Automated Multi-Scale and Multivariate Geological Logging from Drill-Core Hyperspectral Data
"> Figure 1
<p>General workflow for multi-scale, multivariate borehole segmentation from hyperspectral drill-core data [<a href="#B9-remotesensing-14-02676" class="html-bibr">9</a>]. Panels (<b>a</b>,<b>c</b>,<b>e</b>,<b>g</b>,<b>i</b>,<b>k</b>,<b>m</b>) with outer red border represents the input and output data for each step of the method workflow. Panels (<b>b</b>,<b>d</b>,<b>f</b>,<b>h</b>,<b>j</b>,<b>l</b>) represents the main steps for the multi-scale multivariate borehole segmentation method.</p> "> Figure 2
<p>Illustrated workflow applied on a synthetic example. (<b>a</b>) Raw multivariate data. The colour scheme of the variables in panel (<b>a</b>) is explained in <a href="#remotesensing-14-02676-f003" class="html-fig">Figure 3</a>. (<b>b</b>) Gaussian functions stretched along the scales, which are used as wavelets for the CWT. (<b>c</b>) multivariate and multi-scale output after applying the CWT with Gaussian wavelet. (<b>d</b>) Illustration of moving-window PCA and Gaussian notch filter. (<b>e</b>) First PCA component for each scale. (<b>f</b>) First derivative of Gaussian functions stretched along the scales, which are used as wavelets for the second CWT. (<b>g</b>) Zero-crossing resulting values along scales. (<b>h</b>) Contourmap of zero-crossing values along scales. (<b>i</b>) Geological domains extracted boundaries. (<b>j</b>) Scalogram i.e., multi-scale borehole segmentation. (<b>k</b>) Scalogram with color scheme guided by resulting domains. (<b>l</b>) Cumulative sum of contact boundaries after 100 realizations based on the same model.</p> "> Figure 3
<p>Synthetic dataset. (<b>a</b>–<b>d</b>) Pairs of correlated variables with a simulated sampling rate of 10 cm along depth. The pairs-sets have different lengths with 110, 200, 400 and 250 samples, respectively. (<b>e</b>) Synthetic variable 1 created from the concatenation of the first random distribution from the four pairs. (<b>f</b>) Synthetic variable 2 created from the concatenation of the second random distribution from the four pairs. (<b>g</b>) Scatterplot of variable 2 against variable 1. The upper and right axes of the scatterplot show the marginal histograms.</p> "> Figure 4
<p>(<b>A</b>) Iberian Massif Zones, CZ: Cantabrian Zone. WALZ: West Asturian-Leonese Zone. GTMZ: Galicia Tra’s os Montes Zone. CIZ: Central Iberian Zone. OMZ: Ossa Morena Zone. SPZ: South Portuguese Zone. (<b>B</b>) Geological scheme of the South Portuguese Zone with the location of main massive sulfide deposits in the IPB, highlighting in yellow the Elvira deposit. Map coordinate system: UTM Zone 29 ETRS 89. Modified from ([<a href="#B9-remotesensing-14-02676" class="html-bibr">9</a>,<a href="#B21-remotesensing-14-02676" class="html-bibr">21</a>,<a href="#B22-remotesensing-14-02676" class="html-bibr">22</a>]).</p> "> Figure 5
<p>Results of the synthetic dataset. (<b>a</b>) The two synthetic variables used as input data. (<b>b</b>) multivariate scalogram and domains based on unsupervised domaining. (<b>c</b>) Domain and segmentation data extracted at a scale of 75 shown as a logging file. (<b>d</b>) Scatterplot of compositional data for each segmented area described by the mean of their input variables.</p> "> Figure 6
<p>Multivariate dataset of mineral abundances prediction for Muscovite, Biotite, Magnesium-rich Chlorite, Iron-rich Chlorite, Siderite, Ankerite, Iron Oxide, Quartz, Sulfide group 1 and Sulfide group 2 along the borehole ELV-10. For details on methodology see [<a href="#B9-remotesensing-14-02676" class="html-bibr">9</a>].</p> "> Figure 7
