Extraction of Photovoltaic Plants Using Machine Learning Methods: A Case Study of the Pilot Energy City of Golmud, China
<p>Maps showing (<b>a</b>) the location of the study area and (<b>b</b>) a sample of the land cover classes.</p> "> Figure 2
<p>Illustration of the general workflow utilized for the extraction of PV plants in Golmud City.</p> "> Figure 3
<p>Spectral curves of PV plants and confusing land cover types in (<b>a</b>) March, (<b>b</b>) May, (<b>c</b>) August, and (<b>d</b>) and December.</p> "> Figure 4
<p>Images associated with different indices for areas hosting PV plants in Golmud including (<b>a</b>) NDTI, (<b>b</b>) BI, (<b>c</b>) NDVI, (<b>d</b>) EVI (<b>e</b>) BUAU, and (<b>f</b>) NDWI.</p> "> Figure 5
<p>XGBoost model hyperparameter conditioning curves. (<b>a</b>) Number of estimators; (<b>b</b>) eta; (<b>c</b>) max depth; (<b>d</b>) gamma; (<b>e</b>) subsampl; and (<b>f</b>) colsample bytree.</p> "> Figure 6
<p>Conditioning curves of hyperparameters for the RF model. (<b>a</b>) Number of estimators; (<b>b</b>) max dept; and (<b>c</b>) min sample leaf.</p> "> Figure 7
<p>Images of extraction results based on different models showing the concentration of PV plants in contiguous areas in the east of Golmud City (the models (XGBoost, RF, and SVM) and plans (1, 2, and 3) are correspondingly shown as rows and columns). Red (<b>a</b>–<b>c</b>), yellow (<b>d</b>–<b>f</b>), and green (<b>g</b>–<b>i</b>) represent the PV extraction results for XGBoost, RF, and SVM, respectively, with Plan 3 yielding the best results for red (XGBoost).</p> "> Figure 8
<p>Images showing results of the extraction of PV plants in the central part of the Qaidam Basin using different models (shown as rows) and plans (displayed at the top of columns). Red (<b>a</b>–<b>c</b>), yellow (<b>d</b>–<b>f</b>), and green (<b>g</b>–<b>i</b>) represent the PV extraction results for XGBoost, RF, and SVM, respectively, with Plan 3 yielding the best results for red (XGBoost).</p> "> Figure 9
<p>Plot highlighting the importance of different variables involved in the XGBoost model.</p> "> Figure 10
<p>Illustration of the PV plants extraction results using the XGBoost model based on Plan 3.</p> "> Figure 11
<p>Image exhibiting the dynamics in areas occupied by PV plants in the east of the Golmud region from 2018–2020.</p> ">
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Remote Sensing Images Selection
3. Methodology
3.1. General Workflow
3.2. Collection of Training and Test Samples
3.3. Spectral Characteristics of Confusing Features
3.4. Selection of Principal PV Extraction Variables
3.5. Machine Learning Models
3.6. Model Evaluation
3.7. Image Post-Processing
4. Results
4.1. Model and Plan Comparison and Selection
4.2. Influence of Variables on the Model
4.3. Extraction of PV Plants in Golmud City
5. Discussion
5.1. PV Extraction Model
5.2. The Importance of Spectral Characteristics on the XGBoost Model to Extract PV PLANTS
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Parida, B.; Iniyan, S.; Goic, R. A review of solar photovoltaic technologies. Renew. Sustain. Energy Rev. 2011, 15, 1625–1636. [Google Scholar] [CrossRef]
- Li, Y.; Nie, D.; Zhao, X.; Li, Y. Market structure and performance: An empirical study of the Chinese solar cell industry. Renew. Sustain. Energy Rev. 2017, 70, 78–82. [Google Scholar] [CrossRef]
