Correcting GEDI Water Level Estimates for Inland Waterbodies Using Machine Learning
<p>North American Great Lakes Region. The blue lines correspond to the GEDI acquisitions considered in this study.</p> "> Figure 2
<p>Example of the gauge stations over Lake Erie considered for the analysis of the accuracy of the GEDI track of the 31 October 2019 (beam 7).</p> "> Figure 3
<p>Mean absolute differences of the in situ water level measurements as a function of the distance of the gauge stations (by pairs).</p> "> Figure 4
<p>Distribution of the mean difference (bias) between GEDI shots and in situ elevations across the five studied lakes. Biases correspond to the mean difference calculated for a given track (GEDI shots acquired on a given date with a given beam).</p> "> Figure 5
<p>Distribution of the unbiased root mean squared error (ubRMSE) between GEDI shots and in situ elevations across the five studied lakes. The distribution corresponds to the ubRMSE of GEDI tracks (i.e., shots acquired on the same date with the same beam).</p> "> Figure 6
<p>Distribution of the root mean squared error (RMSE) between GEDI shots and in situ elevations across the five studied lakes. The distribution corresponds to the RMSE of GEDI tracks (i.e., shots acquired on the same date with the same beam).</p> "> Figure 7
<p>Boxplot by track of the original estimated elevations by GEDI over Lake Huron and the four tested models presented in <a href="#sec3dot1dot1-remotesensing-14-02361" class="html-sec">Section 3.1.1</a> and <a href="#sec3dot1dot2-remotesensing-14-02361" class="html-sec">Section 3.1.2</a>. The blue line represents in situ elevations.</p> "> Figure 7 Cont.
<p>Boxplot by track of the original estimated elevations by GEDI over Lake Huron and the four tested models presented in <a href="#sec3dot1dot1-remotesensing-14-02361" class="html-sec">Section 3.1.1</a> and <a href="#sec3dot1dot2-remotesensing-14-02361" class="html-sec">Section 3.1.2</a>. The blue line represents in situ elevations.</p> "> Figure 8
<p>Stacked histograms of the distribution of the mean difference (bias) between GEDI (resp. <math display="inline"><semantics> <mrow> <mi>R</mi> <msub> <mi>F</mi> <mrow> <mi>I</mi> <mi>C</mi> <mi>W</mi> <msup> <mo> </mo> <mo>′</mo> </msup> <mn>19</mn> <mo>→</mo> <msup> <mo/> <mo>′</mo> </msup> <mn>20</mn> </mrow> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>R</mi> <msub> <mi>F</mi> <mrow> <mi>I</mi> <mi>C</mi> <mi>W</mi> <msup> <mo> </mo> <mo>′</mo> </msup> <mn>20</mn> <mo>→</mo> <msup> <mo/> <mo>′</mo> </msup> <mn>19</mn> </mrow> </msub> </mrow> </semantics></math> ) and in situ elevations across the five studied lakes. Biases correspond to the mean difference calculated for GEDI shots grouped by acquisition date and the acquiring beam. <math display="inline"><semantics> <mrow> <mi>R</mi> <msub> <mi>F</mi> <mrow> <mi>I</mi> <mi>C</mi> <mi>W</mi> <msup> <mo> </mo> <mo>′</mo> </msup> <mn>19</mn> <mo>→</mo> <msup> <mo/> <mo>′</mo> </msup> <mn>20</mn> </mrow> </msub> </mrow> </semantics></math> (resp. <math display="inline"><semantics> <mrow> <mi>R</mi> <msub> <mi>F</mi> <mrow> <mi>I</mi> <mi>C</mi> <mi>W</mi> <msup> <mo> </mo> <mo>′</mo> </msup> <mn>20</mn> <mo>→</mo> <msup> <mo/> <mo>′</mo> </msup> <mn>19</mn> </mrow> </msub> </mrow> </semantics></math> ) corresponds to the <math display="inline"><semantics> <mrow> <mi>R</mi> <msub> <mi>F</mi> <mrow> <mi>I</mi> <mi>C</mi> <mi>W</mi> </mrow> </msub> </mrow> </semantics></math> model, trained over 2019 (resp. 2020) data and validated on 2020 data (resp. 2019).</p> "> Figure 9
<p>Stacked histograms of the distribution of the unbiased root mean squared error (ubRMSE) between GEDI (resp.<math display="inline"><semantics> <mrow> <mo> </mo> <mi>R</mi> <msub> <mi>F</mi> <mrow> <mi>I</mi> <mi>C</mi> <mi>W</mi> <msup> <mo> </mo> <mo>′</mo> </msup> <mn>19</mn> <mo>→</mo> <msup> <mo/> <mo>′</mo> </msup> <mn>20</mn> </mrow> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>R</mi> <msub> <mi>F</mi> <mrow> <mi>I</mi> <mi>C</mi> <mi>W</mi> <msup> <mo> </mo> <mo>′</mo> </msup> <mn>20</mn> <mo>→</mo> <msup> <mo/> <mo>′</mo> </msup> <mn>19</mn> </mrow> </msub> </mrow> </semantics></math> ) and in situ elevations across the five studied lakes. The distribution corresponds to the ubRMSE of GEDI shots grouped by acquisition date and the acquiring beam. <math display="inline"><semantics> <mrow> <mi>R</mi> <msub> <mi>F</mi> <mrow> <mi>I</mi> <mi>C</mi> <mi>W</mi> <msup> <mo> </mo> <mo>′</mo> </msup> <mn>19</mn> <mo>→</mo> <msup> <mo/> <mo>′</mo> </msup> <mn>20</mn> </mrow> </msub> </mrow> </semantics></math> (resp. <math display="inline"><semantics> <mrow> <mi>R</mi> <msub> <mi>F</mi> <mrow> <mi>I</mi> <mi>C</mi> <mi>W</mi> <msup> <mo> </mo> <mo>′</mo> </msup> <mn>20</mn> <mo>→</mo> <msup> <mo/> <mo>′</mo> </msup> <mn>19</mn> </mrow> </msub> </mrow> </semantics></math> ) corresponds to the <math display="inline"><semantics> <mrow> <mi>R</mi> <msub> <mi>F</mi> <mrow> <mi>I</mi> <mi>C</mi> <mi>W</mi> </mrow> </msub> </mrow> </semantics></math> model, trained over 2019 (resp. 2020) data and validated on 2020 data (resp. 2019).</p> "> Figure 10
