Is an NWP-Based Nowcasting System Suitable for Aviation Operations?
<p>European Centre for Medium-Range Weather Forecasts (ECMWF high-resolution analysis (HRES): 500 hPa geopotential height (dm, contours), temperature (°C) and wind (barbs) at 06:00 UTC (<b>a</b>) and 12:00 UTC (<b>b</b>) on 11 May.</p> "> Figure 2
<p>ECMWF-HRES forecast starting 11 May 12:00 UTC, at 15:00 UTC (analysis is not available): temperature (°C), wind (barbs) and geopotential height (dm, contours) at 500 hPa over northern Italy (<b>a</b>). Specific humidity (g kg<sup>−1</sup>) and wind (barbs) at 950 hPa (<b>b</b>). The green square indicates the location of Malpensa airport.</p> "> Figure 3
<p>VIL (kg m<sup>−2</sup>, (<b>a</b>)) and ETM (km, (<b>b</b>)) radar products at 14:50 UTC when the squall line has affected the Malpensa airport, producing a large amount of hail on runways that caused the closure. The red circle is centered on the Malpensa airport and has a radius of 50 km.</p> "> Figure 4
<p>Sequence of images from the Italian radar network showing the evolution of the squall line that occurred on 11 May 2019. VIL (kg m<sup>−2</sup>) product obtained at 12:50 UTC (<b>a</b>), 13:20 UTC (<b>b</b>), 14:50 UTC (<b>c</b>) and 15:35 UTC (<b>d</b>) is shown. The red circle is centered on the Malpensa airport and has a radius of 50 km.</p> "> Figure 5
<p>WRF domains (<b>a</b>) adopted for the numerical simulations: D1 (black), D2 (blue) and D3 (red) with a horizontal resolution of 22.5 km, 7.5 km and 2.5 km, respectively. Spatial distribution of ZTD observations (blue squares) and temperature data from weather stations (green points) assimilated in the WRF model (<b>b</b>). The white rectangle indicates the study area (NW) where the validations are performed.</p> "> Figure 6
<p>Data assimilation strategy for the RDR-LIG simulation.</p> "> Figure 7
<p>Evolution of the interest from 14:00 UTC to 14:55 UTC (closure of the airport) for the threshold values 3 kg m<sup>−2</sup> (<b>a</b>), 5 kg m<sup>−2</sup> (<b>b</b>) and 7 kg m<sup>−2</sup> (<b>c</b>), respectively. The CTL simulation is represented by the cyan line, while RDR-LIG, RDR-ZTD-LIG, RDR-TMP-LIG and ALL simulations are colored red, blue, pink and green, respectively.</p> "> Figure 8
<p>Mean FSS computed in the NW area from 14:00 UTC to 14:55 UTC for CTL (<b>a</b>), RDR-LIG (<b>b</b>), RDR-ZTD-LIG (<b>c</b>), RDR-TMP-LIG (<b>d</b>) and ALL (<b>e</b>) simulations considering several VIL threshold values: 5 kg m<sup>−2</sup>, 7 kg m<sup>−2</sup>, 10 kg m<sup>−2</sup> and 15 kg m<sup>−2</sup> and different neighborhood sizes: 2.5 km, 7.5 km, 22.5 km, 12.5 km, 42.5 km and 82.5 km, respectively.</p> "> Figure 8 Cont.
