An Ensemble Model-Based Estimation of Nitrogen Dioxide in a Southeastern Coastal Region of China
"> Figure 1
<p>Distribution of the air quality stations.</p> "> Figure 2
<p>Model framework: RF stands for Random Forest Model, EXT stands for Extreme Random Forest Model, and XGB stands for XGboost Model. The near-surface NO<sub>2</sub> was the final output of the ensemble model.</p> "> Figure 3
<p>The 10-fold CV results of the model: (<b>a</b>) validation results of the random forest model; (<b>b</b>) validation results of the extreme random forest model; (<b>c</b>) validation results of the XGBoost model; (<b>d</b>) validation results of the ensemble model; (<b>e</b>) validation results of the multiple linear model; (<b>f</b>) validation results of the SVM model. The units of RMSE and MAE were µg/m<sup>3</sup>.</p> "> Figure 4
<p>Spatial distribution of the local <span class="html-italic">R</span><sup>2</sup> values of the ensemble model: (<b>a</b>) average annual validation results of the ensemble model; (<b>b</b>) validation results of the ensemble model in 2018; (<b>c</b>) validation results of the ensemble model in 2019; (<b>d</b>) validation results of the ensemble model in 2020.</p> "> Figure 4 Cont.
<p>Spatial distribution of the local <span class="html-italic">R</span><sup>2</sup> values of the ensemble model: (<b>a</b>) average annual validation results of the ensemble model; (<b>b</b>) validation results of the ensemble model in 2018; (<b>c</b>) validation results of the ensemble model in 2019; (<b>d</b>) validation results of the ensemble model in 2020.</p> "> Figure 5
<p>The prediction accuracy of the ensemble and XGBoost model: (<b>a</b>) validation results of completely random selection of 30% of the samples as the validation set (ensemble model); (<b>b</b>) validation results using the samples from the last three months of 2020 as the validation set (ensemble model); (<b>c</b>) validation results of randomly selecting 30% of samples from all sites as the validation set (ensemble model); (<b>d</b>) validation results of completely random selection of 30% of the samples as the validation set (XGBoost model); (<b>e</b>) validation results using the samples from the last three months of 2020 as the validation set (XGBoost model); (<b>f</b>) validation results of randomly selecting 30% of samples from all sites as the validation set (XGBoost model). The units of RMSE and MAE are µg/m<sup>3</sup>.</p> "> Figure 6
<p>Seasonal distribution of near-surface NO<sub>2</sub> concentrations output by the ensemble model: (<b>a</b>) spatial distribution of NO<sub>2</sub> concentrations in spring;(<b>b</b>) spatial distribution of NO<sub>2</sub> concentrations in summer; (<b>c</b>) spatial distribution of NO<sub>2</sub> concentrations in autumn; (<b>d</b>) spatial distribution of NO<sub>2</sub> concentrations in winter. The units are µg/m<sup>3</sup>.</p> "> Figure 7
<p>NO<sub>2</sub> air quality in major cities.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data and Pretreatment
2.1.1. Ground-Level NO2 Observations
2.1.2. TROPOMI NO2 Data
2.1.3. Meteorological Data
2.1.4. The Reanalysis Data
2.1.5. Geographical Variable Data
2.1.6. Data Integration
2.1.7. Feature Selection
2.2. Methodology
2.2.1. Hysteretic Effects Term
2.2.2. Spatiotemporal Term
2.2.3. Ensemble Model
2.2.4. Model Validation
3. Results
3.1. Model Development and Validation