<p>Stacked histograms of the distribution of the root mean squared error (RMSE) between GEDI (resp. <math display="inline"><semantics> <mrow> <mi>R</mi> <msub> <mi>F</mi> <mrow> <mi>I</mi> <mi>C</mi> <mi>W</mi> <msup> <mo> </mo> <mo>′</mo> </msup> <mn>19</mn> <mo>→</mo> <msup> <mo/> <mo>′</mo> </msup> <mn>20</mn> </mrow> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>R</mi> <msub> <mi>F</mi> <mrow> <mi>I</mi> <mi>C</mi> <mi>W</mi> <msup> <mo> </mo> <mo>′</mo> </msup> <mn>20</mn> <mo>→</mo> <msup> <mo/> <mo>′</mo> </msup> <mn>19</mn> </mrow> </msub> </mrow> </semantics></math> ) and in situ elevations across the five studied lakes. The distribution corresponds to the RMSE of GEDI shots grouped by acquisition date and the acquiring beam. <math display="inline"><semantics> <mrow> <mi>R</mi> <msub> <mi>F</mi> <mrow> <mi>I</mi> <mi>C</mi> <mi>W</mi> <msup> <mo> </mo> <mo>′</mo> </msup> <mn>19</mn> <mo>→</mo> <msup> <mo/> <mo>′</mo> </msup> <mn>20</mn> </mrow> </msub> </mrow> </semantics></math> (resp. <math display="inline"><semantics> <mrow> <mi>R</mi> <msub> <mi>F</mi> <mrow> <mi>I</mi> <mi>C</mi> <mi>W</mi> <msup> <mo> </mo> <mo>′</mo> </msup> <mn>20</mn> <mo>→</mo> <msup> <mo/> <mo>′</mo> </msup> <mn>19</mn> </mrow> </msub> </mrow> </semantics></math> ) corresponds to the <math display="inline"><semantics> <mrow> <mi>R</mi> <msub> <mi>F</mi> <mrow> <mi>I</mi> <mi>C</mi> <mi>W</mi> </mrow> </msub> </mrow> </semantics></math> model, trained over 2019 (resp. 2020) data and validated on 2020 data (resp. 2019).</p> "> Figure 11
<p>Stacked histograms of the distribution of the mean difference (bias) between GEDI (resp. <math display="inline"><semantics> <mrow> <mi>R</mi> <msub> <mi>F</mi> <mrow> <mi>I</mi> <mi>C</mi> <mi>W</mi> </mrow> </msub> </mrow> </semantics></math>,<math display="inline"><semantics> <mrow> <mo> </mo> <mi>R</mi> <msub> <mi>F</mi> <mi>I</mi> </msub> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>R</mi> <msub> <mi>F</mi> <mrow> <mi>I</mi> <mi>C</mi> </mrow> </msub> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>R</mi> <msub> <mi>F</mi> <mrow> <mi>I</mi> <mi>W</mi> </mrow> </msub> </mrow> </semantics></math> ) and in situ elevations across the five studied lakes. Biases correspond to the mean difference calculated for GEDI shots grouped by acquisition date and the acquiring beam.</p> "> Figure 12
<p>Stacked histograms of the distribution of the unbiased root mean squared error (ubRMSE) between GEDI (resp. <math display="inline"><semantics> <mrow> <mi>R</mi> <msub> <mi>F</mi> <mrow> <mi>I</mi> <mi>C</mi> <mi>W</mi> </mrow> </msub> </mrow> </semantics></math>,<math display="inline"><semantics> <mrow> <mo> </mo> <mi>R</mi> <msub> <mi>F</mi> <mi>I</mi> </msub> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>R</mi> <msub> <mi>F</mi> <mrow> <mi>I</mi> <mi>C</mi> </mrow> </msub> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>R</mi> <msub> <mi>F</mi> <mrow> <mi>I</mi> <mi>W</mi> </mrow> </msub> </mrow> </semantics></math> ) and in situ elevations across the five studied lakes. The distribution corresponds to the ubRMSE of GEDI shots grouped by acquisition date and the acquiring beam.</p> "> Figure 13
<p>Distribution of GEDI elevation errors across the five studied lakes.</p> "> Figure 14
<p>Distribution of the modeled GEDI elevation errors over Lake Huron (red histogram) after the application of the <math display="inline"><semantics> <mrow> <mi>R</mi> <msub> <mi>F</mi> <mrow> <mi>I</mi> <mi>C</mi> <mi>W</mi> </mrow> </msub> </mrow> </semantics></math> model trained over Lake Erie (<b>a</b>), Michigan (<b>b</b>), Superior (<b>c</b>), and Ontario (<b>d</b>).</p> "> Figure A1
<p>Bias (m) and ubRMSE (m) of GEDI acquisition time series across the five lakes. Each dot represents the bias or ubRMSE of multiple GEDI shots from the same track (i.e., shots acquired on the same date with the same beam).</p> "> Figure A2
<p>Box plot by track of the original estimated elevations by GEDI over Lake Erie and the four tested models presented in <a href="#sec3dot1dot1-remotesensing-14-02361" class="html-sec">Section 3.1.1</a> and <a href="#sec3dot1dot2-remotesensing-14-02361" class="html-sec">Section 3.1.2</a>. The blue line represents in situ elevations.</p> "> Figure A2 Cont.
<p>Box plot by track of the original estimated elevations by GEDI over Lake Erie and the four tested models presented in <a href="#sec3dot1dot1-remotesensing-14-02361" class="html-sec">Section 3.1.1</a> and <a href="#sec3dot1dot2-remotesensing-14-02361" class="html-sec">Section 3.1.2</a>. The blue line represents in situ elevations.</p> "> Figure A3
<p>Boxplot by track of the original estimated elevations by GEDI over Lake Ontario and the four tested models presented in <a href="#sec3dot1dot1-remotesensing-14-02361" class="html-sec">Section 3.1.1</a> and <a href="#sec3dot1dot2-remotesensing-14-02361" class="html-sec">Section 3.1.2</a>. The blue line represents in situ elevations.</p> "> Figure A3 Cont.
<p>Boxplot by track of the original estimated elevations by GEDI over Lake Ontario and the four tested models presented in <a href="#sec3dot1dot1-remotesensing-14-02361" class="html-sec">Section 3.1.1</a> and <a href="#sec3dot1dot2-remotesensing-14-02361" class="html-sec">Section 3.1.2</a>. The blue line represents in situ elevations.</p> "> Figure A4
<p>Boxplot by track of the original estimated elevations by GEDI over Lake Michigan and the four tested models presented in <a href="#sec3dot1dot1-remotesensing-14-02361" class="html-sec">Section 3.1.1</a> and <a href="#sec3dot1dot2-remotesensing-14-02361" class="html-sec">Section 3.1.2</a>. The blue line represents in situ elevations.</p> "> Figure A4 Cont.
