A Wideband Noise Radar System Using a Phased Array with True Time Delay
"> Figure 1
<p>Comparison among three waveforms: LFM pulse, FMCW, and random code. (<b>a</b>) LFM pulse; (<b>b</b>) FMCW signal; (<b>c</b>) Random binary code.</p> "> Figure 2
<p>Configuration of the Noise Radar.</p> "> Figure 3
<p>Baseband true noise generation block.</p> "> Figure 4
<p>1D array antenna.</p> "> Figure 5
<p>Comparison of the beampatterns of two frequencies.</p> "> Figure 6
<p>Fabricated Antenna.</p> "> Figure 7
<p>FPGA correlators.</p> "> Figure 8
<p>Processing sequences reducing FPGA resources.</p> "> Figure 9
<p>Signal processing chain.</p> "> Figure 10
<p>Antenna and Transceiver.</p> "> Figure 11
<p>Antenna Unit.</p> "> Figure 12
<p>Beam pattern of antenna at the end frequencies (9.25 and 10.75 GHz) for steering angles of 0° (<b>up</b>) and 30° (<b>down</b>).</p> "> Figure 13
<p>Configuration of the antenna and transceiver units.</p> "> Figure 14
<p>Noise spectrum: Thermal noise (<b>left</b>) and PRS noise (<b>right</b>).</p> "> Figure 15
<p>Digital correlator (<b>left</b>) and DSP signal processing board (<b>right</b>).</p> "> Figure 16
<p>Test vehicle (Front and Back view).</p> "> Figure 17
<p>Test site view.</p> "> Figure 18
<p>Range-Doppler map of a target moving at 20 km/h.</p> "> Figure 19
<p>Measured distance and velocity when approaching at 20 km/h.</p> "> Figure 20
<p>Distance and velocity errors according to the distance.</p> "> Figure 21
<p>Test setup for measuring the range resolution.</p> "> Figure 22
<p>PPI display showing the range resolution.</p> "> Figure 23
<p>Test setup for measuring the angular resolution.</p> "> Figure 24
<p>PPI display showing the angular resolution.</p> "> Figure 25
<p>PPI display showing the angular coverage.</p> ">
Abstract
:1. Introduction
2. Noise Radar Waveform Generation and Signal Processing
2.1. Noise Waveform Generation
2.2. Array Antenna and Wideband Beamforming with TTD
2.3. Digital Correlators and Resource Savings
3. System Development
3.1. Specification
3.2. Antenna and Transceiver
4. Experiments
4.1. Experimental Setup
4.2. Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Savci, K.; Stove, A.G.; De Palo, F.; Erdogan, A.Y.; Galati, G.; Lukin, K.A.; Wasserzier, C. Noise radar—Overview and recent developments. IEEE Aerosp. Electron. Syst. Mag. 2020, 35, 8–20. [Google Scholar] [CrossRef]
- Lukin, K.A.; Mogyla, A.A.; Palamarchuk, V.P.; Vyplavin, P.L.; Zemlyaniy, O.V.; Shiyan, Y.A.; Zaets, M. Ka-band bistatic ground-based noise waveform SAR for short-range applications. IET Radar Sonar Navig. 2008, 2, 233–243. [Google Scholar] [CrossRef]
- Lukin, K.A.; Mogila, A.A.; Vyplavin, P.L.; Palamarchuck, V.P.; Zaets, N.K.; Zemlyany, O.V. Reconfigurable Ground Based Noise-Waveform-SAR for Short Range Applications. In Proceedings of the 7th European Conference on Synthetic Aperture Radar, VDE, Friedrichshafen, Germany, 2–5 June 2008; pp. 1–4. [Google Scholar]
- PACE; Phillip, E. Detecting and Classifying Low Probability of Intercept Radar; Artech House: Norfolk County, MA, USA, 2009. [Google Scholar]
- Yan, H.; Boljanovic, V.; Cabric, D. Wideband millimeter-wave beam training with true-time-delay array architecture. In Proceedings of the 53rd Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 3–6 November 2019; IEEE: Piscataway, NJ, USA, 2019. [Google Scholar]