- Kruitwagen, L.; Story, K.T.; Friedrich, J.; Byers, L.; Skillman, S.; Hepburn, C. A global inventory of photovoltaic solar energy generating units. Nature 2021, 598, 604–610. [Google Scholar] [CrossRef] [PubMed]
- Sahu, A.; Yadav, N.; Sudhakar, K. Floating photovoltaic power plant: A review. Renew. Sustain. Energy Rev. 2016, 66, 815–824. [Google Scholar] [CrossRef]
- Johansson, B. Security aspects of future renewable energy systems–A short overview. Energy 2013, 61, 598–605. [Google Scholar] [CrossRef] [Green Version]
- Mackay, D.J.C. Solar energy in the context of energy use, energy transportation and energy storage. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 2013, 371, 20110431. [Google Scholar] [CrossRef]
- Scheidel, A.; Sorman, A.H. Energy transitions and the global land rush: Ultimate drivers and persistent consequences. Glob. Environ. Chang. 2012, 22, 588–595. [Google Scholar] [CrossRef]
- Capellán-Pérez, I.; de Castro, C.; Arto, I. Assessing vulnerabilities and limits in the transition to renewable energies: Land requirements under 100% solar energy scenarios. Renew. Sustain. Energy Rev. 2017, 77, 760–782. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Xu, M. Assessing the Effects of Photovoltaic Powerplants on Surface Temperature Using Remote Sensing Techniques. Remote Sens. 2020, 12, 1825. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, R.; Huang, Z.; Cheng, Z.; López-Vicente, M.; Ma, X.; Wu, G. Solar photovoltaic panels significantly promote vegetation recovery by modifying the soil surface microhabitats in an arid sandy ecosystem. Land Degrad. Dev. 2019, 30, 2177–2186. [Google Scholar] [CrossRef]
- Broadbent, A.M.; Krayenhoff, E.S.; Georgescu, M.; Sailor, D.J. The Observed Effects of Utility-Scale Photovoltaics on Near-Surface Air Temperature and Energy Balance. J. Appl. Meteorol. Clim. 2019, 58, 989–1006. [Google Scholar] [CrossRef]
- Hosenuzzaman, M.; Rahim, N.A.; Selvaraj, J.; Hasanuzzaman, M.; Malek, A.B.M.A.; Nahar, A. Global prospects, progress, policies, and environmental impact of solar photovoltaic power generation. Renew. Sustain. Energy Rev. 2015, 41, 284–297. [Google Scholar] [CrossRef]
- Wu, Z.; Hou, A.; Chang, C.; Huang, X.; Shi, D.; Wang, Z. Environmental impacts of large-scale CSP plants in northwestern China. Environ. Sci. Process. Impacts 2014, 16, 2432–2441. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Wang, Z.; Majumdar, A.; Rajagopal, R. DeepSolar: A Machine Learning Framework to Efficiently Construct a Solar Deployment Database in the United States. Joule 2018, 2, 2605–2617. [Google Scholar] [CrossRef] [Green Version]
- Castello, R.; Roquette, S.; Esguerra, M.; Guerra, A.; Scartezzini, J.-L. Deep learning in the built environment: Automatic detection of rooftop solar panels using Convolutional Neural Networks. J. Phys. Conf. Ser. 2019, 1343, 012034. [Google Scholar] [CrossRef]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [Google Scholar] [CrossRef]
