e</b>) and HY-1D (<b>f</b>).</p> "> Figure 2
<p>The comparison of R<span class="html-italic"><sub>rs</sub></span> matchups between COCTS/HY-1C and MOBY measurements on the same day, with the density of dots indicated by different colors. Subfigures (<b>a</b>–<b>f</b>) represent the values at Bands 1–6.</p> "> Figure 3
<p>The comparison of R<span class="html-italic"><sub>rs</sub></span> between the COCTS/HY-1D and MOBY measurements on the same day. Subfigures (<b>a</b>–<b>f</b>) represent the values in Bands 1–6, respectively.</p> "> Figure 4
<p>The comparison of the global daily R<sub>rs</sub> image on 1 October 2020 with (<b>a</b>) COCTS/HY-1C at Band 1 and (<b>b</b>) MODIS/Terra at Band 8. The magnitudes of image pixels are indicated by the color bar with the unit of sr<sup>−1</sup>. Invalid pixels are masked black and land grey.</p> "> Figure 5
<p>Evaluation of the consistency of the daily global R<span class="html-italic"><sub>rs</sub></span> imagery between COCTS/HY-1C and MODIS/Terra on 2 October 2020 at six bands (<b>a</b>–<b>f</b>).</p> "> Figure 6
<p>The comparison of the global daily R<span class="html-italic"><sub>rs</sub></span> image on 2 October 2020 with (<b>a</b>) COCTS/HY-1D at Band 1 and (<b>b</b>) MODIS/Aqua at Band 8. The magnitudes of image pixels are indicated by the color bar with the unit of sr<sup>−1</sup>. Invalid pixels are masked black and land grey.</p> "> Figure 7
<p>Evaluation of the consistency of the daily global R<span class="html-italic"><sub>rs</sub></span> imagery between C CTS/HY-1D and MODIS/Aqua on 2 October 2020 at six bands (<b>a</b>–<b>f</b>).</p> "> Figure 8
<p>The comparison of the 8-day composite R<span class="html-italic"><sub>rs</sub></span> image between COCTS/HY-1C at Band 1 (<b>a</b>) and MODIS/Terra at Band 8 (<b>b</b>). Both are produced from the global daily images during the period of 7 to 14 October 2020. The magnitudes of image pixels are indicated by the color bar with the unit of sr<sup>−1</sup>. Invalid pixels are masked black and land grey.</p> "> Figure 9
<p>The comparison of the 8-day composite R<span class="html-italic"><sub>rs</sub></span> image between COCTS/HY-1D at Band 1 (<b>a</b>) and MODIS/Aqua at Band 8 (<b>b</b>). Both are produced from the global daily images during the period of 7 to 14 October 2020. The magnitudes of image pixels are indicated by the color bar with the unit of sr<sup>−1</sup>. Invalid pixels are masked black and land grey.</p> "> Figure 10
<p>(<b>a</b>) The composite R<span class="html-italic"><sub>rs</sub></span> image at Band 1, merged from the two images of HY-1C and HY-1D on 2 October 2020, and (<b>b</b>) the comparison of the R<span class="html-italic"><sub>rs</sub></span> data distribution of the three images, normalized to the maximum of 1.</p> "> Figure 11