<p>Mean FSS computed in the NW area from 14:00 UTC to 14:55 UTC for CTL (<b>a</b>), RDR-LIG (<b>b</b>), RDR-ZTD-LIG (<b>c</b>), RDR-TMP-LIG (<b>d</b>) and ALL (<b>e</b>) simulations considering several VIL threshold values: 5 kg m<sup>−2</sup>, 7 kg m<sup>−2</sup>, 10 kg m<sup>−2</sup> and 15 kg m<sup>−2</sup> and different neighborhood sizes: 2.5 km, 7.5 km, 22.5 km, 12.5 km, 42.5 km and 82.5 km, respectively.</p> "> Figure 9
<p>Vertical cross-sections of rainwater mixing ratio (qrain, g kg<sup>−1</sup>) through the squall line for the CTL (<b>a</b>), RDR-LIG (<b>b</b>), RDR-ZTD-LIG (<b>c</b>), RDR-TMP-LIG (<b>d</b>) and ALL (<b>e</b>) simulations at 15:00 UTC, 5 May 2019.</p> "> Figure 10
<p>Vertical cross-sections of water vapor mixing ratio (qvapor, g kg<sup>−1</sup>) through the squall line for the CTL (<b>a</b>), RDR-LIG (<b>b</b>), RDR-ZTD-LIG (<b>c</b>), RDR-TMP-LIG (<b>d</b>) and ALL (<b>e</b>) simulations at 15:00 UTC, 5 May 2019.</p> ">
Abstract
:1. Introduction
2. Datasets
3. Overview of the Convective Event
3.1. Sinoptic and Mesoscale Description
3.2. Radar Observations
4. WRF Model and Data Assimilation
4.1. WRF Domain Setup
4.2. 3D-Var Technique
4.3. Nudging Technique
5. Numerical Simulations
6. Results and Validation
6.1. Object-Based Evaluation
6.2. Fuzzy-Logic Evaluation
6.3. Qualitative Comparison
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ohsfeldt, M.; Thrasher, T.; Waitz, I.; Ratliff, G.; Sequeira, C.; Thompson, T.; Graham, M.; Cointin, R.; Gillette, W.; Gupta, M. Quantifying the relationship between air traffic management inefficiency, fuel burn and air pollutant emissions. In Proceedings of the 7th USA/Europe Air Traffic Management Research and Development Seminar, ATM 2007, Barcelona, Spain, 2–5 July 2007. [Google Scholar]
- WMO. 1989 World Meteorological Day celebrates meteorology in the service of aviation. Bull. Am. Meteorol. Soc. 1989, 70, 414–415. [Google Scholar] [CrossRef]
- Gultepe, I.; Feltz, W.F. Aviation Meteorology: Observations and Models. Introduction. Pure Appl. Geophys. 2019, 176, 1863–1867. [Google Scholar] [CrossRef]
- Kulesa, G. Weather and aviation: How does weather affect the safety and operations of airports and aviation, and how does FAA work to manage weather-related effects? In Proceedings of the Potential Impacts of Climate Change on Transportation US Department of Transportation Center for Climate Change and Environmental Forecasting, Washington, DC, USA, 1–2 October 2002; US Department of Energy and US Global Change Research Program: Washington, DC, USA, 2003. [Google Scholar]
- NTBS. NASDAC Review of National Transportation Safety Board (NTSB) Weather-Related Accidents (2003–2007); NTBS: Washington, DC, USA, 2010. [Google Scholar]
- Haddad, Z.S.; Park, K.W. Vertical profiling of tropical precipitation using passive microwave observations and its implications regarding the crash of Air France 447. J. Geophys. Res. Atmos. 2010, 115, D12129. [Google Scholar] [CrossRef]
- Yu, C.K.; Cheng, L.W.; Wu, C.C.; Tsai, C.L. Outer Tropical Cyclone Rainbands Associated with Typhoon Matmo (2014). Mon. Weather Rev. 2020, 148, 2935–2952. [Google Scholar] [CrossRef]
- Keller, T.L.; Trier, S.B.; Hall, W.D.; Sharman, R.D.; Xu, M.; Liu, Y. Lee waves associated with a commercial jetliner accident at Denver International Airport. J. Appl. Meteorol. Climatol. 2015, 54, 1373–1392. [Google Scholar] [CrossRef]
