Existence of Glacier Anomaly in the Interior and Northern Tibetan Plateau between 2000 and 2012
"> Figure 1
<p>Geographic locations of the 22 study areas over the INTP. The six study sites completely covered by the SRTM-X DEM are labeled by red dashed rectangles. The mountain glaciers are shown in light blue. Gray solid line indicates the boundary of the endorheic basin.</p> "> Figure 2
<p>The maps of the observed glacier elevation changes from 2000 to the 2010s over the six study sites with a complete coverage of the SRTM-X DEM (See <a href="#remotesensing-14-02962-f001" class="html-fig">Figure 1</a>, red rectangle areas). (<b>a</b>) Buruogangri Mount; (<b>b</b>) Songzhi peak; (<b>c</b>) NganglongKangri Mount; (<b>d</b>) Dongkemadi Mts.; (<b>e</b>) Muztagh peak; (<b>f</b>) Unnamed-3 Mts. The central Yulinchuan Glacier experienced a surging event from 2008 to 2009.</p> "> Figure 3
<p>The observed maps derived by subtracting the SRTM-C DEM from the TanDEM-X DEMs over the study sites of Jinyanggangri Mount (<b>a</b>), Bukadaban peak (<b>b</b>), Puruogangri ice field (<b>c</b>) and Nainqentanglha Mts. (<b>d</b>).</p> "> Figure 4
<p>Same as <a href="#remotesensing-14-02962-f003" class="html-fig">Figure 3</a> but for the study sites of Gangdisi Mts. (<b>a</b>), Zangsigangri Mount (<b>b</b>), Unnamed-4 Mts. (<b>c</b>) and Unnamed-5 Mts. (<b>d</b>).</p> "> Figure 5
<p>Same as <a href="#remotesensing-14-02962-f003" class="html-fig">Figure 3</a> but for the study sites of western Kunlun Mts. (<b>a</b>), Tozekangri Mount (<b>b</b>), Unnamed-1 Mts. (<b>c</b>) and Unnamed-2 Mts. (<b>d</b>).</p> "> Figure 6
<p>Same as <a href="#remotesensing-14-02962-f003" class="html-fig">Figure 3</a> but for the study sites of Unnamed-7 Mts. (<b>a</b>), Malan Mount (<b>b</b>), Unnamed-6 Mts. (<b>c</b>) and Geladandong Mts. (<b>d</b>).</p> "> Figure 7
<p>Glacier elevation changes versus altitude for the six study sites completely covered by X-band SRTM DEM (See <a href="#remotesensing-14-02962-f001" class="html-fig">Figure 1</a>, red rectangle areas).</p> "> Figure 8
<p>The estimated decade-average (2000–2012) glacier mass balance of the 22 study areas over the INTP. The blue and red dashed lines are used to divide the INTP into three sub-regions of zone A, B and C.</p> "> Figure 9
<p>The correlation between glacier mass change and latitude (<b>a</b>) and longitude (<b>b</b>) for these 22 study sites in the INTP. The study site experienced a glacier mass gain from 2000 to 2012, which is indicated as a blue rectangle. The dark red circles represent the study sites with a negative glacier mass change during the studied period.</p> "> Figure 10
<p>The comparison between our glacier mass change estimations and the field measured results over the individual glaciers of ZD, XDKMD and GRHK, and the published geodetic results over the six study sites of NQTL, GLDD, PRGR, WKL, MLS and BKDB. (ZD: Zhadang Glacier; XDKMD: Xiao Dongkemadi Glacier; GRHK: Gurenhekou Glacier; NQTL: Nainqentanglha Mts.; GLDD: Geladandong Mts.; PRGR: Puruogangri Ice Field; WKL: Western Kunlun Mts.; MLS: Malan Mount; BKDB: Bukadaban peak).</p> "> Figure 11
<p>Our measured results of the INTP and the previously published geodetic estimates in the Pamir, Karakoram, Himalaya Mts. and southeastern TP (SETP). The red star, which is located at the western Kunlun Mts., represents the possible center of glacier anomalous regions which is estimated with a visual interpretation.</p> ">