- Karoui, M.S.; Benhalouche, F.Z.; Deville, Y.; Djerriri, K.; Briottet, X.; Houet, T.; Le Bris, A.; Weber, C. Partial Linear NMF-Based Unmixing Methods for Detection and Area Estimation of Photovoltaic Panels in Urban Hyperspectral Remote Sensing Data. Remote Sens. 2019, 11, 2164. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Zeraatpisheh, M.; Rahman, M.; Wang, S.; Xu, M. Texture Is Important in Improving the Accuracy of Mapping Photovoltaic Power Plants: A Case Study of Ningxia Autonomous Region, China. Remote Sens. 2021, 13, 3909. [Google Scholar] [CrossRef]
- Wang, S.L.; Zhang, L.P.; Zhu, S.H.; Ji, L.; Chai, Q.; Shen, Y.; Zhang, R. Extraction of photovoltaic power plants from Landsat 8 OLI remote sensing images by combining multiple common features. Bull. Surv. Mapp. 2018, 46–52. [Google Scholar] [CrossRef]
- Liheng, Z.; Lina, H.; Hang, Z. Deep learning based multi-temporal crop classification. Remote Sens. Environ. 2019, 221, 430–443. [Google Scholar]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Roy, D.P.; Wulder, M.A.; Loveland, T.R.; Woodcock, C.E.; Allen, R.G.; Anderson, M.C.; Helder, D.; Irons, J.R.; Johnson, D.M.; Kennedy, R.; et al. Landsat-8: Science and product vision for terrestrial global change research. Remote Sens. Environ. 2014, 145, 154–172. [Google Scholar] [CrossRef] [Green Version]
- Qin, Y.; Xiao, X.; Dong, J.; Zhou, Y.; Zhu, Z.; Zhang, G.; Du, G.; Jin, C.; Kou, W.; Wang, J.; et al. Mapping paddy rice planting area in cold temperate climate region through analysis of time series Landsat 8 (OLI), Landsat 7 (ETM+) and MODIS imagery. ISPRS J. Photogramm. Remote Sens. 2015, 105, 220–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Gao, B.-C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Rikimaru, A.; Roy, P.S.; Miyatake, S. Tropical forest cover density mapping. Trop. Ecol. 2002, 43, 39–47. [Google Scholar]
- Zha, Y.; Gao, J.; Ni, S. Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. Int. J. Remote Sens. 2003, 24, 583–594. [Google Scholar] [CrossRef]
- VanDeventer, A.P.; Ward, A.D.; Gowda, P.H.; Lyon, J.G. Using thematic mapper data to identify contrasting soil plains and tillage practices. Photogramm. Eng. Remote Sens. 1997, 63, 87–93. [Google Scholar]
- He, J.; Liu, X.; Tu, L.; Xu, K.; He, Z.; Song, H.; Liu, H. Automatic extraction of impermeable surface information in Nanchang. Bull. Surv. Mapping 2020, 1–4. [Google Scholar] [CrossRef]
- Rediske, G.; Siluk, J.C.M.; Gastaldo, N.G.; Rigo, P.D.; Rosa, C.B. Determinant factors in site selection for photovoltaic projects: A systematic review. Int. J. Energy Res. 2018, 43, 1689–1701. [Google Scholar] [CrossRef]
- Richards, J.A. Remote Sensing Digital Image Analysis; Springer: Berlin, Germany, 1999. [Google Scholar]
- Dai, A.; Zhou, X.; Wu, Z. Design of an intelligent controller for a grain dryer: A support vector machines for regression inverse model proportional–integral–derivative controller. Food Sci. Nutr. 2020, 8, 805–819. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, R.L.; Wood, S.D.; Sheley, R.L. Mapping invasive plants using hyperspectral imagery and Breiman Cutler classifications (randomForest). Remote Sens. Environ. 2006, 100, 356–362. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Blickensdörfer, L.; Schwieder, M.; Pflugmacher, D.; Nendel, C.; Erasmi, S.; Hostert, P. Mapping of crop types and crop sequences with combined time series of Sentinel-1, Sentinel-2 and Landsat 8 data for Germany. Remote Sens. Environ. 2022, 269, 112831. [Google Scholar] [CrossRef]