- Kessler, E. Wind shear and aviation safety. Nature 1985, 315, 179–180. [Google Scholar] [CrossRef]
- Eurocontrol. Climate Change Risks for European Aviation—Summary Report; Eurocontrol: Bruxelles, Belgium, 2021. [Google Scholar]
- Jentsch, A.; Kreyling, J.; Beierkuhnlein, C. A new generation of climate-change experiments: Events, not trends. Front. Ecol. Environ. 2007, 5, 365–374. [Google Scholar] [CrossRef]
- Giorgi, F.; Im, E.S.; Coppola, E.; Diffenbaugh, N.S.; Gao, X.J.; Mariotti, L.; Shi, Y. Higher Hydroclimatic Intensity with Global Warming. J. Clim. 2011, 24, 5309–5324. [Google Scholar] [CrossRef]
- Kalnay, E. Atmospheric Modeling, Data Assimilation and Predictability; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Sugimoto, S.; Crook, N.A.; Sun, J.; Xiao, Q.; Barker, D.M. An examination of WRF 3DVAR radar data assimilation on its capability in retrieving unobserved variables and forecasting precipitation through observing system simulation experiments. Mon. Weather Rev. 2009, 137, 4011–4029. [Google Scholar] [CrossRef]
- Radhakrishnan, C.; Chandrasekar, V. CASA prediction system over dallas–fort worth urban network: Blending of nowcasting and high-resolution numerical weather prediction model. J. Atmos. Ocean. Technol. 2020, 37, 211–228. [Google Scholar] [CrossRef]
- Maiello, I.; Ferretti, R.; Gentile, S.; Montopoli, M.; Picciotti, E.; Marzano, F.; Faccani, C. Impact of radar data assimilation for the simulation of a heavy rainfall case in central Italy using WRF–3DVAR. Atmos. Meas. Tech. 2014, 7, 2919–2935. [Google Scholar] [CrossRef]
- Lagasio, M.; Silvestro, F.; Campo, L.; Parodi, A. Predictive capability of a high-resolution hydrometeorological forecasting framework coupling WRF cycling 3dvar and Continuum. J. Hydrometeorol. 2019, 20, 1307–1337. [Google Scholar] [CrossRef]
- Gao, J.; Stensrud, D.J. Assimilation of reflectivity data in a convective-scale, cycled 3DVAR framework with hydrometeor classification. J. Atmos. Sci. 2012, 69, 1054–1065. [Google Scholar] [CrossRef]
- Mazzarella, V.; Maiello, I.; Ferretti, R.; Capozzi, V.; Picciotti, E.; Alberoni, P.; Marzano, F.; Budillon, G. Reflectivity and velocity radar data assimilation for two flash flood events in central Italy: A comparison between 3D and 4D variational methods. Q. J. R. Meteorol. Soc. 2020, 146, 348–366. [Google Scholar] [CrossRef]
- Mazzarella, V.; Ferretti, R.; Picciotti, E.; Marzano, F.S. Investigating 3D and 4D Variational Rapid-Update-Cycling Assimilation of Weather Radar Reflectivity for a Flash Flood Event in Central Italy. Nat. Hazards Earth Syst. Sci. Discuss. 2021, 21, 2849–2865. [Google Scholar] [CrossRef]
- Wang, H.; Sun, J.; Zhang, X.; Huang, X.Y.; Auligné, T. Radar data assimilation with WRF 4D-Var. Part I: System development and preliminary testing. Mon. Weather Rev. 2013, 141, 2224–2244. [Google Scholar] [CrossRef]
- Sun, J.; Wang, H. Radar data assimilation with WRF 4D-Var. Part II: Comparison with 3D-Var for a squall line over the US Great Plains. Mon. Weather Rev. 2013, 141, 2245–2264. [Google Scholar] [CrossRef]
- Dillon, M.E.; Skabar, Y.G.; Ruiz, J.; Kalnay, E.; Collini, E.A.; Echevarría, P.; Saucedo, M.; Miyoshi, T.; Kunii, M. Application of the WRF-LETKF data assimilation system over southern South America: Sensitivity to model physics. Weather Forecast. 2016, 31, 217–236. [Google Scholar] [CrossRef]