Abstract
:1. Introduction
2. Study Area
3. Data and Methods
3.1. Single-Pass InSAR DEMs
3.2. Glacier Elevation Change Calculation
3.3. Glacier Mass Balances Estimation
3.3.1. C/X-Band Radar Signal Penetration Difference
3.3.2. Seasonality Correction
3.3.3. Decade-Average Glacier Mass Balance Estimation
3.4. Uncertainty Analysis
4. Results
4.1. Glacier Elevation Changes
4.2. Spatial Variation in Glacier Mass Balances
5. Discussion
5.1. Comparison to Previously Published Estimates
5.2. Glacier Anomalous Regions in the HMA
5.3. Impact of Atmospheric Circulations in the TP
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wouters, B.; Gardner, A.S.; Moholdt, G. Global glacier mass loss during the grace satellite mission (2002–2016). Front. Earth Sci. 2019, 7, 96. [Google Scholar] [CrossRef] [Green Version]
- Zemp, M.; Huss, M.; Thibert, E.; Eckert, N.; McNabb, R.; Huber, J.; Barandun, M.; Machguth, H.; Nussbaumer, S.U.; Gärtner-Roer, I.; et al. Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016. Nature 2019, 568, 382–386. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Huang, B.; Richards, K.; Ke, L.; Hien Phan, V. Accelerated lake expansion on the Tibetan Plateau in the 2000s: Induced by glacial melting or other processes? Water Resour. Res. 2014, 50, 3170–3186. [Google Scholar] [CrossRef] [Green Version]
- Yao, T.; Li, Z.; Yang, W.; Guo, X.; Zhu, L.; Kang, S.; Wu, Y.; Yu, W. Glacial distribution and mass balance in the Yarlung Zangbo River and its influence on lakes. Chin. Sci. Bull. 2010, 55, 2072–2078. [Google Scholar] [CrossRef]
- Pritchard, H.D. Asia’s glaciers are a regionally important buffer against drought. Nature 2017, 545, 169–174. [Google Scholar] [CrossRef]
- Pritchard, H.D. Asia’s shrinking glaciers protect large populations from drought stress. Nature 2019, 569, 649–654. [Google Scholar] [CrossRef]
- Shean, D.E.; Bhushan, S.; Montesano, P.M.; Rounce, D.R.; Arendt, A.; Osmanoglu, B. A systematic, regional assessment of high mountain Asia glacier mass balance. Front. Earth Sci. 2020, 7, 363. [Google Scholar] [CrossRef] [Green Version]
- Gardelle, J.; Berthier, E.; Arnaud, Y. Slight mass gain of Karakoram glaciers in the early twenty-first century. Nat. Geosci. 2012, 5, 322–325. [Google Scholar] [CrossRef]
- Gardelle, J.; Berthier, E.; Arnaud, Y.; Kääb, A. Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999–2011. Cryosphere 2013, 7, 1263–1286. [Google Scholar] [CrossRef] [Green Version]
- Lin, H.; Li, G.; Cuo, L.; Hooper, A.; Ye, Q. A decreasing glacier mass balance gradient from the edge of the Upper Tarim Basin to the Karakoram during 2000–2014. Sci. Rep. 2017, 7, 6712. [Google Scholar] [CrossRef]
- Kääb, A.; Treichler, D.; Nuth, C.; Berthier, E. Brief communication: Contending estimates of 2003–2008 glacier mass balance over the Pamir-Karakoram-Himalaya. Cryosphere 2015, 9, 557–564. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Li, Z.; Li, J.; Zhao, R.; Ding, X. Glacier mass balance in the Qinghai-Tibet Plateau and its surroundings from the mid-1970s to 2000 based on Hexagon KH-9 and SRTM DEMs. Remote Sens. Environ. 2018, 210, 96–112. [Google Scholar] [CrossRef]
