Deciphering the Drivers of Net Primary Productivity of Vegetation in Mining Areas
<p>Study area, land use types, and soil sampling sites.</p> "> Figure 2
<p>Spatial distribution map of annual mean net primary vegetation productivity from 2010 to 2015.</p> "> Figure 3
<p>Spatial distributions of the location-specific Pearson’s correlation coefficient between NPP and drivers. (<b>a</b>) MAT, (<b>b</b>) MAP, (<b>c</b>) MAS, (<b>d</b>) MAE, (<b>e</b>) SOC, (<b>f</b>) TN, (<b>g</b>) AP, (<b>h</b>) AK, (<b>i</b>) pH, (<b>j</b>) BD, (<b>k</b>) CF, and (<b>l</b>) LD. All abbreviations (BD, CF, MAT, SOC, etc.) can be found in <a href="#remotesensing-14-04177-t001" class="html-table">Table 1</a>. The right inset shows the area ratios of positive, negative, and insignificant areas. ** means significant at <span class="html-italic">p</span> < 0.01 level, * means significant at <span class="html-italic">p</span> < 0.05 level.</p> "> Figure 4
<p>Ranking of the relative importance of environmental variables in RF_all model. All abbreviations (BD, CF, MAT, SOC, etc.) can be found in <a href="#remotesensing-14-04177-t001" class="html-table">Table 1</a>.</p> "> Figure 5
<p>Relative contribution of different categories of driving factors to the spatial variation of NPP in the Changhe Basin mining area. (<b>a</b>) Spatial distribution map of the relative contributions of climate (C), soil properties (S), and mining activities (M) to NPP variability. (<b>a</b>) The right inset represents the average relative contribution of different categories of drivers, and whiskers represent the standard deviation of all pixel values. The right inset of (<b>b</b>) represents the proportion of control area that dominates the driver. C, S, and M in (<b>b</b>) represent climate, soil properties, and coal mining activities, respectively. The combination of C, S, and M indicates that the coupled effects of different categories of drivers dominate the spatial variation of NPP. For instance, CS (SC) represents the coupled effects of climate and soil properties, with a larger relative contribution from the former drivers. CM (MC): the combined effects of climate and mining activities, SM (MS): the combined effects of soil properties and mining activities.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Estimating the Mining Area NPP
2.2.1. Synthesizing NDVI Using the ESTARFM Method
2.2.2. The CASA Model for Simulating NPP
2.3. Selection of Driving Factors
2.3.1. Soil Sampling
2.3.2. Geological Hazard Survey
2.4. Driving Factor Analysis
2.4.1. Single Factor Analysis
2.4.2. Contribution of Different Driver Categories to NPP
3. Results
3.1. Simulation Results of NPP in the Mining Area
3.2. Influence of a Single Driver
3.3. Impact of Driver Categories
3.3.1. Relative Importance of Drivers
3.3.2. Relative Contributions of Different Driver Categories
4. Discussion
4.1. Importance of Drivers and Spatial Heterogeneity of Different Driver Categories on the Driving NPP
4.2. Key Role of Soil Properties and Mining Activities in Improving NPP Estimates in Mining Areas
4.3. Impact and Uncertainty
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cramer, W.; Kicklighter, D.; Bondeau, A.; Iii, B.M.; Churkina, G.; Nemry, B.; Ruimy, A.; Schloss, A. Comparing global models of terrestrial net primary productivity (npp): Overview and key results. Glob. Change Biol. 1999, 5, 46–55. [Google Scholar] [CrossRef]
- Han, J.; Hu, Z.; Wang, P.; Yan, Z.; Li, G.; Zhang, Y.; Zhou, T. Spatio-temporal evolution and optimization analysis of ecosystem service value—A case study of coal resource-based city group in Shandong, China. J. Clean. Prod. 2022, 363, 132602. [Google Scholar] [CrossRef]
- Zhang, J.; Fu, M.; Hassani, F.P.; Zeng, H.; Geng, Y.; Bai, Z. Land Use-Based Landscape Planning and Restoration in Mine Closure Areas. Environ. Manag. 2011, 47, 739–750. [Google Scholar] [CrossRef] [PubMed]
- Hui, J.; Bai, Z.; Ye, B.; Wang, Z. Remote Sensing Monitoring and Evaluation of Vegetation Restoration in Grassland Mining Areas—A Case Study of the Shengli Mining Area in Xilinhot City, China. Land 2021, 10, 743. [Google Scholar] [CrossRef]