<p>(<b>a</b>) The 3-day composite R<span class="html-italic"><sub>rs</sub></span> image at Band 1, merged from HY-1C during 3–5 October 2020, and (<b>b</b>) the comparison of the R<span class="html-italic"><sub>rs</sub></span> data distribution of the images.</p> "> Figure 12
<p>The comparison of R<span class="html-italic"><sub>rs</sub></span> values between HY-1C and HY-1D along Line A (location shown in <a href="#remotesensing-14-06372-f001" class="html-fig">Figure 1</a>) from Band 1 (<b>a</b>–<b>f</b>) to Band 6.</p> "> Figure 13
<p>The comparison of R<span class="html-italic"><sub>rs</sub></span> values between HY-1C and HY-1D along Line B (location shown in <a href="#remotesensing-14-06372-f001" class="html-fig">Figure 1</a>) from Band 1 (<b>a</b>–<b>f</b>) to Band 6.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Satellite Data and In Situ Data
2.2. The Atmospheric Correction Scheme of COCTS on HY-1C/1D
2.3. The Evaluation Method
3. Results
3.1. Validation by MOBY Measurements
3.2. The Comparison of the Daily Rrs(λ) Image
3.3. The Comparison of 8-Day Composite Products
4. Discussion
4.1. The Removal of the Sun Glint Contamination
4.2. The 3-Day Composite Images
4.3. The Spectral Variations over the Ocean Dynamic Features
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mao, Z.; Chen, P.; Tao, B.; Ding, J.; Liu, J.; Chen, J.; Hao, Z.; Zhu, Q.; Huang, H. A Radiometric Calibration Scheme for COCTS/HY-1C Based on Image Simulation from the Standard Remote-Sensing Reflectance. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–9. [Google Scholar] [CrossRef]
- HY-1C/D-EoPortal Directory-Satellite Missions. Available online: https://directory.eoportal.org/web/eoportal/satellite-missions/hy-1c-1d (accessed on 1 January 2021).
- Cai, L.; Zhou, M.; Liu, J.; Tang, D.; Zuo, J. HY-1C Observations of the Impacts of Islands on Suspended Sediment Distribution in Zhoushan Coastal Waters, China. Remote Sens. 2020, 12, 1766. [Google Scholar] [CrossRef]
- Chen, X.-Y.; Zhang, J.; Tong, C.; Liu, R.-J.; Mu, B.; Ding, J. Retrieval Algorithm of Chlorophyll-a Concentration in Turbid Waters from Satellite HY-1C Coastal Zone Imager Data. J. Coast. Res. 2019, 90, 146–155. [Google Scholar] [CrossRef]
- Mao, Z.; Tao, B.; Chen, J.; Chen, P.; Hao, Z.; Zhu, Q.; Huang, H. A Layer Removal Scheme for Atmospheric Correction of Satellite Ocean Color Data in Coastal Regions. IEEE Trans. Geo. Remote Sens. 2021, 59, 1382–1391. [Google Scholar] [CrossRef]
- Warren, M.A.; Simis, S.G.H.; Martinez-Vicente, V.; Poser, K.; Bresciani, M.; Alikas, K.; Spyrakos, E.; Giardino, C.; Ansper, A. Assessment of atmospheric correction algorithms for the Sentinel-2A Multi-Spectral Imager over coastal and inland waters. Remote Sens. Environ. 2019, 225, 267–289. [Google Scholar] [CrossRef]
- Doxani, G.; Vermote, E.; Roger, J.; Gascon, F.; Adriaensen, S.; Frantz, D.; Hagolle, O.; Hollstein, A.; Kirches, G. Atmospheric Correction Inter-Comparison Exercise. Remote Sens. 2018, 10, 352. [Google Scholar] [CrossRef] [Green Version]