<p>Boxplot by track of the original estimated elevations by GEDI over Lake Michigan and the four tested models presented in <a href="#sec3dot1dot1-remotesensing-14-02361" class="html-sec">Section 3.1.1</a> and <a href="#sec3dot1dot2-remotesensing-14-02361" class="html-sec">Section 3.1.2</a>. The blue line represents in situ elevations.</p> "> Figure A5
<p>Boxplot by track of the original estimated elevations by GEDI over Lake Superior and the four tested models presented in <a href="#sec3dot1dot1-remotesensing-14-02361" class="html-sec">Section 3.1.1</a> and <a href="#sec3dot1dot2-remotesensing-14-02361" class="html-sec">Section 3.1.2</a>. The blue line represents in situ elevations.</p> "> Figure A5 Cont.
<p>Boxplot by track of the original estimated elevations by GEDI over Lake Superior and the four tested models presented in <a href="#sec3dot1dot1-remotesensing-14-02361" class="html-sec">Section 3.1.1</a> and <a href="#sec3dot1dot2-remotesensing-14-02361" class="html-sec">Section 3.1.2</a>. The blue line represents in situ elevations.</p> "> Figure A6
<p>Boxplot by track of the original estimated elevations by GEDI over Lake Erie and the five tested models presented in <a href="#sec3dot1dot3-remotesensing-14-02361" class="html-sec">Section 3.1.3</a>. The green line represents in situ elevations. <math display="inline"><semantics> <mrow> <mi>R</mi> <msub> <mi>F</mi> <mrow> <mi>C</mi> <mi>V</mi> </mrow> </msub> </mrow> </semantics></math> represents the 5-fold cross-validation results over Lake Erie. <math display="inline"><semantics> <mrow> <mi>R</mi> <msub> <mi>F</mi> <mrow> <mi>H</mi> <mi>u</mi> <mi>r</mi> <mi>o</mi> <mi>n</mi> </mrow> </msub> <mo>→</mo> <mi>E</mi> <mi>r</mi> <mi>i</mi> <mi>e</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>R</mi> <msub> <mi>F</mi> <mrow> <mi>O</mi> <mi>n</mi> <mi>t</mi> <mi>a</mi> <mi>r</mi> <mi>i</mi> <mi>o</mi> </mrow> </msub> <mo>→</mo> <mi>E</mi> <mi>r</mi> <mi>i</mi> <mi>e</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>R</mi> <msub> <mi>F</mi> <mrow> <mi>M</mi> <mi>i</mi> <mi>c</mi> <mi>h</mi> <mi>i</mi> <mi>g</mi> <mi>a</mi> <mi>n</mi> </mrow> </msub> <mo>→</mo> <mi>E</mi> <mi>r</mi> <mi>i</mi> <mi>e</mi> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>R</mi> <msub> <mi>F</mi> <mrow> <mi>S</mi> <mi>u</mi> <mi>p</mi> <mi>e</mi> <mi>r</mi> <mi>i</mi> <mi>o</mi> <mi>r</mi> </mrow> </msub> <mo>→</mo> <mi>E</mi> <mi>r</mi> <mi>i</mi> <mi>e</mi> </mrow> </semantics></math> represent the results of the models trained over Lakes Huron, Ontario, Michigan, and Superior, respectively, applied over Lake Erie.</p> "> Figure A6 Cont.
<p>Boxplot by track of the original estimated elevations by GEDI over Lake Erie and the five tested models presented in <a href="#sec3dot1dot3-remotesensing-14-02361" class="html-sec">Section 3.1.3</a>. The green line represents in situ elevations. <math display="inline"><semantics> <mrow> <mi>R</mi> <msub> <mi>F</mi> <mrow> <mi>C</mi> <mi>V</mi> </mrow> </msub> </mrow> </semantics></math> represents the 5-fold cross-validation results over Lake Erie. <math display="inline"><semantics> <mrow> <mi>R</mi> <msub> <mi>F</mi> <mrow> <mi>H</mi> <mi>u</mi> <mi>r</mi> <mi>o</mi> <mi>n</mi> </mrow> </msub> <mo>→</mo> <mi>E</mi> <mi>r</mi> <mi>i</mi> <mi>e</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>R</mi> <msub> <mi>F</mi> <mrow> <mi>O</mi> <mi>n</mi> <mi>t</mi> <mi>a</mi> <mi>r</mi> <mi>i</mi> <mi>o</mi> </mrow> </msub> <mo>→</mo> <mi>E</mi> <mi>r</mi> <mi>i</mi> <mi>e</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>R</mi> <msub> <mi>F</mi> <mrow> <mi>M</mi> <mi>i</mi> <mi>c</mi> <mi>h</mi> <mi>i</mi> <mi>g</mi> <mi>a</mi> <mi>n</mi> </mrow> </msub> <mo>→</mo> <mi>E</mi> <mi>r</mi> <mi>i</mi> <mi>e</mi> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>R</mi> <msub> <mi>F</mi> <mrow> <mi>S</mi> <mi>u</mi> <mi>p</mi> <mi>e</mi> <mi>r</mi> <mi>i</mi> <mi>o</mi> <mi>r</mi> </mrow> </msub> <mo>→</mo> <mi>E</mi> <mi>r</mi> <mi>i</mi> <mi>e</mi> </mrow> </semantics></math> represent the results of the models trained over Lakes Huron, Ontario, Michigan, and Superior, respectively, applied over Lake Erie.</p> "> Figure A7
<p>Boxplot by track of the original estimated elevations by GEDI over Lake Huron and the five tested models presented in <a href="#sec3dot1dot3-remotesensing-14-02361" class="html-sec">Section 3.1.3</a>. The green line represents in situ elevations. <math display="inline"><semantics> <mrow> <mi>R</mi> <msub> <mi>F</mi> <mrow> <mi>C</mi> <mi>V</mi> </mrow> </msub> </mrow> </semantics></math> represents the 5-fold cross-validation results over Lake Huron. <math display="inline"><semantics> <mrow> <mi>R</mi> <msub> <mi>F</mi> <mrow> <mi>E</mi> <mi>r</mi> <mi>i</mi> <mi>e</mi> </mrow> </msub> <mo>→</mo> <mi>H</mi> <mi>u</mi> <mi>r</mi> <mi>o</mi> <mi>n</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>R</mi> <msub> <mi>F</mi> <mrow> <mi>O</mi> <mi>n</mi> <mi>t</mi> <mi>a</mi> <mi>r</mi> <mi>i</mi> <mi>o</mi> </mrow> </msub> <mo>→</mo> <mi>H</mi> <mi>u</mi> <mi>r</mi> <mi>o</mi> <mi>n</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>R</mi> <msub> <mi>F</mi> <mrow> <mi>M</mi> <mi>i</mi> <mi>c</mi> <mi>h</mi> <mi>i</mi> <mi>g</mi> <mi>a</mi> <mi>n</mi> </mrow> </msub> <mo>→</mo> <mi>H</mi> <mi>u</mi> <mi>r</mi> <mi>o</mi> <mi>n</mi> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>R</mi> <msub> <mi>F</mi> <mrow> <mi>S</mi> <mi>u</mi> <mi>p</mi> <mi>e</mi> <mi>r</mi> <mi>i</mi> <mi>o</mi> <mi>r</mi> </mrow> </msub> <mo>→</mo> <mi>H</mi> <mi>u</mi> <mi>r</mi> <mi>o</mi> <mi>n</mi> </mrow> </semantics></math> represent the results of the models trained over Lakes Erie, Ontario, Michigan, and Superior, respectively, applied over Lake Huron.</p> "> Figure A7 Cont.