3.1.1. Analysis of the Impact of Enhanced Variables on the Model
3.1.2. Model Evaluation
3.2. Analysis of the Fine-Scale Spatiotemporal Variation in NO2
3.3. Analysis of Near-Surface NO2 Concentrations in Major Cities
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kim, H.C.; Lee, P.; Judd, L.; Pan, L.; Lefer, B. OMI NO2 column densities over North American urban cities: The effect of satellite footprint resolution. Geosci. Model Dev. 2016, 9, 1111–1123. [Google Scholar] [CrossRef]
- Palmer, P.I.; Jacob, D.J.; Fiore, A.M.; Martin, R.V.; Chance, K.; Kurosu, T.P. Mapping isoprene emissions over North America using formaldehyde column observations from space. J. Geophys. Res. Atmos. 2003, 108, 4180. [Google Scholar] [CrossRef]
- Jacob, D.J.; Heikes, E.G.; Fan, S.M.; Logan, J.A.; Mauzerall, D.L.; Bradshaw, J.D.; Singh, H.B.; Gregory, G.L.; Talbot, R.W.; Blake, D.R.; et al. Origin of ozone and NOx in the tropical troposphere: A photochemical analysis of aircraft observations over the South Atlantic basin. J. Geophys. Res. Atmos. 1996, 101, 24235–24250. [Google Scholar] [CrossRef]
- Gifford, F. Atmospheric Chemistry and Physics of Air Pollution. Eos Trans. Am. Geophys. Union 1987, 68, 1595. [Google Scholar] [CrossRef]
- Fishman, J.; Crutzen, P.J. The origin of ozone in the troposphere. Nature 1978, 274, 855–858. [Google Scholar] [CrossRef]
- Chen, R.; Samoli, E.; Wong, C.M.; Huang, W.; Wang, Z.; Chen, B.; Kan, H.; Group, C.C. Associations between short-term exposure to nitrogen dioxide and mortality in 17 Chinese cities: The China Air Pollution and Health Effects Study (CAPES). Environ. Int. 2012, 45, 32–38. [Google Scholar] [CrossRef]
- Gauderman, W.J.; McConnell, R.; Gilliland, F.; London, S.; Thomas, D.; Avol, E.; Vora, H.; Berhane, K.; Rappaport, E.B.; Lurmann, F.; et al. Association between air pollution and lung function growth in southern California children. Am. J. Respir. Crit. Care Med. 2000, 162, 1383–1390. [Google Scholar] [CrossRef]
- Faustini, A.; Rapp, R.; Forastiere, F. Nitrogen dioxide and mortality: Review and meta-analysis of long-term studies. Eur. Respir. J. 2014, 44, 744–753. [Google Scholar] [CrossRef]
- Jerrett, M.; Burnett, R.T.; Beckerman, B.S.; Turner, M.C.; Krewski, D.; Thurston, G.; Martin, R.V.; van Donkelaar, A.; Hughes, E.; Shi, Y.; et al. Spatial analysis of air pollution and mortality in California. Am. J. Respir. Crit. Care Med. 2013, 188, 593–599. [Google Scholar] [CrossRef]
- Wang, W.N.; Cheng, T.H.; Gu, X.F.; Chen, H.; Guo, H.; Wang, Y.; Bao, F.W.; Shi, S.Y.; Xu, B.R.; Zuo, X.; et al. Assessing Spatial and Temporal Patterns of Observed Ground-level Ozone in China. Sci. Rep. 2017, 7, 3651. [Google Scholar] [CrossRef]
- Sun, J.; Zhou, C.Y.; Zhang, Y.H.; Yang, X.Y.; Ge, L.; Liu, J.J. Spatio-temporal variation of tropospheric NO2 column density in Shan dong Province nearly five years. Environ. Sci. Technol. 2021, 44, 177–182. [Google Scholar] [CrossRef]
- Martin, R.V. Evaluation of GOME satellite measurements of tropospheric NO2 and HCHO using regional data from aircraft campaigns in the southeastern United States. J. Geophys. Res. 2004, 109, D24307. [Google Scholar] [CrossRef]
- Wang, H.; Wei, W.; Che, H.; Tang, X.; Bian, J.; Yu, K.; Wang, W. Ground-Based MAX-DOAS Measurements of Tropospheric Aerosols, NO2, and HCHO Distributions in the Urban Environment of Shanghai, China. Remote Sens. 2022, 14, 1726. [Google Scholar] [CrossRef]
