Annual Wetland Mapping in Metropolis by Temporal Sample Migration and Random Forest Classification with Time Series Landsat Data and Google Earth Engine
"> Figure 1
<p>Geographic locations of the four study sites and distributions of field samples in each site. Site (<b>A</b>–<b>D</b>) represent urban area of Tianjin, Hangzhou, Wuhan, and Guangzhou, respectively. The backgrounds in the views are the Landsat 8 OLI images (bands 5, 4, 3 as RGB).</p> "> Figure 2
<p>General workflow of the MUW_SM&RF.</p> "> Figure 3
<p>Example of the spatial distribution of SD_WET. (<b>A</b>–<b>C</b>) demonstrate the land cover change in the areas with different SD_WET values between 1990 and 2020.</p> "> Figure 4
<p>The reference spectral of the water body and vegetated wetland on feature bands. (<b>A</b>–<b>D</b>) demonstrate the reference spectral for each type at the four study sites (Site(A–D)).</p> "> Figure 5
<p>The decision tree for the classification of the changed samples. <math display="inline"><semantics> <mrow> <mi>T</mi> <mn>1</mn> </mrow> </semantics></math> is the target year; <math display="inline"><semantics> <mrow> <mi>W</mi> <mi>e</mi> <mi>t</mi> <mi>n</mi> <mi>e</mi> <mi>s</mi> <msub> <mi>s</mi> <mrow> <mi>T</mi> <mn>1</mn> </mrow> </msub> </mrow> </semantics></math> is the wetness feature of the image. <math display="inline"><semantics> <mrow> <mi>T</mi> <mi>A</mi> <msub> <mi>R</mi> <mrow> <mi>T</mi> <mn>1</mn> </mrow> </msub> </mrow> </semantics></math> represent spectra values measured at time <math display="inline"><semantics> <mrow> <mi>T</mi> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>e</mi> <mi>f</mi> <mo>_</mo> <mi>W</mi> <mi>a</mi> <mi>t</mi> <mi>e</mi> <mi>r</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>e</mi> <mi>f</mi> <mo>_</mo> <mi>W</mi> <mi>e</mi> <mi>t</mi> <mi>l</mi> <mi>a</mi> <mi>n</mi> <mi>d</mi> </mrow> </semantics></math> are the reference spectra of the water body and the vegetated wetland, respectively.</p> "> Figure 6
<p>The variation characteristics of the time series wetness (<b>A</b>) and NDVI (<b>B</b>) for each type of sample with different SD_WET values. (<b>C</b>) shows the changes of sample number with different SD_WET values.</p> "> Figure 7
<p>The number of samples after sample migration in this study. (<b>A–D</b>) show the number of generated samples for the four study sites (Site(A–D)), respectively. The black auxiliary dotted lines show the initial size of samples in 2020. The SDw, SDv, and SDn indicate the standard deviation of the sample number for the water body, vegetated wetland, and non-urban wetland from 1990 to 2020, respectively.</p> "> Figure 8
<p>OA and Kappa coefficient of urban wetland mapping in this study. (<b>A–D</b>) show OA and Kappa coefficient of urban wetland mapping in four study sites (Site(A–D)) from 1990 to 2020, respectively.</p> "> Figure 9
<p>The UA and PA of each study site. W and V indicate the water body and vegetated wetland, respectively. The points in the graph indicate the UA and PA values from 1990 to 2020. (<b>A–D</b>) present the UA and PA of urban wetland mapping in four study sites (Site(A–D)) from 1990 to 2020, respectively.</p> "> Figure 10
<p>The occurrence map of urban wetlands during the investigated 31 years for each study site (Site(A–D)). The value between 1 and 31 indicates the number of urban wetland occurrences from 1990 to 2020. The subset views (<b>A</b>–<b>D</b>) present the detailed changes of urban wetland for each study site with a 10-year interval from 1990 to 2020, respectively. The backgrounds in the views are the Landsat images.</p> "> Figure 11