- Tian, H.; Zhang, X.; Bi, R.; Zhu, H.; Xi, X. An assessment of the carbon sequestration loss of farmland ecosystems caused by coal mining. J. China Coal Soc. 2020, 45, 1499–1509. [Google Scholar]
- Hou, H.; Zhang, S.; Ding, Z.; Gong, Y.; Ma, C. Study on the measurement of ecological loss based on the net primary productivity in coal mines. J. China Coal Soc. 2012, 37, 445–451. [Google Scholar]
- Gang, C.; Zhang, Y.; Wang, Z.; Chen, Y.; Yang, Y.; Li, J.; Cheng, J.; Qi, J.; Odeh, I. Modeling the dynamics of distribution, extent, and npp of global terrestrial ecosystems in response to future climate change. Glob. Planet. Chang. 2017, 148, 153–165. [Google Scholar] [CrossRef]
- Wang, C.; Jiang, Q.; Engel, B.; Mercado, J.A.V.; Zhang, Z. Analysis on net primary productivity change of forests and its multi–level driving mechanism—A case study in Changbai Mountains in Northeast China. Technol. Forecast. Soc. Chang. 2020, 153, 119939. [Google Scholar] [CrossRef]
- Zarei, A.; Chemura, A.; Gleixner, S.; Hoff, H. Evaluating the grassland NPP dynamics in response to climate change in Tanzania. Ecol. Indic. 2021, 125, 107600. [Google Scholar] [CrossRef]
- Hasenauer, H.; Nemani, R.; Schadauer, K.; Running, S. Forest growth response to changing climate between 1961 and 1990 in Austria. For. Ecol. Manag. 1999, 122, 209–219. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.; Cuadrat-Prats, J.; Romo, A. Aridity influence on vegetation patterns in the middle Ebro Valley (Spain): Evaluation by means of AVHRR images and climate interpolation techniques. J. Arid Environ. 2006, 66, 353–375. [Google Scholar] [CrossRef]
- Li, W.; Yang, X.; Saintilan, N. Local climate determines the NDVI-based primary productivity and flooding creates heterogeneity in semi-arid floodplain ecosystem. Ecol. Model. 2012, 242, 116–126. [Google Scholar]
- Tian, H.; Bi, R.; Zhu, H.; Yan, J. Driving factors and gradient effect of net primary productivity in Fenhe River Basin. Chin. J. Ecol. 2019, 38, 3066–3074. [Google Scholar]
- Zhang, M.; Yuan, N.; Lin, H.; Liu, Y.; Zhang, H. Quantitative estimation of the factors impacting spatiotemporal variation in NPP in the Dongting Lake wetlands using Landsat time series data for the last two decades. Ecol. Indic. 2022, 135, 108544. [Google Scholar] [CrossRef]
- Lin, J.; Zhou, S.; Liu, D.; Zhang, S.; Yu, Z.; Yang, X. Relative contribution of environmental and nutritional variables to net primary production of Cynodon dactylon (Linn.) Pers in the riparian zone of a Three Gorges tributary. Ecol. Evol. 2020, 10, 7073–7081. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Sanaei, A.; Li, M.; Asadi Nalivan, O.; Ahmadaali, K.; Pour, M.J.; Valipour, A.; Karami, J.; Aminpour, M.; Kaboli, H.; et al. Impacts of climatic and edaphic factors on the diversity, structure and biomass of species-poor and structurally-complex forests. Sci. Total Environ. 2020, 706, 135719. [Google Scholar] [CrossRef]
- Quinto-Mosquera, H.; Moreno, F. Net Primary Productivity and Edaphic Fertility in Two Pluvial Tropical Forests in the Choco Biogeographical Region of Colombia. PLoS ONE 2017, 12, 15. [Google Scholar]
- Pan, Y.; McGuire, A.D.; Kicklighter, D.W.; Melillo, J.M. The importance of climate and soils for estimates of net primary production: A sensitivity analysis with the terrestrial ecosystem model. Glob. Chang. Biol. 1996, 2, 5–23. [Google Scholar] [CrossRef]
- Aragão, L.E.O.C.; Malhi, Y.; Metcalfe, D.B.; Silva-Espejo, J.E.; Jiménez, E.; Navarrete, D.; Almeida, S.; Costa, A.C.L.; Salinas, N.; Phillips, O.L.; et al. Above-and below-ground net primary productivity across ten Amazonian forests on contrasting soils. Biogeosciences 2009, 6, 2441–2488. [Google Scholar] [CrossRef]
- Jiao, C.; Yu, G.; He, N.; Ma, A.; Ge, J.; Hu, Z. Spatial pattern of grassland aboveground biomass and its environmental controls in the Eurasian steppe. J. Geogr. Sci. 2017, 27, 3–22. [Google Scholar] [CrossRef]
- Yang, Y.; Erskine, P.; Zhang, S.; Wang, Y.; Bian, Z.; Lei, S. Effects of underground mining on vegetation and environmental patterns in a semi-arid watershed with implications for resilience management. Environ. Earth Sci. 2018, 77, 605. [Google Scholar] [CrossRef]