- Levelt, P.F.; Van Den Oord, G.H.J.; Dobber, M.R.; Malkki, A.; Visser, H.; De Vries, J.; Stammes, P.; Lundell, J.O.V.; Saari, H. The ozone monitoring instrument. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1093–1101. [Google Scholar] [CrossRef]
- Rabiei-Dastjerdi, H.; Mohammadi, S.; Saber, M.; Amini, S.; McArdle, G. Spatiotemporal Analysis of NO2 Production Using TROPOMI Time-Series Images and Google Earth Engine in a Middle Eastern Country. Remote Sens. 2022, 14, 1725. [Google Scholar] [CrossRef]
- van der A, R.J.; Mijling, B.; Ding, J.; Koukouli, M.E.; Liu, F.; Li, Q.; Mao, H.; Theys, N. Cleaning up the air: Effectiveness of air quality policy for SO2 and NOx emissions in China. Atmos. Chem. Phys. 2017, 17, 1775–1789. [Google Scholar] [CrossRef]
- Cyrys, J.; Eeftens, M.; Heinrich, J.; Ampe, C.; Armengaud, A.; Beelen, R.; Bellander, T.; Beregszaszi, T.; Birk, M.; Cesaroni, G.; et al. Variation of NO2 and NOx concentrations between and within 36 European study areas: Results from the ESCAPE study. Atmos. Environ. 2012, 62, 374–390. [Google Scholar] [CrossRef]
- Kim, H.; Lee, S.-M.; Chai, T.; Ngan, F.; Pan, L.; Lee, P. A Conservative Downscaling of Satellite-Detected Chemical Compositions: NO2 Column Densities of OMI, GOME-2, and CMAQ. Remote Sens. 2018, 10, 1001. [Google Scholar] [CrossRef]
- Goldberg, D.L.; Lamsal, L.N.; Loughner, C.P.; Lu, Z.; Streets, D.G. A high-resolution and observationally constrained OMI NO2 satellite retrieval. Atmos. Chem. Phys. 2017, 17, 11403–11421. [Google Scholar] [CrossRef]
- Cersosimo, A.; Serio, C.; Masiello, G. TROPOMI NO2 Tropospheric Column Data: Regridding to 1 km Grid-Resolution and Assessment of their Consistency with In Situ Surface Observations. Remote Sens. 2020, 12, 2212. [Google Scholar] [CrossRef]
- Beloconi, A.; Vounatsou, P. Bayesian geostatistical modelling of high-resolution NO2 exposure in Europe combining data from monitors, satellites and chemical transport models. Environ. Int. 2020, 138, 105578. [Google Scholar] [CrossRef]
- Novotny, E.V.; Bechle, M.J.; Millet, D.B.; Marshall, J.D. Correction to National Satellite-Based Land-Use Regression: NO2 in the United States. Environ. Sci. Technol. 2011, 45, 8596. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, C.; Xiao, Q.; Geng, G.; Cai, J.; Chen, R.; Meng, X.; Kan, H. A Satellite-Based Land Use Regression Model of Ambient NO2 with High Spatial Resolution in a Chinese City. Remote Sens. 2021, 13, 397. [Google Scholar] [CrossRef]
- Yu, M.; Liu, Q. Deep learning-based downscaling of tropospheric nitrogen dioxide using ground-level and satellite observations. Sci. Total Environ. 2021, 773, 145145. [Google Scholar] [CrossRef]
- Chen, J.; de Hoogh, K.; Gulliver, J.; Hoffmann, B.; Hertel, O.; Ketzel, M.; Bauwelinck, M.; van Donkelaar, A.; Hvidtfeldt, U.A.; Katsouyanni, K.; et al. A comparison of linear regression, regularization, and machine learning algorithms to develop Europe-wide spatial models of fine particles and nitrogen dioxide. Environ. Int. 2019, 130, 104934. [Google Scholar] [CrossRef]
- Huang, C.; Sun, K.; Hu, J.; Xue, T.; Xu, H.; Wang, M. Estimating 2013–2019 NO2 exposure with high spatiotemporal resolution in China using an ensemble model. Environ. Pollut. 2022, 292, 118285. [Google Scholar] [CrossRef]
- You, J.W.; Zou, B.; Zhao, X.G.; Xu, S.; He, R. Estimating ground-level NO2 concentrations across mainland China using random forests regression modeling. China Environ. Sci. 2019, 39, 969–979. [Google Scholar] [CrossRef]