- Guo, W.; Liu, S.; Xu, J.; Wu, L.; Shangguan, D.; Yao, X.; Wei, J.; Bao, W.; Yu, P.; Liu, Q.; et al. The second Chinese glacier inventory: Data, methods and results. J. Glaciol. 2015, 61, 357–372. [Google Scholar] [CrossRef] [Green Version]
- Gardner, A.S.; Moholdt, G.; Cogley, J.G.; Wouters, B.; Arendt, A.A.; Wahr, J.; Berthier, E.; Hock, R.; Pfeffer, W.T.; Kaser, G.; et al. A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science 2013, 340, 852–857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Treichler, D.S.; Kääb, A. Icesat laser altimetry over small mountain glaciers. Cryosphere 2016, 10, 2129–2146. [Google Scholar] [CrossRef] [Green Version]
- Neckel, N.; Kropáček, J.; Bolch, T.; Hochschild, V. Glacier mass changes on the Tibetan Plateau 2003–2009 derived from ICESat laser altimetry measurements. Environ. Res. Lett. 2014, 9, 014009. [Google Scholar] [CrossRef]
- Yao, T.; Thompson, L.; Yang, W.; Yu, W.; Gao, Y.; Guo, X.; Yang, X.; Duan, K.; Zhao, H.; Xu, B.; et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Clim. Chang. 2012, 2, 663–667. [Google Scholar] [CrossRef]
- Brun, F.; Berthier, E.; Wagnon, P.; Kääb, A.; Treichler, D. A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016. Nat. Geosci. 2017, 10, 668–673. [Google Scholar] [CrossRef] [Green Version]
- Berthier, E.; Arnaud, Y.; Kumar, R.; Ahmad, S.; Wagnon, P.; Chevallier, P. Remote sensing estimates of glacier mass balances in the Himachal Pradesh (western Himalaya, India). Remote Sens. Environ. 2007, 108, 327–338. [Google Scholar] [CrossRef] [Green Version]
- Wu, K.; Liu, S.; Jiang, Z.; Xu, J.; Wei, J.; Guo, W. Recent glacier mass balance and area changes in the Kangri Karpo Mountains from DEMs and glacier inventories. Cryosphere 2018, 12, 103–121. [Google Scholar] [CrossRef] [Green Version]
- Neckel, N.; Braun, A.; Kropáček, J.; Hochschild, V. Recent mass balance of the Purogangri Ice Cap, central Tibetan Plateau, by means of differential X-band SAR interferometry. Cryosphere 2013, 7, 1623–1633. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.; Fan, J.; Zhao, F.; Mao, K.; Dou, C. Monitoring elevation change of glaciers on Geladandong Mountain using TanDEM-X SAR interferometry. J. Mt. Sci. 2017, 14, 859–869. [Google Scholar] [CrossRef]
- Li, G.; Lin, H. Recent decadal glacier mass balances over the western Nyainqentanglha Mountains and the increase in their melting contribution to Nam Co Lake measured by differential bistatic SAR interferometry. Glob. Planet. Chang. 2017, 149, 177–190. [Google Scholar] [CrossRef] [Green Version]
- Yao, T.; Masson-Delmotte, V.; Gao, J.; Yu, W.; Yang, X.; Risi, C.; Sturm, C.; Werner, M.; Zhao, H.; He, Y.; et al. A review of climatic controls on δ18o in precipitation over the Tibetan Plateau: Observations and simulations. Rev. Geophys. 2013, 51, 525–548. [Google Scholar] [CrossRef]
- Tian, L.; Yao, T.; MacClune, K.; White, J.W.C.; Schilla, A.; Vaughn, B.; Vachon, R.; Ichiyanagi, K. Stable isotopic variations in west China: A consideration of moisture sources. J. Geophys. Res. 2007, 112, D10112. [Google Scholar] [CrossRef]
- Maussion, F.; Scherer, D.; Mölg, T.; Collier, E.; Curio, J.; Finkelnburg, R. Precipitation seasonality and variability over the Tibetan Plateau as resolved by the high Asia reanalysis. J. Clim. 2014, 27, 1910–1927. [Google Scholar] [CrossRef] [Green Version]