<p>Boxplot by track of the original estimated elevations by GEDI over Lake Huron and the five tested models presented in <a href="#sec3dot1dot3-remotesensing-14-02361" class="html-sec">Section 3.1.3</a>. The green line represents in situ elevations. <math display="inline"><semantics> <mrow> <mi>R</mi> <msub> <mi>F</mi> <mrow> <mi>C</mi> <mi>V</mi> </mrow> </msub> </mrow> </semantics></math> represents the 5-fold cross-validation results over Lake Huron. <math display="inline"><semantics> <mrow> <mi>R</mi> <msub> <mi>F</mi> <mrow> <mi>E</mi> <mi>r</mi> <mi>i</mi> <mi>e</mi> </mrow> </msub> <mo>→</mo> <mi>H</mi> <mi>u</mi> <mi>r</mi> <mi>o</mi> <mi>n</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>R</mi> <msub> <mi>F</mi> <mrow> <mi>O</mi> <mi>n</mi> <mi>t</mi> <mi>a</mi> <mi>r</mi> <mi>i</mi> <mi>o</mi> </mrow> </msub> <mo>→</mo> <mi>H</mi> <mi>u</mi> <mi>r</mi> <mi>o</mi> <mi>n</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>R</mi> <msub> <mi>F</mi> <mrow> <mi>M</mi> <mi>i</mi> <mi>c</mi> <mi>h</mi> <mi>i</mi> <mi>g</mi> <mi>a</mi> <mi>n</mi> </mrow> </msub> <mo>→</mo> <mi>H</mi> <mi>u</mi> <mi>r</mi> <mi>o</mi> <mi>n</mi> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>R</mi> <msub> <mi>F</mi> <mrow> <mi>S</mi> <mi>u</mi> <mi>p</mi> <mi>e</mi> <mi>r</mi> <mi>i</mi> <mi>o</mi> <mi>r</mi> </mrow> </msub> <mo>→</mo> <mi>H</mi> <mi>u</mi> <mi>r</mi> <mi>o</mi> <mi>n</mi> </mrow> </semantics></math> represent the results of the models trained over Lakes Erie, Ontario, Michigan, and Superior, respectively, applied over Lake Huron.</p> "> Figure A8
<p>Boxplot by track of the original estimated elevations by GEDI over Lake Ontario and the five tested models presented in <a href="#sec3dot1dot3-remotesensing-14-02361" class="html-sec">Section 3.1.3</a>. The green line represents in situ elevations. <math display="inline"><semantics> <mrow> <mi>R</mi> <msub> <mi>F</mi> <mrow> <mi>C</mi> <mi>V</mi> </mrow> </msub> </mrow> </semantics></math> represents the 5-fold cross-validation results over Lake Ontario. <math display="inline"><semantics> <mrow> <mi>R</mi> <msub> <mi>F</mi> <mrow> <mi>E</mi> <mi>r</mi> <mi>i</mi> <mi>e</mi> </mrow> </msub> <mo>→</mo> <mi>O</mi> <mi>n</mi> <mi>t</mi> <mi>a</mi> <mi>r</mi> <mi>i</mi> <mi>o</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>R</mi> <msub> <mi>F</mi> <mrow> <mi>H</mi> <mi>u</mi> <mi>r</mi> <mi>o</mi> <mi>n</mi> </mrow> </msub> <mo>→</mo> <mi>O</mi> <mi>n</mi> <mi>t</mi> <mi>a</mi> <mi>r</mi> <mi>i</mi> <mi>o</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>R</mi> <msub> <mi>F</mi> <mrow> <mi>M</mi> <mi>i</mi> <mi>c</mi> <mi>h</mi> <mi>i</mi> <mi>g</mi> <mi>a</mi> <mi>n</mi> </mrow> </msub> <mo>→</mo> <mi>O</mi> <mi>n</mi> <mi>t</mi> <mi>a</mi> <mi>r</mi> <mi>i</mi> <mi>o</mi> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>R</mi> <msub> <mi>F</mi> <mrow> <mi>S</mi> <mi>u</mi> <mi>p</mi> <mi>e</mi> <mi>r</mi> <mi>i</mi> <mi>o</mi> <mi>r</mi> </mrow> </msub> <mo>→</mo> <mi>O</mi> <mi>n</mi> <mi>t</mi> <mi>a</mi> <mi>r</mi> <mi>i</mi> <mi>o</mi> </mrow> </semantics></math> represent the results of the models trained over Lakes Erie, Huron, Michigan, and Superior, respectively, applied over Lake Ontario.</p> "> Figure A8 Cont.