- Dou, X.; Liao, C.; Wang, H.; Huang, Y.; Tu, Y.; Huang, X.; Peng, Y.; Zhu, B.; Tan, J.; Deng, Z.; et al. Estimates of daily ground-level NO2 concentrations in China based on Random Forest model integrated K-means. Adv. Appl. Energy 2021, 2, 100017. [Google Scholar] [CrossRef]
- Liu, J. Mapping high resolution national daily NO2 exposure across mainland China using an ensemble algorithm. Environ. Pollut. 2021, 279, 116932. [Google Scholar] [CrossRef]
- Wang, Y.; Ying, Q.; Hu, J.; Zhang, H. Spatial and temporal variations of six criteria air pollutants in 31 provincial capital cities in China during 2013–2014. Environ. Int. 2014, 73, 413–422. [Google Scholar] [CrossRef]
- Fenn, M.E.; Richard, H.; Tonnesen, G.S.; Baron, J.S.; Susanne, G.C.; Diane, H.; Jaffe, D.A.; Scott, C.; Linda, G.; Rueth, H.M. Nitrogen Emissions, Deposition, and Monitoring in the Western United States. Bioscience 2003, 53, 391–403. [Google Scholar] [CrossRef]
- Anttila, P.; Tuovinen, J.-P.; Niemi, J.V. Primary NO2 emissions and their role in the development of NO2 concentrations in a traffic environment. Atmos. Environ. 2011, 45, 986–992. [Google Scholar] [CrossRef]
- He, Q.; Huang, B. Satellite-based mapping of daily high-resolution ground PM2.5 in China via space-time regression modeling. Remote Sens. Environ. 2018, 206, 72–83. [Google Scholar] [CrossRef]
- Reid, C.E.; Jerrett, M.; Petersen, M.L.; Pfister, G.G.; Morefield, P.E.; Tager, I.B.; Raffuse, S.M.; Balmes, J.R. Spatiotemporal prediction of fine particulate matter during the 2008 northern California wildfires using machine learning. Environ. Sci. Technol. 2015, 49, 3887–3896. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Mickley, L.J.; Jacob, D.J.; Marais, E.A.; Sheng, J.; Hu, L.; Abad, G.G.; Chance, K. Long-term (2005–2014) trends in formaldehyde (HCHO) columns across North America as seen by the OMI satellite instrument: Evidence of changing emissions of volatile organic compounds. Geophys. Res. Lett. 2017, 44, 7079–7086. [Google Scholar] [CrossRef]
- Pang, X.; Mu, Y.; Lee, X.; Zhang, Y.; Xu, Z. Influences of characteristic meteorological conditions on atmospheric carbonyls in Beijing, China. Atmos. Res. 2009, 93, 913–919. [Google Scholar] [CrossRef]
- Robinson, D.P.; Lloyd, C.D.; McKinley, J.M. Increasing the accuracy of nitrogen dioxide (NO2) pollution mapping using geographically weighted regression (GWR) and geostatistics. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 374–383. [Google Scholar] [CrossRef]
- Qin, K.; Rao, L.; Xu, J.; Bai, Y.; Zou, J.; Hao, N.; Li, S.; Yu, C. Estimating Ground Level NO2 Concentrations over Central-Eastern China Using a Satellite-Based Geographically and Temporally Weighted Regression Model. Remote Sens. 2017, 9, 950. [Google Scholar] [CrossRef]
- He, Q.; Huang, B. Satellite-based high-resolution PM2.5 estimation over the Beijing-Tianjin-Hebei region of China using an improved geographically and temporally weighted regression model. Environ. Pollut. 2018, 236, 1027–1037. [Google Scholar] [CrossRef]
- Karney, C.F.F. Algorithms for geodesics. J. Geod. 2012, 87, 43–55. [Google Scholar] [CrossRef]
- Behrens, T.; Schmidt, K.; Viscarra Rossel, R.A.; Gries, P.; Scholten, T.; MacMillan, R.A. Spatial modelling with Euclidean distance fields and machine learning. Eur. J. Soil Sci. 2018, 69, 757–770. [Google Scholar] [CrossRef]