- Jiang, L.; Nielsen, K.; Andersen, O.B.; Bauer-Gottwein, P. Monitoring recent lake level variations on the Tibetan Plateau using CryoSat-2 SARIn mode data. J. Hydrol. 2017, 544, 109–124. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Yao, T.; Xie, H.; Zhang, K.; Zhu, F. Lakes’ state and abundance across the Tibetan Plateau. Chin. Sci. Bull. 2014, 59, 3010–3021. [Google Scholar] [CrossRef]
- Zhang, G.; Xie, H.; Kang, S.; Yi, D.; Ackley, S.F. Monitoring lake level changes on the Tibetan Plateau using ICESat altimetry data (2003–2009). Remote Sens. Environ. 2011, 115, 1733–1742. [Google Scholar] [CrossRef]
- Lei, Y.; Yao, T.; Bird, B.W.; Yang, K.; Zhai, J.; Sheng, Y. Coherent lake growth on the central Tibetan Plateau since the 1970s: Characterization and attribution. J. Hydrol. 2013, 483, 61–67. [Google Scholar] [CrossRef]
- Wei, J.; Liu, S.; Guo, W.; Yao, X.; Xu, J.; Bao, W.; Jiang, Z. Surface-area changes of glaciers in the Tibetan Plateau interior area since the 1970s using recent Landsat images and historical maps. Ann. Glaciol. 2014, 55, 213–222. [Google Scholar]
- Zhou, Y.; Hu, J.; Li, Z.; Li, J.; Zhao, R.; Ding, X. Quantifying glacier mass change and its contribution to lake growths in central Kunlun during 2000–2015 from multi-source remote sensing data. J. Hydrol. 2019, 570, 38–50. [Google Scholar] [CrossRef]
- Liu, L.; Jiang, L.; Sun, Y.; Yi, C.; Wang, J.; Hsu, H. Glacier elevation changes (2012–2016) of the Puruogangri Ice Field on the Tibetan Plateau derived from bi-temporal TanDEM-X InSAR data. Int. J. Remote Sens. 2016, 37, 5687–5707. [Google Scholar] [CrossRef]
- Rabus, B.; Eineder, M.; Roth, A.; Bamler, R. The shuttle radar topography mission—a new class of digital elevation models acquired by spaceborne radar. ISPRS J. Photogramm. Remote Sens. 2003, 57, 241–262. [Google Scholar] [CrossRef]
- Nuth, C.; Kääb, A. Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change. Cryosphere 2011, 5, 271–290. [Google Scholar] [CrossRef] [Green Version]
- Berthier, E.; Arnaud, Y.; Baratoux, D.; Vincent, C.; Rémy, F. Recent rapid thinning of the “Mer de Glace” glacier derived from satellite optical images. Geophys. Res. Lett. 2004, 31, L17401. [Google Scholar] [CrossRef] [Green Version]
- Huss, M. Density assumptions for converting geodetic glacier volume change to mass change. Cryosphere 2013, 7, 877–887. [Google Scholar] [CrossRef] [Green Version]
- Kääb, A.; Berthier, E.; Nuth, C.; Gardelle, J.; Arnaud, Y. Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature 2012, 488, 495–498. [Google Scholar] [CrossRef]
- Liu, L.; Jiang, L.; Jiang, H.; Wang, H.; Ma, N.; Xu, H. Accelerated glacier mass loss (2011–2016) over the Puruogangri Ice Field in the inner Tibetan Plateau revealed by bistatic InSAR measurements. Remote Sens. Environ. 2019, 231, 111241. [Google Scholar] [CrossRef]
- Lambrecht, A.; Mayer, C.; Wendt, A.; Floricioiu, D.; Völksen, C. Elevation change of Fedchenko Glacier, Pamir Mountains, from GNSS field measurements and TanDEM-X elevation models, with a focus on the upper glacier. J. Glaciol. 2018, 64, 637–648. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Yao, T.; Yang, W.; Yu, W.; Zhu, M. Glacier energy and mass balance in the inland Tibetan Plateau: Seasonal and interannual variability in relation to atmospheric changes. J. Geophys. Res. 2018, 123, 6390–6409. [Google Scholar] [CrossRef]