- Wei, J.; Lee, Z.; Garcia, R.; Zoffoli, L.; Armstrong, R.A.; Shang, Z.; Sheldon, P.; Chen, R.F. An assessment of Landsat-8 atmospheric correction schemes and remote sensing reflectance products in coral reefs and coastal turbid waters. Remote Sens. Environ. 2018, 215, 18–32. [Google Scholar] [CrossRef]
- Ilori, C.; Pahlevan, N.; Knudby, A. Analyzing Performances of Different Atmospheric Correction Techniques for Landsat 8: Application for Coastal Remote Sensing. Remote Sens. 2019, 11, 469. [Google Scholar] [CrossRef] [Green Version]
- Bailey, S.W.; Franz, B.A.; Werdell, P.J. Estimation of Near-Infrared Water-Leaving Reflectance for Satellite Ocean Color Data Processing. Opt. Express 2010, 18, 7521–7527. [Google Scholar] [CrossRef]
- Oo, M.; Vargas, M.; Gilerson, A.; Gross, B.; Moshary, F.; Ahmed, S. Improving Atmospheric Correction for Highly Productive Coastal Waters Using the Short Wave Infrared Retrieval Algorithm with Water-Leaving Reflectance Constraints at 412 Nm. Appl. Opt. 2008, 47, 3846–3859. [Google Scholar] [CrossRef]
- Mao, Z.; Pan, D.; He, X.; Chen, J.; Tao, B.; Chen, P.; Hao, Z.; Bai, Y.; Zhu, Q.; Huang, H. A Unified Algorithm for the Atmospheric Correction of Satellite Remote Sensing Data over Land and Ocean. Remote Sens. 2016, 8, 536. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Jiang, L. Atmospheric Correction Using the Information from the Short Blue Band. IEEE Trans. Geo. Remote Sens. 2018, 56, 6224–6237. [Google Scholar] [CrossRef]
- Jiang, L.; Wang, M. Improved Near-Infrared Ocean Reflectance Correction Algorithm for Satellite Ocean Color Data Processing. Opt. Express 2014, 22, 21657–21678. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.K.; Shanmugam, P.; He, X.; Schroeder, T. UV-NIR Approach with Non-Zero Water-Leaving Radiance Approximation for Atmospheric Correction of Satellite Imagery in Inland and Coastal Zones. Opt. Express 2019, 27, A1118–A1145. [Google Scholar] [CrossRef]
- Zhang, M.; Hu, C.; Barnes, B.B. Performance of POLYMER Atmospheric Correction of Ocean Color Imagery in the Presence of Absorbing Aerosols. IEEE Trans. Geo. Remote Sens. 2019, 57, 6666–6674. [Google Scholar] [CrossRef]
- Mao, Z.; Tao, B.; Chen, P.; Chen, J.; Hao, Z.; Zhu, Q.; Huang, H. Atmospheric Correction of Satellite Ocean Color Remote Sensing in the Presence of High Aerosol Loads. Remote Sens. 2019, 12, 31. [Google Scholar] [CrossRef] [Green Version]
- Goyens, C.; Jamet, C.; Schroeder, T. Evaluation of Four Atmospheric Correction Algorithms for MODIS-Aqua Images over Contrasted Coastal Waters. Remote Sens. Environ. 2013, 131, 63–75. [Google Scholar] [CrossRef]
- Carswell, T.; Costa, M.; Young, E.; Komick, N.; Gower, J.; Sweeting, R. Evaluation of MODIS-Aqua Atmospheric Correction and Chlorophyll Products of Western North American Coastal Waters Based on 13 Years of Data. Remote Sens. 2017, 9, 1063. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Son, S.; Shi, W. Evaluation of MODIS SWIR and NIR-SWIR Atmospheric Correction Algorithms Using SeaBASS Data. Remote Sens. Environ. 2009, 113, 635–644. [Google Scholar] [CrossRef]