- Liu, R.; Ma, Z.; Liu, Y.; Shao, Y.; Zhao, W.; Bi, J. Spatiotemporal distributions of surface ozone levels in China from 2005 to 2017: A machine learning approach. Environ. Int. 2020, 142, 105823. [Google Scholar] [CrossRef]
- Qin, K.; Han, X.; Li, D.; Xu, J.; Loyola, D.; Xue, Y.; Zhou, X.; Li, D.; Zhang, K.; Yuan, L. Satellite-based estimation of surface NO2 concentrations over east-central China: A comparison of POMINO and OMNO2d data. Atmos. Environ. 2020, 224, 117322. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the KDD’16: 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, San Francisco, CA, USA, 13–17 August 2016. [Google Scholar] [CrossRef]
- Pan, Y.; Zhao, C.; Liu, Z. Estimating the Daily NO2 Concentration with High Spatial Resolution in the Beijing–Tianjin–Hebei Region Using an Ensemble Learning Model. Remote Sens. 2021, 13, 758. [Google Scholar] [CrossRef]
- Xu, H.; Bechle, M.J.; Wang, M.; Szpiro, A.A.; Vedal, S.; Bai, Y.Q.; Marshall, J.D. National PM2.5 and NO2 exposure models for China based on land use regression, satellite measurements, and universal kriging. Sci. Total Environ. 2018, 655, 423–433. [Google Scholar] [CrossRef]
- Larkin, A.; Geddes, J.A.; Martin, R.V.; Xiao, Q.; Liu, Y.; Marshall, J.D.; Brauer, M.; Hystad, P. Global Land Use Regression Model for Nitrogen Dioxide Air Pollution. Environ. Sci. Technol. 2017, 51, 6957–6964. [Google Scholar] [CrossRef]
- Zhan, Y.; Luo, Y.; Deng, X.; Zhang, K.; Zhang, M.; Grieneisen, M.L.; Di, B. Satellite-Based Estimates of Daily NO2 Exposure in China Using Hybrid Random Forest and Spatiotemporal Kriging Model. Environ. Sci. Technol. 2018, 52, 4180–4189. [Google Scholar] [CrossRef]
- Di, Q.; Amini, H.; Shi, L.; Kloog, I.; Silvern, R.; Kelly, J.; Sabath, M.B.; Choirat, C.; Koutrakis, P.; Lyapustin, A.; et al. Assessing NO2 Concentration and Model Uncertainty with High Spatiotemporal Resolution across the Contiguous United States Using Ensemble Model Averaging. Environ. Sci. Technol. 2020, 54, 1372–1384. [Google Scholar] [CrossRef]
Scheme Name | Predictors (x) | Predictand (y) | RF (R2) | EXT (R2) | XGB (R2) |
---|---|---|---|---|---|
Plan 1 | Basic predictors | NO2 concentration monitored by the station | 0.77 | 0.78 | 0.82 |
Plan 2 | Basic predictors + meteorological lag factors | 0.80 | 0.81 | 0.86 | |
Plan 3 | Basic predictors + spatiotemporal heterogeneity factor | 0.81 | 0.82 | 0.88 | |
Plan 4 | Basic predictors + spatiotemporal heterogeneity factor + meteorological lag factors | 0.82 | 0.84 | 0.88 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, S.; Dong, H.; Zhang, Z.; Yuan, Y. An Ensemble Model-Based Estimation of Nitrogen Dioxide in a Southeastern Coastal Region of China. Remote Sens. 2022, 14, 2807. https://doi.org/10.3390/rs14122807
He S, Dong H, Zhang Z, Yuan Y. An Ensemble Model-Based Estimation of Nitrogen Dioxide in a Southeastern Coastal Region of China. Remote Sensing. 2022; 14(12):2807. https://doi.org/10.3390/rs14122807
Chicago/Turabian StyleHe, Sicong, Heng Dong, Zili Zhang, and Yanbin Yuan. 2022. "An Ensemble Model-Based Estimation of Nitrogen Dioxide in a Southeastern Coastal Region of China" Remote Sensing 14, no. 12: 2807. https://doi.org/10.3390/rs14122807
APA StyleHe, S., Dong, H., Zhang, Z., & Yuan, Y. (2022). An Ensemble Model-Based Estimation of Nitrogen Dioxide in a Southeastern Coastal Region of China. Remote Sensing, 14(12), 2807. https://doi.org/10.3390/rs14122807