- Hashemi, H.; Chu, T.S.; Roderick, J. Integrated true-time-delay-based ultra-wideband array processing. IEEE Commun. Mag. 2008, 46, 162–172. [Google Scholar] [CrossRef]
- Haupt, R.L. Fitting time delay units in a large wideband corporate fed array. In Proceedings of the 2013 IEEE Radar Conference (RadarCon13), Ottawa, ON, Canada, 29 April–3 May 2013; IEEE: Piscataway, NJ, USA, 2013. [Google Scholar]
- Iezekiel, S.; Burla, M.; Klamkin, J.; Marpaung, D.; Capmany, J. RF engineering meets optoelectronics: Progress in integrated microwave photonics. IEEE Microw. Mag. 2015, 16, 28–45. [Google Scholar] [CrossRef]
- Boljanovic, V.; Yan, H.; Lin, C.C.; Mohapatra, S.; Heo, D.; Gupta, S.; Cabric, D. Fast beam training with true-time-delay arrays in wideband millimeter-wave systems. IEEE Trans. Circuits Syst. I Regul. Pap. 2021, 68, 1727–1739. [Google Scholar] [CrossRef]
- Robert, J. Mailloux. In Phased Array Antenna Handbook, 3rd ed.; Artech House: Norfolk County, MA, USA, 2018. [Google Scholar]
- Talisa, S.H.; O’Haver, K.W.; Comberiate, T.M.; Sharp, M.D.; Somerlock, O.F. Benefits of digital phased array radars. Proc. IEEE 2016, 104, 530–543. [Google Scholar] [CrossRef]
- Liu, M.; Zou, L.; Wang, X. Practical beamforming technologies for wideband digital array radar. Prog. Electromagn. Res. Lett. 2019, 86, 145–151. [Google Scholar] [CrossRef] [Green Version]
- Ghazel, A.; Boutillon, E.; Danger, J.L.; Gulak, G.; Laamari, H. Design and Performance Analysis of a High Speed AWGN Communication Channel Emulator. In Proceedings of the IEEE PACRIM Conference, Victoria, BC, Canada, 21–23 August 2001. [Google Scholar]
- Rotman, R.; Tur, M. Wideband phased arrays with true time delay beamformers challenges and progress. In Proceedings of the 8th European Conference on Antennas and Propagation (EuCAP 2014), The Hague, The Netherlands, 6–11 April 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 743–744. [Google Scholar]
- Dyadyuk, V.; Huang, X.; Stokes, L.; Pathikulangara, J. Implementation of wideband digital beam forming in the E-band: Towards a hybrid array. In Proceedings of the 40th European Microwave Conference, Paris, France, 28–30 September 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 914–917. [Google Scholar]
Parameter | Value |
---|---|
Frequency | X-band |
Instantaneous bandwidth | 1.5 GHz |
Transmit Power (average) | −14 dBm |
Field of View | ±30° |
Maximum detection Range | 220 m |
Maximum detection velocity | ±64 m/s |
Sampling Rate (I/Q sampling) | 1.5 Gs/s |
Correlation Time | 117 μs |
Doppler FFT | 128 |
Number of arrays | 16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, E.; Kim, I.-k.; Han, S.; Lee, J.; Shin, S.-j. A Wideband Noise Radar System Using a Phased Array with True Time Delay. Remote Sens. 2022, 14, 4489. https://doi.org/10.3390/rs14184489
Kim E, Kim I-k, Han S, Lee J, Shin S-j. A Wideband Noise Radar System Using a Phased Array with True Time Delay. Remote Sensing. 2022; 14(18):4489. https://doi.org/10.3390/rs14184489
Chicago/Turabian StyleKim, Eunhee, In-kyu Kim, Seungsu Han, Jaemin Lee, and Sang-jin Shin. 2022. "A Wideband Noise Radar System Using a Phased Array with True Time Delay" Remote Sensing 14, no. 18: 4489. https://doi.org/10.3390/rs14184489
APA StyleKim, E., Kim, I. -k., Han, S., Lee, J., & Shin, S. -j. (2022). A Wideband Noise Radar System Using a Phased Array with True Time Delay. Remote Sensing, 14(18), 4489. https://doi.org/10.3390/rs14184489