- Cao, D.; Ma, Y.; Sun, L.; Gao, L. Fast observation simulation method based on XGBoost for visible bands over the ocean surface under clear-sky conditions. Remote Sens. Lett. 2021, 12, 674–683. [Google Scholar] [CrossRef]
- George, G.; Oommen, R.M.; Shelly, S.; Philipose, S.S.; Varghese, A.M. A Survey on Various Median Filtering Techniques For Removal of Impulse Noise from Digital Image. In Proceedings of the 2018 Conference on Emerging Devices and Smart Systems (ICEDSS), Tiruchengode, India, 2–3 March 2018; pp. 235–238. [Google Scholar] [CrossRef]
- Mountrakis, G.; Im, J.; Ogole, C. Support vector machines in remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2011, 66, 247–259. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, S.; Huang, Y.; Xie, Z.; Xu, M. Mapping photovoltaic power plants in China using Landsat, Random Forest, and Google Earth Engine. Earth Syst. Sci. Data 2022. [Google Scholar] [CrossRef]
- Ji, C.; Bachmann, M.; Esch, T.; Feilhauer, H.; Heiden, U.; Heldens, W.; Hueni, A.; Lakes, T.; Metz-Marconcini, A.; Schroedter-Homscheidt, M.; et al. Solar photovoltaic module detection using laboratory and airborne imaging spectroscopy data. Remote Sens. Environ. 2021, 266, 112692. [Google Scholar] [CrossRef]
- Moudrý, V.; Beková, A.; Lagner, O. Evaluation of a high resolution UAV imagery model for rooftop solar irradiation estimates. Remote Sens. Lett. 2019, 10, 1077–1085. [Google Scholar] [CrossRef]
- Jiang, H.; Yao, L.; Lu, N.; Qin, J.; Liu, T.; Liu, Y.; Zhou, C. Multi-resolution dataset for photovoltaic panel segmentation from satellite and aerial imagery. Earth Syst. Sci. Data 2021, 13, 5389–5401. [Google Scholar] [CrossRef]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
Category | Reference Images from Google Earth | Category | Reference Images from Google Earth |
---|---|---|---|
PV | Snow | ||
Built-up land | Water body | ||
Road | Shrub | ||
Bare land | River valley |
Variable | Description | Formula | Reference | |
---|---|---|---|---|
Spectral | B1 | Blue1 | B1 | [22] |
B2 | Blue2 | B2 | ||
B3 | Green | B3 | ||
B4 | Red | B4 | ||
B5 | Near-infrared | B5 | ||
B6 | Shortwave infrared1 | B6 | ||
B7 | Shortwave infrared2 | B7 | ||
Indexes for PV extraction | NDVI | Normalized Difference Vegetation Index | NDVI = (B5 − B4)/(B5 + B4) | [27] |
EVI | Enhanced Vegetation Index | EVI = [2.5 × (B5 − B4)]/(B5 + B6 × 4 − 7.5 × B2 + 1) | [26] | |
NDBI | Normalized Built-up Index | NDBI = (B6 − B5)/(B6 + B5) | [29] | |
LSWI | Land Surface Water Index | LSWI = (B5 − B7)/(B5 + B7) | [23] | |
NDTI | Normalized Difference Tillage Index | NDTI = (B6 − B7)/(B6 + B7) | [30] | |
NDWI | Normalized Difference Water Index | NDWI = (B3 − B5)/(B3 + B5) | [25] | |
MNDWI | Modified NDWI | MNDWI = (B3 − B6)/(B3 + B6) | [24] | |
BUAI | Built-up area Index | BUAI = NDBI − NDVI | [31] | |
BI | Bare Soil index | SI = (B6 + B4 − B5 − B2)/(B6 + B4 + B5 + B2) | [28] | |
Terrain | Slope | Slope | Slope | [32] |
Hill-shade | Hill-shade | Hill-shade |
Experimental Scheme | Feature |
---|---|
Plan 1 | original spectral |
Plan 2 | indexes + terrain |
Plan 3 | original spectral + indexes + terrain |
Classifier | Hyperparameter | Candidate Values (X0, Xn, i) | Plan 1 | Plan 2 | Plan 3 |