<p>Boxplot by track of the original estimated elevations by GEDI over Lake Ontario and the five tested models presented in <a href="#sec3dot1dot3-remotesensing-14-02361" class="html-sec">Section 3.1.3</a>. The green line represents in situ elevations. <math display="inline"><semantics> <mrow> <mi>R</mi> <msub> <mi>F</mi> <mrow> <mi>C</mi> <mi>V</mi> </mrow> </msub> </mrow> </semantics></math> represents the 5-fold cross-validation results over Lake Ontario. <math display="inline"><semantics> <mrow> <mi>R</mi> <msub> <mi>F</mi> <mrow> <mi>E</mi> <mi>r</mi> <mi>i</mi> <mi>e</mi> </mrow> </msub> <mo>→</mo> <mi>O</mi> <mi>n</mi> <mi>t</mi> <mi>a</mi> <mi>r</mi> <mi>i</mi> <mi>o</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>R</mi> <msub> <mi>F</mi> <mrow> <mi>H</mi> <mi>u</mi> <mi>r</mi> <mi>o</mi> <mi>n</mi> </mrow> </msub> <mo>→</mo> <mi>O</mi> <mi>n</mi> <mi>t</mi> <mi>a</mi> <mi>r</mi> <mi>i</mi> <mi>o</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>R</mi> <msub> <mi>F</mi> <mrow> <mi>M</mi> <mi>i</mi> <mi>c</mi> <mi>h</mi> <mi>i</mi> <mi>g</mi> <mi>a</mi> <mi>n</mi> </mrow> </msub> <mo>→</mo> <mi>O</mi> <mi>n</mi> <mi>t</mi> <mi>a</mi> <mi>r</mi> <mi>i</mi> <mi>o</mi> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>R</mi> <msub> <mi>F</mi> <mrow> <mi>S</mi> <mi>u</mi> <mi>p</mi> <mi>e</mi> <mi>r</mi> <mi>i</mi> <mi>o</mi> <mi>r</mi> </mrow> </msub> <mo>→</mo> <mi>O</mi> <mi>n</mi> <mi>t</mi> <mi>a</mi> <mi>r</mi> <mi>i</mi> <mi>o</mi> </mrow> </semantics></math> represent the results of the models trained over Lakes Erie, Huron, Michigan, and Superior, respectively, applied over Lake Ontario.</p> "> Figure A9
<p>Boxplot by track of the original estimated elevations by GEDI over Lake Michigan and the five tested models presented in <a href="#sec3dot1dot3-remotesensing-14-02361" class="html-sec">Section 3.1.3</a>. The green line represents in situ elevations. <math display="inline"><semantics> <mrow> <mi>R</mi> <msub> <mi>F</mi> <mrow> <mi>C</mi> <mi>V</mi> </mrow> </msub> </mrow> </semantics></math> represents the 5-fold cross-validation results over Lake Michigan. <math display="inline"><semantics> <mrow> <mi>R</mi> <msub> <mi>F</mi> <mrow> <mi>E</mi> <mi>r</mi> <mi>i</mi> <mi>e</mi> </mrow> </msub> <mo>→</mo> <mi>M</mi> <mi>i</mi> <mi>c</mi> <mi>h</mi> <mi>i</mi> <mi>g</mi> <mi>a</mi> <mi>n</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>R</mi> <msub> <mi>F</mi> <mrow> <mi>H</mi> <mi>u</mi> <mi>r</mi> <mi>o</mi> <mi>n</mi> </mrow> </msub> <mo>→</mo> <mi>M</mi> <mi>i</mi> <mi>c</mi> <mi>h</mi> <mi>i</mi> <mi>g</mi> <mi>a</mi> <mi>n</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>R</mi> <msub> <mi>F</mi> <mrow> <mi>O</mi> <mi>n</mi> <mi>t</mi> <mi>a</mi> <mi>r</mi> <mi>i</mi> <mi>o</mi> </mrow> </msub> <mo>→</mo> <mi>M</mi> <mi>i</mi> <mi>c</mi> <mi>h</mi> <mi>i</mi> <mi>g</mi> <mi>a</mi> <mi>n</mi> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>R</mi> <msub> <mi>F</mi> <mrow> <mi>S</mi> <mi>u</mi> <mi>p</mi> <mi>e</mi> <mi>r</mi> <mi>i</mi> <mi>o</mi> <mi>r</mi> </mrow> </msub> <mo>→</mo> <mi>M</mi> <mi>i</mi> <mi>c</mi> <mi>h</mi> <mi>i</mi> <mi>g</mi> <mi>a</mi> <mi>n</mi> </mrow> </semantics></math> represent the results of the models trained over Lakes Erie, Huron, Ontario, and Superior, respectively, and applied over Lake Michigan.</p> "> Figure A9 Cont.
<p>Boxplot by track of the original estimated elevations by GEDI over Lake Michigan and the five tested models presented in <a href="#sec3dot1dot3-remotesensing-14-02361" class="html-sec">Section 3.1.3</a>. The green line represents in situ elevations. <math display="inline"><semantics> <mrow> <mi>R</mi> <msub> <mi>F</mi> <mrow> <mi>C</mi> <mi>V</mi> </mrow> </msub> </mrow> </semantics></math> represents the 5-fold cross-validation results over Lake Michigan. <math display="inline"><semantics> <mrow> <mi>R</mi> <msub> <mi>F</mi> <mrow> <mi>E</mi> <mi>r</mi> <mi>i</mi> <mi>e</mi> </mrow> </msub> <mo>→</mo> <mi>M</mi> <mi>i</mi> <mi>c</mi> <mi>h</mi> <mi>i</mi> <mi>g</mi> <mi>a</mi> <mi>n</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>R</mi> <msub> <mi>F</mi> <mrow> <mi>H</mi> <mi>u</mi> <mi>r</mi> <mi>o</mi> <mi>n</mi> </mrow> </msub> <mo>→</mo> <mi>M</mi> <mi>i</mi> <mi>c</mi> <mi>h</mi> <mi>i</mi> <mi>g</mi> <mi>a</mi> <mi>n</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>R</mi> <msub> <mi>F</mi> <mrow> <mi>O</mi> <mi>n</mi> <mi>t</mi> <mi>a</mi> <mi>r</mi> <mi>i</mi> <mi>o</mi> </mrow> </msub> <mo>→</mo> <mi>M</mi> <mi>i</mi> <mi>c</mi> <mi>h</mi> <mi>i</mi> <mi>g</mi> <mi>a</mi> <mi>n</mi> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>R</mi> <msub> <mi>F</mi> <mrow> <mi>S</mi> <mi>u</mi> <mi>p</mi> <mi>e</mi> <mi>r</mi> <mi>i</mi> <mi>o</mi> <mi>r</mi> </mrow> </msub> <mo>→</mo> <mi>M</mi> <mi>i</mi> <mi>c</mi> <mi>h</mi> <mi>i</mi> <mi>g</mi> <mi>a</mi> <mi>n</mi> </mrow> </semantics></math> represent the results of the models trained over Lakes Erie, Huron, Ontario, and Superior, respectively, and applied over Lake Michigan.</p> "> Figure A10
<p>Boxplot by track of the original estimated elevations by GEDI over Lake Superior and the five tested models presented in <a href="#sec3dot1dot3-remotesensing-14-02361" class="html-sec">Section 3.1.3</a>. The green line represents in situ elevations. <math display="inline"><semantics> <mrow> <mi>R</mi> <msub> <mi>F</mi> <mrow> <mi>C</mi> <mi>V</mi> </mrow> </msub> </mrow> </semantics></math> represents the 5-fold cross-validation results over Lake Superior. <math display="inline"><semantics> <mrow> <mi>R</mi> <msub> <mi>F</mi> <mrow> <mi>E</mi> <mi>r</mi> <mi>i</mi> <mi>e</mi> </mrow> </msub> <mo>→</mo> <mi>S</mi> <mi>u</mi> <mi>p</mi> <mi>e</mi> <mi>r</mi> <mi>i</mi> <mi>o</mi> <mi>r</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>R</mi> <msub> <mi>F</mi> <mrow> <mi>H</mi> <mi>u</mi> <mi>r</mi> <mi>o</mi> <mi>n</mi> </mrow> </msub> <mo>→</mo> <mi>S</mi> <mi>u</mi> <mi>p</mi> <mi>e</mi> <mi>r</mi> <mi>i</mi> <mi>o</mi> <mi>r</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>R</mi> <msub> <mi>F</mi> <mrow> <mi>O</mi> <mi>n</mi> <mi>t</mi> <mi>a</mi> <mi>r</mi> <mi>i</mi> <mi>o</mi> </mrow> </msub> <mo>→</mo> <mi>S</mi> <mi>u</mi> <mi>p</mi> <mi>e</mi> <mi>r</mi> <mi>i</mi> <mi>o</mi> <mi>r</mi> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>R</mi> <msub> <mi>F</mi> <mrow> <mi>M</mi> <mi>i</mi> <mi>c</mi> <mi>h</mi> <mi>i</mi> <mi>g</mi> <mi>a</mi> <mi>n</mi> </mrow> </msub> <mo>→</mo> <mi>S</mi> <mi>u</mi> <mi>p</mi> <mi>e</mi> <mi>r</mi> <mi>i</mi> <mi>o</mi> <mi>r</mi> </mrow> </semantics></math> represent the results of the models trained over Lakes Erie, Huron, Ontario, and Michigan, respectively, and applied over Lake Superior.</p> "> Figure A10 Cont.