- Sun, J.; Xue, M.; Wilson, J.W.; Zawadzki, I.; Ballard, S.P.; Onvlee-Hooimeyer, J.; Joe, P.; Barker, D.M.; Li, P.W.; Golding, B.; et al. Use of NWP for nowcasting convective precipitation: Recent progress and challenges. Bull. Am. Meteorol. Soc. 2014, 95, 409–426. [Google Scholar] [CrossRef]
- Yano, J.I.; Ziemiański, M.Z.; Cullen, M.; Termonia, P.; Onvlee, J.; Bengtsson, L.; Carrassi, A.; Davy, R.; Deluca, A.; Gray, S.L.; et al. Scientific Challenges of Convective-Scale Numerical Weather Prediction. Bull. Am. Meteorol. Soc. 2018, 99, 699–710. [Google Scholar] [CrossRef]
- Bryan, G.H.; Rotunno, R. Statistical convergence in simulated moist absolutely unstable layers. In Proceedings of the 11th Conference on Mesoscale Processes, Albuquerque, NM, USA, 24 October 2005; Volume 1. [Google Scholar]
- Haiden, T.; Kann, A.; Wittmann, C.; Pistotnik, G.; Bica, B.; Gruber, C. The Integrated Nowcasting through Comprehensive Analysis (INCA) system and its validation over the Eastern Alpine region. Weather Forecast. 2011, 26, 166–183. [Google Scholar] [CrossRef]
- Kann, A.; Schellander-Gorgas, T.; Wittmann, C. Enhanced short-range forecasting of sub-inversion cloudiness in complex terrain. Atmos. Sci. Lett. 2015, 16, 1–9. [Google Scholar] [CrossRef]
- Auger, L.; Dupont, O.; Hagelin, S.; Brousseau, P.; Brovelli, P. AROME–NWC: A new nowcasting tool based on an operational mesoscale forecasting system. Q. J. R. Meteorol. Soc. 2015, 141, 1603–1611. [Google Scholar] [CrossRef]
- Buzzi, A.; Alberoni, P. Analysis and numerical modelling of a frontal passage associated with thunderstorm development over the Po Valley and the Adriatic Sea. Meteorol. Atmos. Phys. 1992, 48, 205–224. [Google Scholar] [CrossRef]
- Barrett, A.I.; Gray, S.L.; Kirshbaum, D.J.; Roberts, N.M.; Schultz, D.M.; Fairman, J.G., Jr. Synoptic versus orographic control on stationary convective banding. Q. J. R. Meteorol. Soc. 2015, 141, 1101–1113. [Google Scholar] [CrossRef]
- Miglietta, M.M.; Manzato, A.; Rotunno, R. Characteristics and predictability of a supercell during HyMeX SOP1. Q. J. R. Meteorol. Soc. 2016, 142, 2839–2853. [Google Scholar] [CrossRef]
- Cacciamani, C.; Battaglia, F.; Patruno, P.; Pomi, L.; Selvini, A.; Tibaldi, S. A climatological study of thunderstorm activity in the Po Valley. Theor. Appl. Climatol. 1995, 50, 185–203. [Google Scholar] [CrossRef]
- Costa, S.; Mezzasalma, P.; Alberoni, P.; Levizzani, V. Mesoscale and radar analysis of the 30 June 1998 supercell. Phys. Chem. Earth Part B Hydrol. Ocean. Atmos. 2000, 25, 1289–1291. [Google Scholar] [CrossRef]
- Rädler, A.T.; Groenemeijer, P.; Faust, E.; Sausen, R. Detecting severe weather trends using an additive regressive convective hazard model (AR-CHaMo). J. Appl. Meteorol. Climatol. 2018, 57, 569–587. [Google Scholar] [CrossRef]
- Rädler, A.T.; Groenemeijer, P.H.; Faust, E.; Sausen, R.; Púčik, T. Frequency of severe thunderstorms across Europe expected to increase in the 21st century due to rising instability. NPJ Clim. Atmos. Sci. 2019, 2, 30. [Google Scholar] [CrossRef] [Green Version]
- Púčik, T.; Groenemeijer, P.; Rädler, A.T.; Tijssen, L.; Nikulin, G.; Prein, A.F.; van Meijgaard, E.; Fealy, R.; Jacob, D.; Teichmann, C. Future changes in European severe convection environments in a regional climate model ensemble. J. Clim. 2017, 30, 6771–6794. [Google Scholar] [CrossRef]