---|---|---|---|---|---|
XGBoost | n_estimators | (10, 510, 20) | 310 | 310 | 310 |
subsample | (0.7, 1, 0.01) | 0.95 | 0.97 | 0.95 | |
eta | (0, 0.30, 0.01) | 0.12 | 0.13 | 0.11 | |
gamma | [0.05, 0.1, 0.2, 0.3, 0.5, 0.7, 1, 2, 3, 5, 7, 10] * | 0.05 | 0.05 | 0.05 | |
max_depth | (2, 50, 2) | 15 | 15 | 12 | |
colsample_bytree | (0.7, 1, 0.01) | 0.97 | 1 | 0.93 | |
lambda | [1] * | 1 | 1 | 1 | |
alpha | [0] * | 0 | 0 | 0 | |
RF | n_estimators | (10, 510, 20) | 270 | 190 | 210 |
max_depth | (2, 50, 2) | 18 | 18 | 16 | |
min_samples_leaf | [1, 2, 5, 10, 15, 20, 30, 50] * | 1 | 1 | 1 | |
min_samples_split | [2, 5, 10, 15, 20, 30, 50] * | 2 | 2 | 2 | |
max_features | [‘log2′, ‘sqrt’, None] * | sqrt | sqrt | sqrt | |
SVM | C | [0.1, 0.3, 1, 3, 10, 30, 100] * | 1 | 5 | 5 |
gamma | [‘auto’] * | auto | auto | auto |
OA | Plan 1 | Plan 2 | Plan 3 |
---|---|---|---|
XGBoost | 99.37% (0.9412) | 99.47% (0.9458) | 99.65% (0.9631) |
RF | 99.23% (0.9253) | 99.12% (0.9292) | 99.47% (0.9499) |
SVM | 97.94% (0.7988) | 98.43% (0.8569) | 98.32% (0.8405) |
Area1/ha | Plan 1 | Plan 2 | Plan 3 |
---|---|---|---|
XGBoost | 5552.1/1018.71 | 6949.44/2598.21 | 5934.78/1085.13 |
RF | 5349.78/1035.72 | 6480.81/1974.06 | 5496.39/1022.13 |
SVM | 5568.03/1340.55 | 6811.74/2698.74 | 5644.8/1241.01 |
Category | PV | Bare Lands | Built-Up Areas | Snow Cover | Shrubs | Water Bodies | Roads | River Valleys | Total | User’s Accuracy |
---|---|---|---|---|---|---|---|---|---|---|
PV | 617 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 618 | 99.84% |
Bare lands | 1 | 12479 | 0 | 0 | 0 | 0 | 2 | 0 | 12,482 | 99.98% |
Built-up areas | 2 | 0 | 428 | 0 | 3 | 0 | 4 | 1 | 438 | 97.72% |
Snow cover | 0 | 0 | 1 | 327 | 0 | 0 | 0 | 0 | 328 | 99.70% |
Shrubs | 0 | 2 | 1 | 0 | 286 | 0 | 0 | 0 | 289 | 98.96% |
Water bodies | 0 | 0 | 0 | 0 | 0 | 3849 | 0 | 0 | 3849 | 100.00% |
Roads | 1 | 18 | 18 | 0 | 0 | 0 | 74 | 0 | 111 | 66.67% |
River valleys | 0 | 5 | 7 | 0 | 0 | 0 | 0 | 869 | 881 | 98.64% |
Total | 621 | 12504 | 455 | 327 | 289 | 3849 | 81 | 870 | 18,996 | |
Producer‘s Accuracy | 99.36% | 99.80% | 94.07% | 100.00% | 98.96% | 100.00% | 91.36% | 99.89% | ||
Overall Accuracy (OA): 99.65% macro F1_score: 0.9631 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Kang, Y.; Sun, Z.; Wu, F.; Zhang, Q. Extraction of Photovoltaic Plants Using Machine Learning Methods: A Case Study of the Pilot Energy City of Golmud, China. Remote Sens. 2022, 14, 2697. https://doi.org/10.3390/rs14112697
Chen Z, Kang Y, Sun Z, Wu F, Zhang Q. Extraction of Photovoltaic Plants Using Machine Learning Methods: A Case Study of the Pilot Energy City of Golmud, China. Remote Sensing. 2022; 14(11):2697. https://doi.org/10.3390/rs14112697
Chicago/Turabian StyleChen, Zhenghang, Yawen Kang, Zhongxiao Sun, Feng Wu, and Qian Zhang. 2022. "Extraction of Photovoltaic Plants Using Machine Learning Methods: A Case Study of the Pilot Energy City of Golmud, China" Remote Sensing 14, no. 11: 2697. https://doi.org/10.3390/rs14112697
APA StyleChen, Z., Kang, Y., Sun, Z., Wu, F., & Zhang, Q. (2022). Extraction of Photovoltaic Plants Using Machine Learning Methods: A Case Study of the Pilot Energy City of Golmud, China. Remote Sensing, 14(11), 2697. https://doi.org/10.3390/rs14112697