<p>Boxplot by track of the original estimated elevations by GEDI over Lake Superior and the five tested models presented in <a href="#sec3dot1dot3-remotesensing-14-02361" class="html-sec">Section 3.1.3</a>. The green line represents in situ elevations. <math display="inline"><semantics> <mrow> <mi>R</mi> <msub> <mi>F</mi> <mrow> <mi>C</mi> <mi>V</mi> </mrow> </msub> </mrow> </semantics></math> represents the 5-fold cross-validation results over Lake Superior. <math display="inline"><semantics> <mrow> <mi>R</mi> <msub> <mi>F</mi> <mrow> <mi>E</mi> <mi>r</mi> <mi>i</mi> <mi>e</mi> </mrow> </msub> <mo>→</mo> <mi>S</mi> <mi>u</mi> <mi>p</mi> <mi>e</mi> <mi>r</mi> <mi>i</mi> <mi>o</mi> <mi>r</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>R</mi> <msub> <mi>F</mi> <mrow> <mi>H</mi> <mi>u</mi> <mi>r</mi> <mi>o</mi> <mi>n</mi> </mrow> </msub> <mo>→</mo> <mi>S</mi> <mi>u</mi> <mi>p</mi> <mi>e</mi> <mi>r</mi> <mi>i</mi> <mi>o</mi> <mi>r</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>R</mi> <msub> <mi>F</mi> <mrow> <mi>O</mi> <mi>n</mi> <mi>t</mi> <mi>a</mi> <mi>r</mi> <mi>i</mi> <mi>o</mi> </mrow> </msub> <mo>→</mo> <mi>S</mi> <mi>u</mi> <mi>p</mi> <mi>e</mi> <mi>r</mi> <mi>i</mi> <mi>o</mi> <mi>r</mi> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>R</mi> <msub> <mi>F</mi> <mrow> <mi>M</mi> <mi>i</mi> <mi>c</mi> <mi>h</mi> <mi>i</mi> <mi>g</mi> <mi>a</mi> <mi>n</mi> </mrow> </msub> <mo>→</mo> <mi>S</mi> <mi>u</mi> <mi>p</mi> <mi>e</mi> <mi>r</mi> <mi>i</mi> <mi>o</mi> <mi>r</mi> </mrow> </semantics></math> represent the results of the models trained over Lakes Erie, Huron, Ontario, and Michigan, respectively, and applied over Lake Superior.</p> "> Figure A11
<p>Variables’ order of importance in the error estimation random forest regression model with the percentage mean increase in MSE (%IncMSE) (higher values mean higher importance). WW represents wind generated waves variables. SW represents swell waves variables.</p> ">
Abstract
:1. Introduction
2. Study Areas and Datasets
2.1. Studied Lakes
2.2. Datasets
2.2.1. In Situ Water Levels from Gauging Stations
2.2.2. GEDI Data Products
2.2.3. Transformation of Elevations
2.2.4. Filtering the GEDI Waveforms
2.2.5. Geostationary Operational Environmental Satellites (GOES)
- Clear sky mask (CSM): The main purpose of the CSM product is to distinguish between cloudy (pixel value of 1) and clear pixels (pixel value of 0) in a satellite scene at each GEDI acquisition. CSM data are available at a resolution of 2 km over the CONUS at a temporal resolution of 5 min.
- Cloud type (CT): The cloud type product is used to classify the dominant cloud types and contains 10 classes. CT data are available at a resolution of 2 km over the CONUS at a temporal resolution of 5 min.
- Cloud top temperatures and heights (CTT and CTH, respectively): The CTT and CTH products contain information regarding cloud top heights (CTH) and cloud top temperatures (CTT) for all the pixels identified as cloudy from the CSM product in a given satellite scene. Both CTT and CTH are available at a resolution of 5 km over the CONUS at a temporal resolution of 5 min.
- Cloud optical depth (COD): The Cloud Optical Depth product contains an image with pixel values identifying the measure of the extinction due to condensed water or ice clouds at a wavelength of 0.64 um. COD data are available at a resolution of 2 km over the CONUS at a temporal resolution of 5 min.
2.2.6. Water Surface State Factors
- Information on swell waves: Includes three variables—height, period, and direction.
- Information on wind generated waves: Includes three variables—height, period, and direction.
- Information on wind: Includes two variables—direction and speed.
- Information on gusts: Includes two variables—direction and speed.
- Water surface temperature.
- Current direction.