- Vulpiani, G.; Pagliara, P.; Negri, M.; Rossi, L.; Gioia, A.; Giordano, P.; Alberoni, P.P.; Cremonini, R.; Ferraris, L.; Marzano, F.S. The Italian radar network within the national early-warning system for multi-risks management. In Proceedings of the Fifth European Conference on Radar in Meteorology and Hydrology (ERAD 2008), Helsinki, Finland, 30 June–4 July 2008; Volume 184. [Google Scholar]
- Petracca, M.; D’Adderio, L.; Porcù, F.; Vulpiani, G.; Sebastianelli, S.; Puca, S. Validation of GPM dual-frequency precipitation radar (DPR) rainfall products over Italy. J. Hydrometeorol. 2018, 19, 907–925. [Google Scholar] [CrossRef]
- Chang, W.; Chung, K.S.; Fillion, L.; Baek, S.J. Radar data assimilation in the Canadian high-resolution ensemble Kalman filter system: Performance and verification with real summer cases. Mon. Weather Rev. 2014, 142, 2118–2138. [Google Scholar] [CrossRef]
- Liu, Z.Q.; Rabier, F. The potential of high-density observations for numerical weather prediction: A study with simulated observations. Q. J. R. Meteorol. Soc. 2003, 129, 3013–3035. [Google Scholar] [CrossRef]
- Biron, D.; De Leonibus, L.; Zauli, F. The lightning network LAMPINET of the Italian Air Force Meteorological Service. In Proceedings of the 19th International Lightning Detection Conference, Tucson, AZ, USA, 24–24 April 2006; pp. 24–25. [Google Scholar]
- De Leonibus, L.; Biron, D.; Laquale, P.; Zauli, F.; Melfi, D. Rainfall field reconstruction over Italy through lampinet lightning data. In Proceedings of the 20th International Lightning Detection Conference, Tucson, AZ, USA, 21–23 April 2008. [Google Scholar]
- De Jonge, P.J. A Processing Strategy For the Application of the GPS in Networks; NCC NederlandseCommissievoor Ceodesie: Delft, The Netherlans, 1998; Volume 46. [Google Scholar]
- Tagliaferro, G. On the Development of a General Undifferenced Uncombined Adjustment for GNSS Observations. Ph.D. Thesis, Polytechnic University of Milan, Milan, Italy, 2021. [Google Scholar]
- Sato, K.; Realini, E.; Tsuda, T.; Oigawa, M.; Iwaki, Y.; Shoji, Y.; Seko, H. A high-resolution, precipitable water vapor monitoring system using a dense network of GNSS receivers. J. Disaster Res. 2013, 8, 37–47. [Google Scholar] [CrossRef]
- Barindelli, S.; Realini, E.; Venuti, G.; Fermi, A.; Gatti, A. Detection of water vapor time variations associated with heavy rain in northern Italy by geodetic and low-cost GNSS receivers. Earth Planets Space 2018, 70, 28. [Google Scholar] [CrossRef]
- Fujita, M.; Kimura, F.; Yoneyama, K.; Yoshizaki, M. Verification of precipitable water vapor estimated from shipborne GPS measurements. Geophys. Res. Lett. 2008, 35, L13803. [Google Scholar] [CrossRef]
- Realini, E.; Sato, K.; Tsuda, T.; Manik, T. An observation campaign of precipitable water vapor with multiple GPS receivers in western Java, Indonesia. Prog. Earth Planet. Sci. 2014, 1, 17. [Google Scholar] [CrossRef]
- Greene, D.R.; Clark, R.A. Vertically integrated liquid water—A new analysis tool. Mon. Weather Rev. 1972, 100, 548–552. [Google Scholar] [CrossRef]
- Marshall, J.S. The distribution of raindrops with size. J. Meteorol. 1948, 5, 165–166. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Duda, M.; Wang, X.Y.; Wang, W.; Power, J.G. A Description of the Advanced Research WRF Version 3; NCAR Tech. Note NCAR/TN-475+STR; University Corporation for Atmospheric Research: Boulder, CO, USA, 2008; p. 113. [Google Scholar] [CrossRef]