<p>Area changes of urban wetlands from 1990 to 2020. (<b>A–D</b>) present the area changes of urban wetlands in four study sites (Site(A–D)) between 1990 and 2020, respectively.</p> "> Figure 12
<p>Urban wetland comparison between urban wetland map in 2015 of this study and other reported datasets including CAS_Wetlands and ChinaCover dataset. (<b>A–D</b>) present the urban wetlands of 2015 in four study sites (Site(A–D)), respectively. The subsets (rectangle scope) are the typical region of four study sites respectively to show the detail of urban wetland results. The backgrounds of the subset views are the latest Google Earth images.</p> ">
Abstract
:1. Introduction
2. Materials
2.1. Study Area
2.2. Data and Pre-Processing
2.2.1. Imagery and Processing
2.2.2. Sample Data
2.2.3. Other Public Wetland Datasets
3. Methodology
3.1. Data Processing and Building Database of Time Series Feature Images
3.2. Methodologies for Sample Migrations
3.2.1. Extracting Unchanged Samples from 1990 to 2020 by Temporal Analysis
3.2.2. Extracting Unchanged Samples from 1990 to 2020 by Temporal Analysis
3.2.3. Reclassifying Changed Samples by the Reference Spectral and Decision-Tree Model
3.3. Mapping Urban Wetlands and Accuracy Assessment
4. Results
4.1. Determination of SD_WET Threshold and Sample Migration Results
4.2. Accuracy Assessment of Mapping Urban Wetlands
4.3. Spatial Patterns and Temporal Trends of Studied Urban Wetlands
5. Discussion
5.1. Comparison of the MUW_SM&RF Product with Other Public Datasets
5.2. Performance of the MUW_SM&RF
5.3. Inadequacies of the MUW_SM&RF
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gao, J.; O’Neill, B.C. Mapping global urban land for the 21st century with data-driven simulations and Shared Socioeconomic Pathways. Nat. Commun. 2020, 11, 2302. [Google Scholar] [CrossRef] [PubMed]
- Seto, K.C.; Fragkias, M.; Güneralp, B.; Reilly, M.K. A Meta-Analysis of Global Urban Land Expansion. PLoS ONE 2011, 6, e23777. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Liu, Z.; Tian, J.; Ma, Q. Urban expansion dynamics and natural habitat loss in China: A multiscale landscape perspective. Glob. Chang. Biol. 2014, 20, 2886–2902. [Google Scholar] [CrossRef] [PubMed]
- Hettiarachchi, M.; Athukorale, K.; Wijekoon, S.; de Alwis, A. Urban wetlands and disaster resilience of Colombo, Sri Lanka. Int. J. Disaster Resil. Built Environ. 2014, 5, 79–89. [Google Scholar] [CrossRef]
- Boyer, T.; Polasky, S. Valuing urban wetlands: A review of non-market valuation studies. Wetlands 2004, 24, 744–755. [Google Scholar] [CrossRef]
- Pedersen, E.; Weisner, S.E.; Johansson, M. Wetland areas’ direct contributions to residents’ well-being entitle them to high cultural ecosystem values. Sci. Total Environ. 2019, 646, 1315–1326. [Google Scholar] [CrossRef]
- Ji, W.; Xu, X.; Murambadoro, D. Understanding urban wetland dynamics: Cross-scale detection and analysis of remote sensing. Int. J. Remote Sens. 2015, 36, 1763–1788. [Google Scholar] [CrossRef]
- Mao, D.; Luo, L.; Wang, Z.; Wilson, M.C.; Zeng, Y.; Wu, B.; Wu, J. Conversions between natural wetlands and farmland in China: A multiscale geospatial analysis. Sci. Total Environ. 2018, 634, 550–560. [Google Scholar] [CrossRef]
- Jia, M.; Wang, Z.; Zhang, Y.; Mao, D.; Wang, C. Monitoring loss and recovery of mangrove forests during 42 years: The achievements of mangrove conservation in China. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 535–545. [Google Scholar] [CrossRef]