- Liu, L.; Jiang, L.; Zhang, Z.; Wang, H.; Ding, X. Recent accelerating glacier mass loss of the Geladandong Mountain, inner Tibetan Plateau, estimated from ZiYuan-3 and TanDEM-X measurements. Remote Sens. 2020, 12, 472. [Google Scholar] [CrossRef] [Green Version]
- Guo, W.; Liu, S.; Wei, J.; Bao, W. The 2008/09 surge of central Yulinchuan Glacier, northern Tibetan Plateau, as monitored by remote sensing. Ann. Glaciol. 2013, 54, 299–310. [Google Scholar] [CrossRef]
- Huintjes, E.; Neckel, N.; Hochschild, V.; Schneider, C. Surface energy and mass balance at Purogangri Ice Cap, central Tibetan Plateau, 2001–2011. J. Glaciol. 2015, 61, 1048–1060. [Google Scholar] [CrossRef] [Green Version]
- Ke, L.; Song, C.; Yong, B.; Lei, Y.; Ding, X. Which heterogeneous glacier melting patterns can be robustly observed from space? A multi-scale assessment in southeastern Tibetan Plateau. Remote Sens. Environ. 2020, 242, 111777. [Google Scholar] [CrossRef]
- Zhang, Z.; Jiang, L.; Liu, L.; Sun, Y.; Wang, H. Annual glacier-wide mass balance (2000–2016) of the interior Tibetan Plateau reconstructed from MODIS albedo products. Remote Sens. 2018, 10, 1031. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y. Characteristics of late Quaternary monsoonal glaciation on the Tibetan Plateau and in East Asia. Quat. Int. 2002, 97, 79–91. [Google Scholar] [CrossRef]
- Chen, F.; Chen, J.; Holmes, J.; Boomer, I.; Austin, P.; Gates, J.B.; Wang, N.; Brooks, S.J.; Zhang, J. Moisture changes over the last millennium in arid central Asia: A review, synthesis and comparison with monsoon region. Quat. Sci. Rev. 2010, 29, 1055–1068. [Google Scholar] [CrossRef]
- Johnson, K.R.; Ingram, B.L. Spatial and temporal variability in the stable isotope systematics of modern precipitation in China: Implications for paleoclimate reconstructions. Earth Planet. Sci. Lett. 2004, 220, 365–377. [Google Scholar] [CrossRef] [Green Version]
- Bookhagen, B.; Burbank, D.W. Toward a complete Himalayan hydrological budget: Spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge. J. Geophys. Res. 2010, 115, F03019. [Google Scholar] [CrossRef] [Green Version]
- Mölg, T.; Maussion, F.; Scherer, D. Mid-latitude westerlies as a driver of glacier variability in monsoonal high Asia. Nat. Clim. Chang. 2014, 4, 68–73. [Google Scholar] [CrossRef]
- Yang, M.; Yao, T.; Wang, H.; Tian, L.; Gou, X. Estimating the criterion for determining water vapour sources of summer precipitation on the northern Tibetan Plateau. Hydrol. Process. 2006, 20, 505–513. [Google Scholar] [CrossRef]
- Curio, J.; Maussion, F.; Scherer, D. A 12-year high-resolution climatology of atmospheric water transport over the Tibetan Plateau. Earth Syst. Dyn. 2015, 6, 109–124. [Google Scholar] [CrossRef] [Green Version]
Name of Study Site | No. of Study Site in Figure 1 | DEM in 2000 | TanDEM InSAR Data (Pair) |
---|---|---|---|
Western Kunlun Mts. | 1 | SRTM-C DEM | 1 |
Tozekangri Mount | 2 | SRTM-C DEM | 1 |
Songzhi Peak | 3 | SRTM-X DEM | 1 |
Muztagh Peak | 4 | SRTM-X DEM | 1 |
Jinyanggangri Mount | 5 | SRTM-C DEM | 1 |
Malan Mount | 6 | SRTM-C DEM | 2 |
Bukadaban Peak | 7 | SRTM-C DEM | 1 |
Unnamed-1 Mts. | 8 | SRTM-C DEM | 1 |
Unnamed-2 Mts. | 9 | SRTM-C DEM | 1 |