3. Methodology
3.1. Experimental Settings and Models Validation
3.1.1. Exploring Temporal Dependencies
3.1.2. Exploring GEDI Elevation Error Budget
3.1.3. Exploring Geographical Location Effect
3.2. Models Performance Evaluation
4. Results
4.1. Overall GEDI Elevation Estimates Accuracy
4.2. Modeling of Elevation Errors Using
4.3. Modelling of Elevation Errors Using , , and
4.4. Analysis of Spatial Independence on the Corrected GEDI Elevations
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Appendix C
Appendix D
References
- Younger, P.L. Water: All That Matters; Hodder & Stoughton: London, UK, 2015; ISBN 978-1-78539-007-4. [Google Scholar]
- Hannah, D.M.; Demuth, S.; van Lanen, H.A.J.; Looser, U.; Prudhomme, C.; Rees, G.; Stahl, K.; Tallaksen, L.M. Large-Scale River Flow Archives: Importance, Current Status and Future Needs. Hydrol. Process. 2011, 25, 1191–1200. [Google Scholar] [CrossRef]
- Shu, S.; Liu, H.; Beck, R.A.; Frappart, F.; Korhonen, J.; Lan, M.; Xu, M.; Yang, B.; Huang, Y. Evaluation of Historic and Operational Satellite Radar Altimetry Missions for Constructing Consistent Long-Term Lake Water Level Records. Hydrol. Earth Syst. Sci. 2021, 25, 1643–1670. [Google Scholar] [CrossRef]
- Frappart, F.; Calmant, S.; Cauhope, M.; Seyler, F.; Cazenave, A. Preliminary Results of ENVISAT RA-2-Derived Water Levels Validation over the Amazon Basin. Remote Sens. Environ. 2006, 100, 252–264. [Google Scholar] [CrossRef] [Green Version]
- Schwatke, C.; Dettmering, D.; Börgens, E.; Bosch, W. Potential of SARAL/AltiKa for Inland Water Applications. Mar. Geod. 2015, 38, 626–643. [Google Scholar] [CrossRef]
- Frappart, F.; Blarel, F.; Fayad, I.; Bergé-Nguyen, M.; Crétaux, J.-F.; Shu, S.; Schregenberger, J.; Baghdadi, N. Evaluation of the Performances of Radar and Lidar Altimetry Missions for Water Level Retrievals in Mountainous Environment: The Case of the Swiss Lakes. Remote Sens. 2021, 13, 2196. [Google Scholar] [CrossRef]
- Biancamaria, S.; Frappart, F.; Leleu, A.-S.; Marieu, V.; Blumstein, D.; Desjonquères, J.-D.; Boy, F.; Sottolichio, A.; Valle-Levinson, A. Satellite Radar Altimetry Water Elevations Performance over a 200 m Wide River: Evaluation over the Garonne River. Adv. Space Res. 2017, 59, 128–146. [Google Scholar] [CrossRef] [Green Version]
- Markus, T.; Neumann, T.; Martino, A.; Abdalati, W.; Brunt, K.; Csatho, B.; Farrell, S.; Fricker, H.; Gardner, A.; Harding, D.; et al. The Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2): Science Requirements, Concept, and Implementation. Remote Sens. Environ. 2017, 190, 260–273. [Google Scholar] [CrossRef]
- Dubayah, R.; Blair, J.B.; Goetz, S.; Fatoyinbo, L.; Hansen, M.; Healey, S.; Hofton, M.; Hurtt, G.; Kellner, J.; Luthcke, S.; et al. The Global Ecosystem Dynamics Investigation: High-Resolution Laser Ranging of the Earth’s Forests and Topography. Sci. Remote Sens. 2020, 1, 100002. [Google Scholar] [CrossRef]
- Zhang, G.; Chen, W.; Xie, H. Tibetan Plateau’s Lake Level and Volume Changes From NASA’s ICESat/ICESat-2 and Landsat Missions. Geophys. Res. Lett. 2019, 46, 13107–13118. [Google Scholar] [CrossRef]
- Yuan, C.; Gong, P.; Bai, Y. Performance Assessment of ICESat-2 Laser Altimeter Data for Water-Level Measurement over Lakes and Reservoirs in China. Remote Sens. 2020, 12, 770. [Google Scholar] [CrossRef] [Green Version]
- Ryan, J.C.; Smith, L.C.; Cooley, S.W.; Pitcher, L.H.; Pavelsky, T.M. Global Characterization of Inland Water Reservoirs Using ICESat-2 Altimetry and Climate Reanalysis. Geophys. Res. Lett. 2020, 47, e2020GL088543. [Google Scholar] [CrossRef]
- Xiang, J.; Li, H.; Zhao, J.; Cai, X.; Li, P. Inland Water Level Measurement from Spaceborne Laser Altimetry: Validation and Comparison of Three Missions over the Great Lakes and Lower Mississippi River. J. Hydrol. 2021, 597, 126312. [Google Scholar] [CrossRef]
- Fayad, I.; Baghdadi, N.; Frappart, F. Comparative Analysis of GEDI’s Elevation Accuracy from the First and Second Data Product Releases over Inland Waterbodies. Remote Sens. 2022, 14, 340. [Google Scholar] [CrossRef]
- Urban, T.J.; Schutz, B.E.; Neuenschwander, A.L. A Survey of ICESat Coastal Altimetry Applications: Continental Coast, Open Ocean Island, and Inland River. Terr. Atmos. Ocean. Sci. 2008, 19, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Baghdadi, N.N.; El Hajj, M.; Bailly, J.-S.; Fabre, F. Viability Statistics of GLAS/ICESat Data Acquired Over Tropical Forests. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 1658–1664. [Google Scholar] [CrossRef] [Green Version]
- Fayad, I.; Baghdadi, N.; Riedi, J. Quality Assessment of Acquired GEDI Waveforms: Case Study over France, Tunisia and French Guiana. Remote Sens. 2021, 13, 3144. [Google Scholar] [CrossRef]
- Fayad, I.; Baghdadi, N.; Bailly, J.S.; Frappart, F.; Zribi, M. Analysis of GEDI Elevation Data Accuracy for Inland Waterbodies Altimetry. Remote Sens. 2020, 12, 2714. [Google Scholar] [CrossRef]
- Abshire, J.; Gardner, C. Atmospheric Refractivity Corrections in Satellite Laser Ranging. IEEE Trans. Geosci. Remote Sens. 1985, GE-23, 414–425. [Google Scholar] [CrossRef]
- Palm, S.P.; Yang, Y.; Herzfeld, U.; Hancock, D.; Hayes, A.; Selmer, P.; Hart, W.; Hlavka, D. ICESat-2 Atmospheric Channel Description, Data Processing and First Results. Earth Space Sci. 2021, 8, e2020EA001470. [Google Scholar] [CrossRef]