- Mao, D.; Wang, Z.; Du, B.; Li, L.; Tian, Y.; Jia, M.; Zeng, Y.; Song, K.; Jiang, M.; Wang, Y. National wetland mapping in China: A new product resulting from object-based and hierarchical classification of Landsat 8 OLI images. ISPRS J. Photogramm. Remote Sens. 2020, 164, 11–25. [Google Scholar] [CrossRef]
- Zhou, H.; Jiang, H.; Zhou, G.; Song, X.; Yu, S.; Chang, J.; Liu, S.; Jiang, Z.; Jiang, B. Monitoring the change of urban wetland using high spatial resolution remote sensing data. Int. J. Remote Sens. 2010, 31, 1717–1731. [Google Scholar] [CrossRef]
- Amani, M.; Brisco, B.; Afshar, M.; Mirmazloumi, S.M.; Mahdavi, S.; Mirzadeh, S.M.J.; Huang, W.; Granger, J. A generalized supervised classification scheme to produce provincial wetland inventory maps: An application of Google Earth Engine for big geo data processing. Big Earth Data 2019, 3, 378–394. [Google Scholar] [CrossRef]
- Maxwell, A.E.; Warner, T.A.; Fang, F. Implementation of machine-learning classification in remote sensing: An applied review. Int. J. Remote Sens. 2018, 39, 2784–2817. [Google Scholar] [CrossRef] [Green Version]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Huang, H.; Wang, J.; Liu, C.; Liang, L.; Li, C.; Gong, P. The migration of training samples towards dynamic global land cover mapping. ISPRS J. Photogramm. Remote Sens. 2020, 161, 27–36. [Google Scholar] [CrossRef]
- Li, C.; Xian, G.; Zhou, Q.; Pengra, B.W. A novel automatic phenology learning (APL) method of training sample selection using multiple datasets for time-series land cover mapping. Remote Sens. Environ. 2021, 266, 112670. [Google Scholar] [CrossRef]
- Jia, M.; Wang, Z.; Mao, D.; Ren, C.; Wang, C.; Wang, Y. Rapid, robust, and automated mapping of tidal flats in China using time series Sentinel-2 images and Google Earth Engine. Remote Sens. Environ. 2021, 255, 112285. [Google Scholar] [CrossRef]
- Zhu, Z. Change detection using landsat time series: A review of frequencies, preprocessing, algorithms, and applications. ISPRS J. Photogramm. Remote Sens. 2017, 130, 370–384. [Google Scholar] [CrossRef]
- Jin, H.; Huang, C.; Lang, M.; Yeo, I.-Y.; Stehman, S.V. Monitoring of wetland inundation dynamics in the Delmarva Peninsula using Landsat time-series imagery from 1985 to 2011. Remote Sens. Environ. 2017, 190, 26–41. [Google Scholar] [CrossRef] [Green Version]
- Mananze, S.; Pôças, I.; Cunha, M. Mapping and Assessing the Dynamics of Shifting Agricultural Landscapes Using Google Earth Engine Cloud Computing, a Case Study in Mozambique. Remote Sens. 2020, 12, 1279. [Google Scholar] [CrossRef] [Green Version]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Ji, C.Y.; Liu, Q.; Sun, D.; Wang, S.; Lin, P.; Li, X. Monitoring urban expansion with remote sensing in China. Int. J. Remote Sens. 2001, 22, 1441–1455. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, F.; Zhao, X.; Wang, X.; Shi, L.; Xu, J.; Yu, S.; Wen, Q.; Zuo, L.; Yi, L.; et al. Urban Expansion in China Based on Remote Sensing Technology: A Review. Chin. Geogr. Sci. 2018, 28, 727–743. [Google Scholar] [CrossRef] [Green Version]
- Ottinger, M.; Clauss, K.; Kuenzer, C. Large-Scale Assessment of Coastal Aquaculture Ponds with Sentinel-1 Time Series Data. Remote Sens. 2017, 9, 440. [Google Scholar] [CrossRef] [Green Version]
- Wu, B.F.; Yuan, Q.Z.; Yan, C.Z.; Wang, Z.M.; Yu, X.F.; Li, A.N.; Bao, A.M. Land cover changes of China from 2000 to 2010. Quat. Sci. 2014, 34, 723–731. [Google Scholar]