- Barker, D.; Huang, X.Y.; Liu, Z.; Auligné, T.; Zhang, X.; Rugg, S.; Ajjaji, R.; Bourgeois, A.; Bray, J.; Chen, Y.; et al. The weather research and forecasting model’s community variational/ensemble data assimilation system: WRFDA. Bull. Am. Meteorol. Soc. 2012, 93, 831–843. [Google Scholar] [CrossRef]
- Lagasio, M.; Campo, L.; Milelli, M.; Mazzarella, V.; Poletti, M.L.; Silvestro, F.; Ferraris, L.; Federico, S.; Puca, S.; Parodi, A. SWING, The Score-Weighted Improved NowcastinG Algorithm: Description and Application. Water 2022, 14, 2131. [Google Scholar] [CrossRef]
- Lagasio, M.; Parodi, A.; Pulvirenti, L.; Meroni, A.N.; Boni, G.; Pierdicca, N.; Marzano, F.S.; Luini, L.; Venuti, G.; Realini, E.; et al. A synergistic use of a high-resolution numerical weather prediction model and high-resolution earth observation products to improve precipitation forecast. Remote Sens. 2019, 11, 2387. [Google Scholar] [CrossRef]
- Lagasio, M.; Parodi, A.; Procopio, R.; Rachidi, F.; Fiori, E. Lightning Potential Index performances in multimicrophysical cloud-resolving simulations of a back-building mesoscale convective system: The Genoa 2014 event. J. Geophys. Res. Atmos. 2017, 122, 4238–4257. [Google Scholar] [CrossRef]
- Fiori, E.; Ferraris, L.; Molini, L.; Siccardi, F.; Kranzlmueller, D.; Parodi, A. Triggering and evolution of a deep convective system in the Mediterranean Sea: Modelling and observations at a very fine scale. Q. J. R. Meteorol. Soc. 2017, 143, 927–941. [Google Scholar] [CrossRef]
- Iacono, M.J.; Delamere, J.S.; Mlawer, E.J.; Shephard, M.W.; Clough, S.A.; Collins, W.D. Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res. Atmos. 2008, 113, D13103. [Google Scholar] [CrossRef]
- Hong, S.Y.; Lim, J.O.J. The WRF single-moment 6-class microphysics scheme (WSM6). Asia-Pac. J. Atmos. Sci. 2006, 42, 129–151. [Google Scholar]
- Hong, S.Y.; Noh, Y.; Dudhia, J. A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Weather Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef]
- Han, J.; Pan, H.L. Revision of convection and vertical diffusion schemes in the NCEP Global Forecast System. Weather Forecast. 2011, 26, 520–533. [Google Scholar] [CrossRef]
- Wang, H.; Huang, X.Y.; Sun, J.; Xu, D.; Zhang, M.; Fan, S.; Zhong, J. Inhomogeneous background error modeling for WRF-Var using the NMC method. J. Appl. Meteorol. Climatol. 2014, 53, 2287–2309. [Google Scholar] [CrossRef] [Green Version]
- Fierro, A.O.; Mansell, E.R.; Ziegler, C.L.; MacGorman, D.R. Application of a lightning data assimilation technique in the WRF-ARW model at cloud-resolving scales for the tornado outbreak of 24 May 2011. Mon. Weather Rev. 2012, 140, 2609–2627. [Google Scholar] [CrossRef]
- Prat, A.C.; Federico, S.; Torcasio, R.C.; Fierro, A.O.; Dietrich, S. Lightning data assimilation in the WRF-ARW model for short-term rainfall forecasts of three severe storm cases in Italy. Atmos. Res. 2021, 247, 105246. [Google Scholar] [CrossRef]
- Torcasio, R.C.; Federico, S.; Comellas Prat, A.; Panegrossi, G.; D’Adderio, L.P.; Dietrich, S. Impact of Lightning Data Assimilation on the Short-Term Precipitation Forecast over the Central Mediterranean Sea. Remote Sens. 2021, 13, 682. [Google Scholar] [CrossRef]
- Dixon, M.; Li, Z.; Lean, H.; Roberts, N.; Ballard, S. Impact of data assimilation on forecasting convection over the United Kingdom using a high-resolution version of the Met Office Unified Model. Mon. Weather Rev. 2009, 137, 1562–1584. [Google Scholar] [CrossRef]