- Leys, C.; Ley, C.; Klein, O.; Bernard, P.; Licata, L. Detecting Outliers: Do Not Use Standard Deviation around the Mean, Use Absolute Deviation around the Median. J. Exp. Soc. Psychol. 2013, 49, 764–766. [Google Scholar] [CrossRef] [Green Version]
- Schmit, T.J.; Griffith, P.; Gunshor, M.M.; Daniels, J.M.; Goodman, S.J.; Lebair, W.J. A Closer Look at the ABI on the GOES-R Series. Bull. Am. Meteorol. Soc. 2017, 98, 681–698. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Stopa, J.E.; Ardhuin, F.; Babanin, A.; Zieger, S. Comparison and Validation of Physical Wave Parameterizations in Spectral Wave Models. Ocean Model. 2016, 103, 2–17. [Google Scholar] [CrossRef] [Green Version]
- Abdallah, H.; Bailly, J.-S.; Baghdadi, N.; Lemarquand, N. Improving the Assessment of ICESat Water Altimetry Accuracy Accounting for Autocorrelation. ISPRS J. Photogramm. Remote Sens. 2011, 66, 833–844. [Google Scholar] [CrossRef] [Green Version]
GEDI Acquisition Dates Count | GEDI Shots Count | Average Water Level (April 2019 through October 2020) | Approximate Size (km2) | |
---|---|---|---|---|
Lake Superior | 337 | 6,358,428 | 183.718 m | 82,100 |
Lake Michigan | 249 | 2,753,218 | 177.291 m | 57,800 |
Lake Huron | 230 | 3,000,920 | 177.139 m | 59,600 |
Lake Erie | 113 | 1,102,068 | 174.877 m | 25,670 |
Lake Ontario | 116 | 1,062,200 | 75.302 m | 19,010 |
Variables Group | Source | Variables |
---|---|---|
Instrumental (I) | GEDI |
|
Cloud and atmospheric (C) | GOES-R |
|
Water surface state (W) | Great Lakes wave model (GLWU) |
|
Model ID | Data Used | Validation Strategy | Section Reference |
---|---|---|---|
I, C, and W | Trained on 2019 acquisitions and validated over 2020 acquisitions and vice versa: lake by lake | Section 3.1.1 | |
I | Trained on 2019 acquisitions and validated over 2020 acquisitions and vice versa: lake by lake | Section 3.1.2 | |
I and C | Trained on 2019 acquisitions and validated over 2020 acquisitions and vice versa: lake by lake | Section 3.1.2 | |
I and W | Trained on 2019 acquisitions and validated over 2020 acquisitions and vice versa: lake by lake | Section 3.1.2 | |
Where i is the lake used for training and j the lake used for validation | I, C, and W | Training on one lake and validating on another | Section 3.1.3 |
RMSE (m) | ubRMSE (m) | Error Budget Explained Variance R2 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Lake | UE * | UE * | ||||||||||||
Erie | 0.57 | 0.21 | 0.35 | 0.26 | 0.24 | 0.44 | 0.19 | 0.31 | 0.25 | 0.21 | 0.78 | 0.37 | 0.64 | 0.76 |
Huron | 0.66 | 0.18 | 0.41 | 0.30 | 0.22 | 0.59 | 0.18 | 0.38 | 0.29 | 0.22 | 0.91 | 0.50 | 0.74 | 0.86 |
Ontario | 0.68 | 0.24 | 0.45 | 0.38 | 0.35 | 0.61 | 0.29 | 0.45 | 0.38 | 0.34 | 0.74 | 0.49 | 0.67 | 0.70 |
Michigan | 0.64 | 0.14 | 0.35 | 0.26 | 0.19 | 0.52 | 0.13 | 0.32 | 0.23 | 0.17 | 0.92 | 0.54 | 0.78 | 0.89 |
Superior | 0.57 | 0.15 | 0.36 | 0.26 | 0.21 | 0.46 | 0.16 | 0.29 | 0.22 | 0.17 | 0.86 | 0.39 | 0.68 | 0.82 |
Training | ||||||
---|---|---|---|---|---|---|
Erie | Huron | Ontario | Michigan | Superior | ||
Validation | Erie | −0.06 | −0.10 | 0.05 | 0.04 | 0.03 |
Huron | 0.11 | 0.01 | 0.16 | 0.02 | 0.07 | |
Ontario | 0.00 | −0.15 | −0.04 | −0.04 | −0.03 | |
Michigan | 0.12 | −0.03 | 0.16 | 0.00 | −0.01 | |
Superior | 0.07 | −0.07 | 0.11 | −0.01 | 0.01 |
Training | ||||||
---|---|---|---|---|---|---|
Erie | Huron | Ontario | Michigan | Superior | ||
Validation | Erie | 0.12 | 0.14 | 0.16 | 0.16 | 0.16 |
Huron | 0.26 | 0.12 | 0.25 | 0.16 | 0.19 | |
Ontario | 0.29 | 0.19 | 0.27 | 0.20 | 0.18 | |
Michigan | 0.21 | 0.15 | 0.24 | 0.11 | 0.15 | |
Superior | 0.19 | 0.17 | 0.25 | 0.17 | 0.10 |
Training | ||||||
---|---|---|---|---|---|---|
Erie | Huron | Ontario | Michigan | Superior | ||
Validation | Erie | 0.14 | 0.17 | 0.16 | 0.16 | 0.16 |
Huron | 0.29 | 0.12 | 0.29 | 0.16 | 0.21 | |
Ontario | 0.28 | 0.24 | 0.28 | 0.21 | 0.21 | |
Michigan | 0.25 | 0.15 | 0.29 | 0.11 | 0.16 | |
Superior | 0.20 | 0.18 | 0.28 | 0.16 | 0.10 |
Training | ||||||
---|---|---|---|---|---|---|
Erie | Huron | Ontario | Michigan | Superior | ||
Validation | Erie | 0.88 | 0.84 | 0.85 | 0.86 | 0.86 |
Huron | 0.76 | 0.94 | 0.75 | 0.93 | 0.88 | |
Ontario | 0.78 | 0.85 | 0.82 | 0.88 | 0.91 | |
Michigan | 0.77 | 0.91 | 0.69 | 0.93 | 0.91 | |
Superior | 0.80 | 0.84 | 0.63 | 0.87 | 0.93 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fayad, I.; Baghdadi, N.; Bailly, J.-S.; Frappart, F.; Pantaleoni Reluy, N. Correcting GEDI Water Level Estimates for Inland Waterbodies Using Machine Learning. Remote Sens. 2022, 14, 2361. https://doi.org/10.3390/rs14102361
Fayad I, Baghdadi N, Bailly J-S, Frappart F, Pantaleoni Reluy N. Correcting GEDI Water Level Estimates for Inland Waterbodies Using Machine Learning. Remote Sensing. 2022; 14(10):2361. https://doi.org/10.3390/rs14102361
Chicago/Turabian StyleFayad, Ibrahim, Nicolas Baghdadi, Jean-Stéphane Bailly, Frédéric Frappart, and Núria Pantaleoni Reluy. 2022. "Correcting GEDI Water Level Estimates for Inland Waterbodies Using Machine Learning" Remote Sensing 14, no. 10: 2361. https://doi.org/10.3390/rs14102361
APA StyleFayad, I., Baghdadi, N., Bailly, J. -S., Frappart, F., & Pantaleoni Reluy, N. (2022). Correcting GEDI Water Level Estimates for Inland Waterbodies Using Machine Learning. Remote Sensing, 14(10), 2361. https://doi.org/10.3390/rs14102361