- Wang, M.; Wei, S. Estimation of Ocean Contribution at the MODIS Near-Infrared Wavelengths along the East Coast of the U.S.: Two Case Studies. Geo. Res. Lett. 2005, 32, L13606. [Google Scholar] [CrossRef]
- Mao, Z.; Mao, Z.; Jamet, C.; Linderman, M.; Wang, Y.; Chen, X. Seasonal Cycles of Phytoplankton Expressed by Sine Equations Using the Daily Climatology from Satellite-Retrieved Chlorophyll-a Concentration (1997–2019) Over Global Ocean. Remote Sens. 2020, 12, 2662. [Google Scholar] [CrossRef]
- Liu, X.; Wang, M. Filling the Gaps of Missing Data in the Merged VIIRS SNPP/NOAA-20 Ocean Color Product Using the DINEOF Method. Remote Sens. 2019, 11, 178. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Li, Z.; Qiao, Y.; Liu, Y.; Zhang, Y. A New Method for Cross-Calibration of Two Satellite Sensors. Int. J. Remote Sens. 2004, 25, 5267–5281. [Google Scholar] [CrossRef]
- Chander, G.; Xiong, X.; Choi, T.; Angal, A. Monitoring On-Orbit Calibration Stability of the Terra MODIS and Landsat 7 ETM+ Sensors Using Pseudo-Invariant Test Sites. Remote Sens. Environ. 2010, 114, 925–939. [Google Scholar] [CrossRef]
- Sayer, A.M.; Hsu, N.C.; Bettenhausen, C.; Holz, R.E.; Lee, J.; Quinn, G.; Veglio, P. Cross-Calibration of S-NPP VIIRS Moderate-Resolution Reflective Solar Bands against MODIS Aqua over Dark Water Scenes. Atmos. Meas. Tech. 2017, 10, 1425–1444. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; He, X.; Liu, Z.; Xu, N.; Ma, L.; Xing, Q.; Hu, X.; Pan, D. An Approach to Cross-Calibrating Multi-Mission Satellite Data for the Open Ocean. Remote Sens. Environ. 2020, 246, 111895. [Google Scholar] [CrossRef]
- Gordon, H.R.; Wang, M. Retrieval of Water-Leaving Radiance and Aerosol Optical Thickness over the Oceans with SeaWiFS: A Preliminary Algorithm. Appl. Opt. 1994, 33, 443–452. [Google Scholar] [CrossRef]
- Shi, W.; Wang, M. Detection of Turbid Waters and Absorbing Aerosols for the MODIS Ocean Color Data Processing. Remote Sens. Environ. 2007, 110, 149–161. [Google Scholar] [CrossRef]
- Brown, S.W.; Flora, S.J.; Feinholz, M.E.; Yarbrough, M.A.; Houlihan, T.; Peters, D.; Kim, Y.S.; Mueller, J.L.; Johnson, B.C.; Clark, D.K. The Marine Optical Buoy (MOBY) Radiometric Calibration and Uncertainty Budget for Ocean Color Satellite Sensor Vicarious Calibration. In Sensors, Systems, and Next-Generation Satellites XI; Habib, S., Meynart, R., Neeck, S.P., Shimoda, H., Eds.; SPIE: Bellingham, WA, USA, 2007; Volume 6744, pp. 433–444. [Google Scholar]
- Lacis, A.A.; Hansen, J.E. A Parameterization for the Absorption of Solar Radiation in the Earth’s Atmosphere. J. Atmos. Sci. 1974, 31, 118–133. [Google Scholar] [CrossRef]