<p>Segmentation and domaining results for borehole ELV-10 of the Elvira deposit. (<b>a</b>) Lithological log provided by the mining company. (<b>b</b>) Multivariate scalogram and classification results. The three vertical dashed blue lines represent the scale corresponding to panels (<b>c</b>–<b>e</b>). (<b>c</b>–<b>e</b>) Geological domain classifications for the Elvira-10 borehole extracted from the scalogram at scales of 5, 45 and 95, respectively. (<b>f</b>–<b>h</b>) Ternary diagrams showing the average composition of domains in the multivariate scalogram, based on the relative composition of: (<b>f</b>) siderite, iron oxide and sulfide group 2. (<b>g</b>) sulfide group 1, muscovite and quartz. (<b>h</b>) magnesium-rich chlorite, siderite and iron oxide.</p> "> Figure 8
<p>ELV-10 Borehole represented by the mineral abundance estimations of: Muscovite, Biotite, Magnesium-rich Chlorite, Iron-rich Chlorite, Siderite, Ankerite, Iron oxide, Quartz, Sulfides Group 1 and Sulfides Group 2 used as input data. The filler column comprises the sum of nine additional minerals (accessory and/or visible, near infrared and shortwave infrared spectrally inactive and accessory minerals). The first column in each sub figure guides the color scheme and represents (<b>a</b>) the lithology log from the mining company (<b>b</b>) the geological domains derived from the hyperspectral data by the proposed methodology extracted at a scale of 5.</p> "> Figure 9
<p>E-W cross-section through the Elvira deposit showing ELV-10, ELV-04, ELV-07, ELV-32, ELV-18 boreholes. On top of the cross-section a topographic profile is shown. Continuous lines extrapolate horizontally the correlation of massive sulfide lithology/domains). (<b>a</b>) Boreholes with the color scheme guided by the lithological classification performed by the mine geologists. (<b>b</b>) Base map from the Elvira site, showing the cross-section profile and surface projection of the massive sulphide lens. (<b>c</b>) 3D visualisation of the boreholes utilized in the profile. (<b>d</b>) Lithological color legend. (<b>e</b>) Boreholes with the color scheme guided by the geological domains derived from the hyperspectral data by the proposed methodology extracted at a scale of 5. (<b>f–h</b>)Ternary diagrams showing composition of geological domains. (<b>i</b>) Geological domains color legend.</p> "> Figure 10
<p>Results of the synthetic dataset using state-of-the-art methodology. (<b>a</b>,<b>b</b>) The two synthetic variables used as input data. The colour scheme of the variables in panels (<b>a</b>,<b>b</b>) is explained in <a href="#remotesensing-14-02676-f003" class="html-fig">Figure 3</a>. (<b>c</b>) Contacts extracted from variable 1. (<b>d</b>) Contacts extracted from variable 2. (<b>e</b>) Combined contacts in the post-processing step. (<b>f</b>) Scalogram from combined contacts.</p> "> Figure 11
<p>(<b>a</b>) Manual interpretation of the E-W cross-section (<a href="#remotesensing-14-02676-f009" class="html-fig">Figure 9</a>b) with geological domains derived from the hyperspectral data by the proposed methodology extracted at a scale of 45. (<b>b</b>) Base map from the Elvira site, showing the cross-section profile and surface projection of the massive sulphide lens. (<b>c</b>) 3D visualization of the boreholes utilized in the profile. (<b>d</b>) 3D visualization of the boreholes utilized in the profile together with an enveloping surface of the massive sulphide.</p> "> Figure A1
<p>Unsupervised domain classification results, showing the domain color legend with average mineral abundances in percentage and the interpretation based on compositional data and knowledge integration. Massive sulfide (MS).</p> "> Figure A2