- Xiao, Q.; Kuo, Y.H.; Sun, J.; Lee, W.C.; Lim, E.; Guo, Y.R.; Barker, D.M. Assimilation of Doppler radar observations with a regional 3DVAR system: Impact of Doppler velocities on forecasts of a heavy rainfall case. J. Appl. Meteorol. 2005, 44, 768–788. [Google Scholar] [CrossRef]
- Xiao, Q.; Kuo, Y.H.; Sun, J.; Lee, W.C.; Barker, D.M.; Lim, E. An approach of radar reflectivity data assimilation and its assessment with the inland QPF of Typhoon Rusa (2002) at landfall. J. Appl. Meteorol. Climatol. 2007, 46, 14–22. [Google Scholar] [CrossRef]
- Xiao, Q.; Sun, J. Multiple-radar data assimilation and short-range quantitative precipitation forecasting of a squall line observed during IHOP_2002. Mon. Weather Rev. 2007, 135, 3381–3404. [Google Scholar] [CrossRef]
- Sokol, Z.; Rezacova, D. Assimilation of radar reflectivity into the LM COSMO model with a high horizontal resolution. Meteorol. Appl. 2006, 13, 317–330. [Google Scholar] [CrossRef]
- Maiello, I.; Gentile, S.; Ferretti, R.; Baldini, L.; Roberto, N.; Picciotti, E.; Alberoni, P.P.; Marzano, F.S. Impact of multiple radar reflectivity data assimilation on the numerical simulation of a flash flood event during the HyMeX campaign. Hydrol. Earth Syst. Sci. 2017, 21, 5459–5476. [Google Scholar] [CrossRef]
- Roberts, N.M.; Lean, H.W. Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events. Mon. Weather Rev. 2008, 136, 78–97. [Google Scholar] [CrossRef] [Green Version]
- Davis, C.; Brown, B.; Bullock, R. Object-based verification of precipitation forecasts. Part I: Methodology and application to mesoscale rain areas. Mon. Weather Rev. 2006, 134, 1772–1784. [Google Scholar] [CrossRef]
- Davis, C.; Brown, B.; Bullock, R. Object-based verification of precipitation forecasts. Part II: Application to convective rain systems. Mon. Weather Rev. 2006, 134, 1785–1795. [Google Scholar] [CrossRef]
- Burcea, S.; Cică, R.; Bojariu, R. Radar-derived convective storms’ climatology for the Prut River basin: 2003–2017. Nat. Hazards Earth Syst. Sci. 2019, 19, 1305–1318. [Google Scholar] [CrossRef]
- Ebert, E.E. Fuzzy verification of high-resolution gridded forecasts: A review and proposed framework. Meteorol. Appl. J. Forecast Pract. Appl. Train. Tech. Model. 2008, 15, 51–64. [Google Scholar] [CrossRef]
Experiment | Assimilated Data |
---|---|
CTL | reflectivity |
RDR-LIG | reflectivity and lightning |
RDR-ZTD-LIG | reflectivity, ZTD and lightning |
RDR-TMP-LIG | reflectivity, temperature and lightning |
ALL | reflectivity, ZTD, temperature and lightning |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazzarella, V.; Milelli, M.; Lagasio, M.; Federico, S.; Torcasio, R.C.; Biondi, R.; Realini, E.; Llasat, M.C.; Rigo, T.; Esbrí, L.; et al. Is an NWP-Based Nowcasting System Suitable for Aviation Operations? Remote Sens. 2022, 14, 4440. https://doi.org/10.3390/rs14184440
Mazzarella V, Milelli M, Lagasio M, Federico S, Torcasio RC, Biondi R, Realini E, Llasat MC, Rigo T, Esbrí L, et al. Is an NWP-Based Nowcasting System Suitable for Aviation Operations? Remote Sensing. 2022; 14(18):4440. https://doi.org/10.3390/rs14184440
Chicago/Turabian StyleMazzarella, Vincenzo, Massimo Milelli, Martina Lagasio, Stefano Federico, Rosa Claudia Torcasio, Riccardo Biondi, Eugenio Realini, Maria Carmen Llasat, Tomeu Rigo, Laura Esbrí, and et al. 2022. "Is an NWP-Based Nowcasting System Suitable for Aviation Operations?" Remote Sensing 14, no. 18: 4440. https://doi.org/10.3390/rs14184440