Buruogangri Mount | 10 | SRTM-X DEM | 6 |
Zangsegangri Mount | 11 | SRTM-C DEM | 1 |
Puruogangri Ice Field | 12 | SRTM-C DEM | 2 |
Geladandong Mts. | 13 | SRTM-C DEM | 1 |
Dongkemadi Mts. | 14 | SRTM-X DEM | 1 |
NganglongKangri Mount | 15 | SRTM-X DEM | 2 |
Unnamed-3 Mts. | 16 | SRTM-X DEM | 3 |
Unnamed-4 Mts. | 17 | SRTM-C DEM | 1 |
Gangdisi Mts. | 18 | SRTM-C DEM | 3 |
Unnamed-5 Mts. | 19 | SRTM-C DEM | 1 |
Unnamed-6 Mts. | 20 | SRTM-C DEM | 1 |
Unnamed-7 Mts. | 21 | SRTM-C DEM | 1 |
Nainqentanglha Mts. | 22 | SRTM-C DEM | 1 |
No. | Study Site | Mean Elevation Change (m) | Penetration Correction (m) | Seasonal Correction (m w.e.) | Mass Balance (m w.e. yr−1) |
---|---|---|---|---|---|
A1 | Western Kunlun Mts. | 4.11 ± 0.37 | 2.67 ± 0.46 | 0.15 ± 0.15 | 0.116 ± 0.050 |
A2 | Unnamed-1 Mts. | 2.83 ± 0.20 | 1.83 ± 0.53 | −0.04 ± 0.04 | 0.058 ± 0.037 |
A3 | Tozekangri Mount | 4.96 ± 0.37 | 2.35 ± 1.12 | 0.00 ± 0.10 | 0.237 ± 0.078 |
A4 | Unnamed-2 Mts. | 4.50 ± 0.28 | 2.35 ± 0.56 | −0.12 ± 0.12 | 0.131 ± 0.048 |
A5 | Songzhi Peak | 2.70 ± 0.56 | N/A | N/A | 0.191 ± 0.042 |
A6 | Muztagh Peak | 1.03 ± 0.27 | N/A | 0.00 ± 0.10 | 0.063 ± 0.019 |
B1 | NganglongKangri Mount | −1.49 ± 0.30 | N/A | 0.00 ± 0.10 | −0.106 ± 0.024 |
B2 | Unnamed-4 Mts. | 1.13 ± 0.18 | 1.39 ± 0.51 | N/A | −0.016 ± 0.032 |
B3 | Unnamed-3 Mts. | 0.46 ± 0.15 | N/A | −0.03 ± 0.03 | 0.033 ± 0.012 |
B4 | Buruogangri Mount | 0.78 ± 0.22 | N/A | N/A | 0.055 ± 0.016 |
B5 | Zangsegangri Mount | 2.27 ± 0.21 | 2.79 ± 0.46 | −0.03 ± 0.03 | −0.036 ± 0.037 |
B6 | Jinyanggangri Mount | 3.13 ± 0.28 | 2.05 ± 0.68 | 0.00 ± 0.10 | 0.077 ± 0.056 |
B7 | Malan Mount | −0.65 ± 0.10 | 2.05 ± 1.36 | −0.03 ± 0.03 | −0.194 ± 0.097 |
B8 | Bukadaban Peak | 0.76 ± 0.13 | 2.05 ± 1.36 | −0.30 ± 0.30 | −0.116 ± 0.101 |
C1 | Gangdisi Mts. | −0.60 ± 0.16 | 1.39 ± 1.02 | N/A | −0.121 ± 0.063 |
C2 | Unnamed-5 Mts. | 0.72 ± 0.18 | 1.39 ± 1.02 | N/A | −0.041 ± 0.063 |
C3 | Unnamed-6 Mts. | 1.70 ± 0.26 | 2.23 ± 0.66 | N/A | −0.032 ± 0.045 |
C4 | Unnamed-7 Mts. | 0.12 ± 0.27 | 1.58 ± 0.82 | N/A | −0.089 ± 0.053 |
C5 | Nainqentanglha Mts. | −0.44 ± 0.32 | 1.58 ± 0.41 | 0.00 ± 0.10 | −0.135 ± 0.033 |
C6 | Puruogangri Ice Field | 1.95 ± 0.20 | 2.23 ± 0.33 | N/A | −0.020 ± 0.031 |
C7 | Geladandong Mts. | 0.43 ± 0.13 | 2.23 ± 0.66 | 0.00 ± 0.10 | −0.128 ± 0.050 |
C8 | Dongkemadi Mts. | −4.79 ± 0.46 | N/A | N/A | −0.339 ± 0.040 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Jiang, L.; Wang, H.; Sun, Y. Existence of Glacier Anomaly in the Interior and Northern Tibetan Plateau between 2000 and 2012. Remote Sens. 2022, 14, 2962. https://doi.org/10.3390/rs14132962
Liu L, Jiang L, Wang H, Sun Y. Existence of Glacier Anomaly in the Interior and Northern Tibetan Plateau between 2000 and 2012. Remote Sensing. 2022; 14(13):2962. https://doi.org/10.3390/rs14132962
Chicago/Turabian StyleLiu, Lin, Liming Jiang, Hansheng Wang, and Yafei Sun. 2022. "Existence of Glacier Anomaly in the Interior and Northern Tibetan Plateau between 2000 and 2012" Remote Sensing 14, no. 13: 2962. https://doi.org/10.3390/rs14132962
APA StyleLiu, L., Jiang, L., Wang, H., & Sun, Y. (2022). Existence of Glacier Anomaly in the Interior and Northern Tibetan Plateau between 2000 and 2012. Remote Sensing, 14(13), 2962. https://doi.org/10.3390/rs14132962