<p>Mineral association to quartz from SEM-MLA samples.</p> ">
Abstract
:1. Introduction
2. Methodology
2.1. Input Data
2.1.1. Synthetic Dataset
2.1.2. Drill-Core Hyperspectral Multivariate Dataset
2.2. About the Continuous Wavelet Transform
2.3. Smoothing via CWT
2.4. Moving-Window Principal Component Analysis
2.5. Multivariate Segmentation Method
2.6. Unsupervised Domaining
3. Results
3.1. Results from Synthetic Data
3.2. Elvira Results
4. Discussion
4.1. Benefits of a Multivariate Approach
4.2. Support for Drill-Core Logging
4.2.1. Multi-Scale Results
4.2.2. Hyperspectral Source for Multivariate Data
4.2.3. Geologically Meaningful Domains
4.3. Relevance for 3D Modeling
5. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
References
- Kruse, F.A. Identification and mapping of minerals in drill core using hyperspectral image analysis of infrared reflectance spectra. Int. J. Remote Sens. 1996, 17, 1623–1632. [Google Scholar] [CrossRef]
- Taylor, G.R. Mineral and lithology mapping of drill core pulps using visible and infrared spectrometry. Nat. Resour. Res. 2000, 9, 257–268. [Google Scholar] [CrossRef]
- Tappert, M.C.; Rivard, B.; Fulop, A.; Rogge, D.; Feng, J.; Tappert, R.; Stalder, R. Characterizing Kimberlite Dilution by Crustal Rocks at the Snap Lake Diamond Mine Hyperspectral Imagery Collected from Drill Core. Econ. Geol. 2015, 110, 1375–1387. [Google Scholar] [CrossRef] [Green Version]
- Mathieu, M.; Roy, R.; Launeau, P.; Cathelineau, M.; Quirt, D. Alteration mapping on drill cores using a HySpex SWIR-320m hyperspectral camera: Application to the exploration of an unconformity-related uranium deposit (Saskatchewan, Canada). J. Geochem. Explor. 2016, 172, 71–88. [Google Scholar] [CrossRef]
- Acosta, I.C.C.; Khodadadzadeh, M.; Tusa, L.; Ghamisi, P.; Gloaguen, R. A Machine learning framework for drill-core mineral mapping using hyperspectral and high-resolution mineralogical data fusion. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 4829–4842. [Google Scholar] [CrossRef]
- Tusa, L.; Andreani, L.; Khodadadzadeh, M.; Contreras, C.; Ivascanu, P.; Gloaguen, R.; Gutzmer, J. Mineral mapping and vein detection in hyperspectral drill-core scans: Application to porphyry-type mineralization. Minerals 2019, 9, 122. [Google Scholar] [CrossRef] [Green Version]
- Lypaczewski, P.; Rivard, B.; Lesage, G.; Byrne, K.; D’angelo, M.; Lee, R.G. Characterization of mineralogy in the highland valley porphyry cu district using hyperspectral imaging, and potential applications. Minerals 2020, 10, 473. [Google Scholar] [CrossRef]
- Booysen, R.; Lorenz, S.; Thiele, S.T.; Fuchsloch, W.C.; Marais, T.; Nex, P.A.; Gloaguen, R. Accurate hyperspectral imaging of mineralised outcrops: An example from lithium-bearing pegmatites at Uis, Namibia. Remote Sens. Environ. 2022, 269, 112790. [Google Scholar] [CrossRef]
- De La Rosa, R.; Khodadadzadeh, M.; Tusa, L.; Kirsch, M.; Gisbert, G.; Tornos, F.; Tolosana-Delgado, R.; Gloaguen, R. Mineral quantification at deposit scale using drill-core hyperspectral data: A case study in the Iberian Pyrite Belt. Ore Geol. Rev. 2021, 139 Pt B, 104514. [Google Scholar] [CrossRef]
- Grossmann, A.; Morlet, J. Decomposition of Hardy Functions Into. SIAM J. Math. Anal. 1984, 15, 723–736. [Google Scholar] [CrossRef]
- Mallat, S. Zero-Crossings of a Wavelet Transform. IEEE Trans. Inf. Theory 1991, 37, 1019–1033. [Google Scholar] [CrossRef]
- Mallat, S.; Hwang, W.L. Singularity detection and processing with wavelets. IEEE Trans. Inf. Theory 1992, 38, 617–643. [Google Scholar] [CrossRef]