- Kauth, R.; Thomas, G. The tasselled cap—A graphic description of the spectral-temporal development of agricultural crops as seen by Landsat. LARS Symp. 1976, 159, 41–51. [Google Scholar]
- Luo, K.; Tao, F. Method for wetland type extraction using remote sensing combing object-oriented and tasseled cap transformation. Trans. Chin. Soc. Agric. Eng. 2017, 33, 198–203. [Google Scholar]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Zha, Y.; Gao, J.; Ni, S. Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. Int. J. Remote Sens. 2003, 24, 583–594. [Google Scholar] [CrossRef]
- McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Yu, F.; Sun, W.; Li, J.; Zhao, Y.; Zhang, Y.; Chen, G. An improved Otsu method for oil spill detection from SAR images. Oceanologia 2017, 59, 311–317. [Google Scholar] [CrossRef]
- Carvalho Júnior, O.A.; Guimarães, R.F.; Gillespie, A.R.; Silva, N.C.; Gomes, R.A.T. A New Approach to Change Vector Analysis Using Distance and Similarity Measures. Remote Sens. 2011, 3, 2473–2493. [Google Scholar] [CrossRef] [Green Version]
- Pal, M. Random forest classifier for remote sensing classification. Int. J. Remote Sens. 2005, 26, 217–222. [Google Scholar] [CrossRef]
- Phan, T.N.; Kuch, V.; Lehnert, L.W. Land Cover Classification using Google Earth Engine and Random Forest Classifier—The Role of Image Composition. Remote Sens. 2020, 12, 2411. [Google Scholar] [CrossRef]
- Mahdianpari, M.; Granger, J.E.; Mohammadimanesh, F.; Warren, S.; Puestow, T.; Salehi, B.; Brisco, B. Smart solutions for smart cities: Urban wetland mapping using very-high resolution satellite imagery and airborne LiDAR data in the City of St. John’s, NL, Canada. J. Environ. Manag. 2021, 280, 111676. [Google Scholar] [CrossRef]
Category I | Category II | Description | Google Earth Image Example | Landsat Image Example |
---|---|---|---|---|
Urban wetland | Water body | Natural or artificial surface water body, e.g., lake, pond, river, and canal. | | |
Vegetated wetland | Vegetated wetlands with vegetation, such as swamp and marsh | | | |
Non-urban wetland | - | Other natural and anthropogenic landscapes, e.g., grassland, cropland, and built-up land | | |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Mao, D.; Wang, Y.; Song, K.; Yan, H.; Jia, M.; Wang, Z. Annual Wetland Mapping in Metropolis by Temporal Sample Migration and Random Forest Classification with Time Series Landsat Data and Google Earth Engine. Remote Sens. 2022, 14, 3191. https://doi.org/10.3390/rs14133191
Wang M, Mao D, Wang Y, Song K, Yan H, Jia M, Wang Z. Annual Wetland Mapping in Metropolis by Temporal Sample Migration and Random Forest Classification with Time Series Landsat Data and Google Earth Engine. Remote Sensing. 2022; 14(13):3191. https://doi.org/10.3390/rs14133191
Chicago/Turabian StyleWang, Ming, Dehua Mao, Yeqiao Wang, Kaishan Song, Hengqi Yan, Mingming Jia, and Zongming Wang. 2022. "Annual Wetland Mapping in Metropolis by Temporal Sample Migration and Random Forest Classification with Time Series Landsat Data and Google Earth Engine" Remote Sensing 14, no. 13: 3191. https://doi.org/10.3390/rs14133191
APA StyleWang, M., Mao, D., Wang, Y., Song, K., Yan, H., Jia, M., & Wang, Z. (2022). Annual Wetland Mapping in Metropolis by Temporal Sample Migration and Random Forest Classification with Time Series Landsat Data and Google Earth Engine. Remote Sensing, 14(13), 3191. https://doi.org/10.3390/rs14133191