- Kotchenova, S.Y.; Vermote, E.F.; Matarrese, R.; Klemm, F.J., Jr. Validation of a Vector Version of the 6S Radiative Transfer Code for Atmospheric Correction of Satellite Data Part I: Path Radiance. Appl. Opt. 2006, 45, 6762–6774. [Google Scholar] [CrossRef]
- Kotchenova, S.Y.; Vermote, E.F. Validation of a Vector Version of the 6S Radiative Transfer Code for Atmospheric Correction of Satellite Data Part II Homogeneous Lambertian and Anisotropic Surfaces. Appl. Opt. 2007, 46, 4455–4464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gordon, H.R.; Wang, M. Surface-Roughness Considerations for Atmospheric Correction of Ocean Color Sensors. I: The Rayleigh-Scattering Component. Appl. Opt. 1992, 31, 4247–4260. [Google Scholar] [CrossRef] [PubMed]
- Cox, C.; Munk, W. Measurement of the Roughness of the Sea Surface from Photographs of the Sun’s Glitter. J. Opt. Soc. Am. 1954, 44, 838–850. [Google Scholar] [CrossRef]
- Frouin, R.; Schwindling, M.; Deschamps, P.-Y. Spectral Reflectance of Sea Foam in the Visible and Near-Infrared: In Situ Measurements and Remote Sensing Implications. J. Geophy. Res. Oceans 1996, 101, 14361–14371. [Google Scholar] [CrossRef]
- Moulin, C.; Gordon, H.R.; Banzon, V.F.; Evans, R.H. Assessment of Saharan Dust Absorption in the Visible from SeaWiFS Imagery. J. Geophy. Res. Atmos. 2001, 106, 18239–18249. [Google Scholar] [CrossRef]
- Jena, B.; Swain, D.; Avinash, K. Investigation of the biophysical processes over the oligotrophic waters of South Indian Ocean subtropical gyre, triggered by cyclone Edzani. Int. J. Appl. Earth Obs. Geo. 2012, 18, 49–56. [Google Scholar] [CrossRef]
Ocean Color Sensor | Band | Central Wavelength (nm) | Range (nm) | Bandwidth (nm) | Signal-to-Noise Ratio |
---|---|---|---|---|---|
COCTS | 1 | 412 | 402~422 | 20 | 349 |
MODIS | 8 | 412 | 405~420 | 15 | 880 |
COCTS | 2 | 443 | 433~453 | 20 | 472 |
MODIS | 9 | 443 | 438~448 | 10 | 838 |
COCTS | 3 | 490 | 480~500 | 20 | 467 |
MODIS | 10 | 488 | 483~493 | 10 | 802 |
COCTS | 4 | 520 | 510~530 | 20 | 448 |
MODIS | 11 | 531 | 526~536 | 10 | 754 |
COCTS | 5 | 565 | 555~575 | 20 | 417 |
MODIS | 12 | 551 | 546~556 | 10 | 750 |
COCTS | 6 | 670 | 660~680 | 20 | 309 |
MODIS | 13 | 667 | 662~672 | 10 | 910 |
COCTS | 7 | 750 | 730~770 | 40 | 319 |
MODIS | 15 | 748 | 743~753 | 10 | 586 |
COCTS | 8 | 865 | 845~885 | 40 | 327 |
MODIS | 16 | 869 | 862~877 | 15 | 516 |
Wavebands | 1 | 2 | 3 | 4 | 5 | 6 | Mean |
---|---|---|---|---|---|---|---|
Mean Rm (sr−1) | 0.01117 | 0.00882 | 0.00538 | 0.00242 | 0.00106 | 0.00012 | 0.00483 |
Mean Rsat (sr−1) | 0.01112 | 0.00844 | 0.00526 | 0.00233 | 0.00099 | 0.00011 | 0.00471 |
MRE (%) | 2.34 | −2.31 | −0.29 | −0.88 | −3.09 | −5.15 | −1.56 |
MAE (%) | 16.37 | 14.73 | 14.11 | 15.97 | 17.85 | 24.81 | 17.31 |
MPD (%) | −1.49 | 3.05 | 0.94 | 2.11 | 8.93 | 230.43 | 40.66 |
MAD (%) | 13.95 | 13.09 | 11.97 | 14.54 | 22.29 | 230.43 | 51.05 |