- Torrence, C.; Compo, G.P. A Practical Guide to Wavelet Analysis. Bull. Am. Meteorol. Soc. 1998, 79, 61–78. [Google Scholar] [CrossRef] [Green Version]
- Hill, E.J.; Robertson, J.; Uvarova, Y. Multiscale hierarchical domaining and compression of drill hole data. Comput. Geosci. 2015, 79, 47–57. [Google Scholar] [CrossRef]
- Feng, J.; Rivard, B.; Gallie, A.; Sanchez-Azofeifa, A. Rock type classification of drill core using continuous wavelet analysis applied to thermal infrared reflectance spectra. Int. J. Remote Sens. 2011, 32, 4489–4510. [Google Scholar] [CrossRef]
- Hill, E.J.; Pearce, M.A.; Stromberg, J.M. Improving Automated Geological Logging of Drill Holes by Incorporating Multiscale Spatial Methods. Math. Geosci. 2020, 53, 21–53. [Google Scholar] [CrossRef] [Green Version]
- Hill, E.J.; Fabris, A.; Uvarova, Y.; Tiddy, C. Improving geological logging of drill holes using geochemical data and data analytics for mineral exploration in the Gawler Ranges, South Australia. Aust. J. Earth Sci. 2021. [Google Scholar] [CrossRef]
- Zaitouny, A.; Ramanaidou, E.; Hill, J.; Walker, D.M.; Small, M. Objective Domain Boundaries Detection in New Caledonian Nickel Laterite from Spectra Using Quadrant Scan. Minerals 2022, 12, 49. [Google Scholar] [CrossRef]
- de Jong, S.; van der Meer, F. Remote Sensing Image Analysis: Including the Spatial Domain; Springer: Dordreecht, The Netherlands, 2006; p. 357. [Google Scholar]
- van der Meer, F.; Kopačková, V.; Koucká, L.; van der Werff, H.M.; van Ruitenbeek, F.J.; Bakker, W.H. Wavelength feature mapping as a proxy to mineral chemistry for investigating geologic systems: An example from the Rodalquilar epithermal system. Int. J. Appl. Earth Obs. Geoinf. 2018, 64, 237–248. [Google Scholar] [CrossRef]
- Tornos, F. Environment of formation and styles of volcanogenic massive sulfides: The Iberian Pyrite Belt. Ore Geol. Rev. 2006, 28, 259–307. [Google Scholar] [CrossRef]
- Martin-Izard, A.; Arias, D.; Arias, M.; Gumiel, P.; Sanderson, D.J.; Castañon, C.; Lavandeira, A.; Sanchez, J. A new 3D geological model and structural evolution of the world-class Rio Tinto VMS deposit, Iberian Pyrite Belt (Spain). Ore Geol. Rev. 2015, 71, 457–476. [Google Scholar] [CrossRef] [Green Version]
- Khodadadzadeh, M.; Gloaguen, R. Upscaling High-Resolution Mineralogical Analyses to Estimate Mineral Abundances in Drill Core Hyperspectral Data. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Yokohama, Japan, 28 July–2 August 2019; pp. 1845–1848. [Google Scholar] [CrossRef]
- Brigham, E.O. The Fast Fourier Transform and Its Applications by E. Oran Brigham; Prentice-Hall Inc.: Hoboken, NJ, USA, 1988; Volume 12, p. 448. [Google Scholar]
- Pearson, K. On lines and planes of closest fit to systems of points in space. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1901, 2, 559–572. [Google Scholar] [CrossRef] [Green Version]
- Doventon, J. Geologic Log Analysis Using Computer Methods; The American Association of Petroleum Geologist: Lawrence, KS, USA, 1994; pp. 79–88. [Google Scholar]
- Witkin, A.P. Scale-Space Filtering. In Proceedings of the 8th International Joint Conferences on Artificial Intelligence, Karlsruhe, Germany, 8–12 August 1983; Volume 2, pp. 1019–1022. [Google Scholar] [CrossRef]
- Chilès, J.P.; Delfiner, P. Geostatistics Modeling Spatial Uncertainty, 2nd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012; Number 2; p. 699. [Google Scholar]
- Sokal, R.R.; Michener, C.D. A Statistical Method for Evaluating Systematic Relationships; Harvard University: Cambridge, MA, USA, 1958; Volume 38, pp. 1409–1438. [Google Scholar]
- Thorndike, R.L. Who belongs in the family? Psychometrika 1953, 18, 267–276. [Google Scholar] [CrossRef]
- Fritz, M.; Behringer, M.; Schwarz, H. LOG-means: Efficiently estimating the number of clusters in large datasets. Proc. Vldb Endow. 2020, 13, 2118–2131. [Google Scholar] [CrossRef]
- Tappert, M.; Rivard, B.; Giles, D.; Tappert, R.; Mauger, A. Automated drill core logging using visible and near-infrared reflectance spectroscopy: A case study from the Olympic Dam Iocg deposit, South Australia. Econ. Geol. 2011, 106, 289–296. [Google Scholar] [CrossRef]
- Littlefield, E.; Calvin, W.; Stelling, P.; Kent, T. Reflectance spectroscopy as a drill core logging technique: An example using core from the Akutan. Trans.–Geotherm. Resour. Counc. 2012, 36, 1281–1283. [Google Scholar]
- Kruse, F.A.; Bedell, R.L.; Taranik, J.V.; Peppin, W.A.; Weatherbee, O.; Calvin, W.M. Mapping alteration minerals at prospect, outcrop and drill core scales using imaging spectrometry. Int. J. Remote Sens. 2012, 33, 1780–1798. [Google Scholar] [CrossRef] [Green Version]
- Calvin, W.M.; Pace, E.L. Mapping alteration in geothermal drill core using a field portable spectroradiometer. Geothermics 2016, 61, 12–23. [Google Scholar] [CrossRef] [Green Version]
- Cowan, E.J. Deposit-scale structural architecture of the Sigma-Lamaque gold deposit, Canada—Insights from a newly proposed 3D method for assessing structural controls from drill hole data. Miner. Depos. 2020, 55, 217–240. [Google Scholar] [CrossRef] [Green Version]
- Jones, R.R.; McCaffrey, K.J.; Clegg, P.; Wilson, R.W.; Holliman, N.S.; Holdsworth, R.E.; Imber, J.; Waggott, S. Integration of regional to outcrop digital data: 3D visualisation of multi-scale geological models. Comput. Geosci. 2009, 35, 4–18. [Google Scholar] [CrossRef]
- Dai, H.; Liu, Z.; Hu, J. Multi-scale 3D geological digital representation and modeling method based on octree algorithm. In Proceedings of the 2010 6th International Conference on Wireless Communications, Networking and Mobile Computing, WiCOM 2010, Chengdu, China, 23–25 September 2010; Number c. pp. 6–8. [Google Scholar] [CrossRef]
- Xiong, Z.; Guo, J.; Xia, Y.; Lu, H.; Wang, M.; Shi, S. A 3D Multi-scale geology modeling method for tunnel engineering risk assessment. Tunn. Undergr. Space Technol. 2018, 73, 71–81. [Google Scholar] [CrossRef]
- Heinig, T.; Bachmann, K.; Tolosana-Delgado, R.; Van Den Boogaart, G.; Gutzmer, J. Monitoring gravitational and particle shape settling effects on MLA sampling preparation. In Proceedings of the IAMG 2015—17th Annual Conference of the International Association for Mathematical Geosciences, Freiberg, Germany, 5–13 September 2015; pp. 200–206. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De La Rosa, R.; Tolosana-Delgado, R.; Kirsch, M.; Gloaguen, R. Automated Multi-Scale and Multivariate Geological Logging from Drill-Core Hyperspectral Data. Remote Sens. 2022, 14, 2676. https://doi.org/10.3390/rs14112676
De La Rosa R, Tolosana-Delgado R, Kirsch M, Gloaguen R. Automated Multi-Scale and Multivariate Geological Logging from Drill-Core Hyperspectral Data. Remote Sensing. 2022; 14(11):2676. https://doi.org/10.3390/rs14112676
Chicago/Turabian StyleDe La Rosa, Roberto, Raimon Tolosana-Delgado, Moritz Kirsch, and Richard Gloaguen. 2022. "Automated Multi-Scale and Multivariate Geological Logging from Drill-Core Hyperspectral Data" Remote Sensing 14, no. 11: 2676. https://doi.org/10.3390/rs14112676
APA StyleDe La Rosa, R., Tolosana-Delgado, R., Kirsch, M., & Gloaguen, R. (2022). Automated Multi-Scale and Multivariate Geological Logging from Drill-Core Hyperspectral Data. Remote Sensing, 14(11), 2676. https://doi.org/10.3390/rs14112676