RMS (sr−1) | 0.00227 | 0.0017 | 0.001 | 0.0005 | 0.0002 | 3.93 × 10−5 | 0.00095 |
R2 | 0.34 | 0.27 | 0.20 | 0.19 | 0.38 | 0.83 | 0.37 |
Number of pairs | 455 | 457 | 452 | 434 | 368 | 99 | 377 |
Wavebands | 1 | 2 | 3 | 4 | 5 | 6 | Mean |
---|---|---|---|---|---|---|---|
Mean Rm (sr−1) | 0.0111 | 0.0086 | 0.0054 | 0.0024 | 0.00107 | 0.0001 | 0.00478 |
Mean Rsat (sr−1) | 0.0112 | 0.0083 | 0.0051 | 0.0023 | 0.00103 | 0.0001 | 0.00467 |
MRE (%) | 2.25 | −2.55 | −3.58 | −2.16 | −0.25 | 12.61 | 1.05 |
MAE (%) | 11.59 | 11.32 | 10.34 | 13.46 | 15.45 | 31.94 | 15.68 |
MPD (%) | −1.98 | 2.79 | 2.09 | −0.72 | 5.91 | 129.71 | 22.97 |
MAD (%) | 10.66 | 10.16 | 9.53 | 11.42 | 15.77 | 129.71 | 31.21 |
RMS (sr−1) | 0.00183 | 0.00151 | 0.00078 | 0.00046 | 0.00019 | 3.51 × 10−5 | 0.0008 |
R2 | 0.21 | 0.17 | 0.17 | 0.11 | 0.31 | 0.33 | 0.22 |
Number of pairs | 36 | 36 | 35 | 35 | 31 | 9 | 30 |
Wavebands | 1 | 2 | 3 | 4 | 5 | 6 | Mean |
---|---|---|---|---|---|---|---|
MRE (%) | 3.35 | 8.87 | 13.12 | 13.02 | 13.84 | 13.42 | 10.94 |
MAE (%) | 18.48 | 19.01 | 19.97 | 22.01 | 24.09 | 24.73 | 21.38 |
MPD (%) | 9.29 | 10.82 | 6.52 | 8.77 | 6.89 | 62.71 | 17.5 |
MAD (%) | 16.39 | 16.11 | 13.76 | 16.56 | 30.68 | 93.09 | 31.09 |
RMS (sr−1) | 0.0062 | 0.0051 | 0.0038 | 0.0028 | 0.0018 | 0.0015 | 0.0035 |
R2 | 0.90 | 0.86 | 0.78 | 0.66 | 0.88 | 0.93 | 0.83 |
Number of pairs | 57,849 | 59,424 | 64,876 | 54,144 | 27,302 | 8409 | 45,334 |
Wavebands | 1 | 2 | 3 | 4 | 5 | 6 | Mean |
---|---|---|---|---|---|---|---|
MRE (%) | 11.07 | 13.37 | 12.92 | 14.74 | 14.31 | 13.46 | 13.31 |
MAE (%) | 19.45 | 20.56 | 19.98 | 21.69 | 23.7 | 23.36 | 21.45 |
MPD (%) | 14.01 | 9.35 | −0.54 | 0.81 | 4.17 | −15.14 | 2.11 |
MAD (%) | 20.92 | 17.86 | 13.45 | 14.81 | 25.82 | 61.93 | 25.79 |
RMS (sr−1) | 0.0069 | 0.0056 | 0.0039 | 0.0028 | 0.0018 | 0.0015 | 0.0037 |
R2 | 0.91 | 0.87 | 0.81 | 0.71 | 0.89 | 0.94 | 0.85 |
Number of pairs | 48,672 | 56,006 | 67,008 | 58,694 | 35,059 | 12,076 | 46,253 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mao, Z.; Zhang, Y.; Tao, B.; Chen, J.; Hao, Z.; Zhu, Q.; Huang, H. The Atmospheric Correction of COCTS on the HY-1C and HY-1D Satellites. Remote Sens. 2022, 14, 6372. https://doi.org/10.3390/rs14246372
Mao Z, Zhang Y, Tao B, Chen J, Hao Z, Zhu Q, Huang H. The Atmospheric Correction of COCTS on the HY-1C and HY-1D Satellites. Remote Sensing. 2022; 14(24):6372. https://doi.org/10.3390/rs14246372
Chicago/Turabian StyleMao, Zhihua, Yiwei Zhang, Bangyi Tao, Jianyu Chen, Zengzhou Hao, Qiankun Zhu, and Haiqing Huang. 2022. "The Atmospheric Correction of COCTS on the HY-1C and HY-1D Satellites" Remote Sensing 14, no. 24: 6372. https://doi.org/10.3390/rs14246372
APA StyleMao, Z., Zhang, Y., Tao, B., Chen, J., Hao, Z., Zhu, Q., & Huang, H. (2022). The Atmospheric Correction of COCTS on the HY-1C and HY-1D Satellites. Remote Sensing, 14(24), 6372. https://doi.org/10.3390/rs14246372