- Wang, S.; Cao, Y.; Pietrzykowski, M.; Zhou, W.; Bai, Z. Research on the influence of vegetation restoration in loess open-pit coal mines of China: Influencing factors and mechanism. Ecol. Eng. 2022, 177, 106549. [Google Scholar] [CrossRef]
- Yan, D.; Zhao, F.; Sun, O. Assessment of vegetation establishment on tailings dam at an iron ore mining site of suburban Beijing, China, 7 years after reclamation with contrasting site treatment methods. Environ. Manag. 2013, 52, 748–757. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wang, J.; Feng, Y. Linking the reclaimed soils and rehabilitated vegetation in an opencast coal mining area: A complex network approach. Environ. Sci. Pollut. Res. 2019, 26, 19365–19378. [Google Scholar] [CrossRef] [PubMed]
- Alfan, E.S.; Fuad, M. Study amendment of post-field classification of illegal gold in Kolaka Regency, Southeast Sulawesi Province. In Proceedings of the 3rd International Conference on Energy, Environmental and Information System (ICENIS 2018), Semarang, Indonesia, 14–15 August 2018. [Google Scholar]
- Huang, Y.; Tian, F.; Wang, Y.; Wang, M.; Hu, Z. Effect of coal mining on vegetation disturbance and associated carbon loss. Environ. Earth. Sci. 2015, 73, 2329–2342. [Google Scholar] [CrossRef]
- Xu, Z.; Feng, J.; Zhang, Y.; Zhu, H.; Yu, J. Pre-evaluation of disturbance of farmland soil and vegetation carbon pool by mining subsidence in coal face. J. China Coal Soc. 2018, 43, 2605–2617. [Google Scholar]
- Wang, Q.; Zeng, J.; Leng, S.; Fan, B.; Tang, J.; Jiang, C.; Huang, Y.; Zhang, Q.; Qu, Y.; Wang, W.; et al. The effects of air temperature and precipitation on the net primary productivity in China during the early 21st century. Front. Earth Sci. 2018, 12, 818–833. [Google Scholar] [CrossRef]
- Luo, Z.; Wu, W.; Yu, X.; Song, Q.; Yang, J.; Wu, J.; Zhang, H. Variation of Net Primary Production and Its Correlation with Climate Change and Anthropogenic Activities over the Tibetan Plateau. Remote Sens. 2018, 10, 1352. [Google Scholar] [CrossRef]
- Potter, C.; Randerson, J.; Field, C.; Matson, A.; Klooster, S. Terrestrial ecosystem production: A process model based on global satellite and surface data. Glob. Biogeochem. Cycles 1993, 7, 811–841. [Google Scholar] [CrossRef]
- Potter, C. Predicting climate change effects on vegetation, soil thermal dynamics, and carbon cycling in ecosystems of interior Alaska. Ecol. Model. 2004, 175, 1–24. [Google Scholar] [CrossRef]
- Ricotta, C.; Avena, G.; Palma, A. Mapping and monitoring net primary productivity with AVHRR NDVI timeseries: Statistical equivalence of cumulative vegetation indices. ISPRS J. Photogramm. Remote Sens. 1999, 54, 325–331. [Google Scholar] [CrossRef]
- Ji, R.; Tan, K.; Wang, X.; Pan, C.; Xin, L. Spatiotemporal monitoring of a grassland ecosystem and its net primary production using Google Earth Engine: A case study of inner mongolia from 2000 to 2020. Remote Sens. 2021, 13, 4480. [Google Scholar] [CrossRef]
- Zhang, M.; Ceng, Y. Net primary production estimation by using fusion remote sensing data with high spatial and temporal resolution. J. Remote Sens. 2018, 22, 147–156. [Google Scholar]
- Zhu, X.; Chen, J.; Gao, F.; Chen, X.; Masek, J.G. An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions. Remote Sens. Environ. 2010, 114, 2610–2623. [Google Scholar] [CrossRef]
- Yan, Y.; Liu, X.; Wang, F.; Li, X.; Ou, J.; Wen, Y.; Liang, X. Assessing the impacts of urban sprawl on net primary productivity using fusion of Landsat and MODIS data. Sci. Total Environ. 2018, 613, 1417–1429. [Google Scholar] [CrossRef]
- Hutchinson, M.F. ANUSPLIN Version4.3 User Guide. Canberra: The Australia National University, Center for Resource and Environment Studies. 2004. Available online: http://cres.anu.edu.au/outputs/anusplin.php (accessed on 22 June 2020).
- Li, C.; Dou, T.; Wang, Y.; Zhu, T.; Yin, H.; Zhou, M.; Liu, L.; Wu, X. A Method for Quantifying the Impacts of Human Activities on Net Primary Production of Grasslands in Northwest China. Remote Sens. 2021, 13, 2479. [Google Scholar] [CrossRef]
- Richards, L.A. Diagnosis and improvement of saline and alkaline soils. Soil Sci. 1947, 64, 432. [Google Scholar] [CrossRef]
- Olsen, S.R.; Cole, C.V.; Watanabe, F.S. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; USDA: Washington, DC, USA, 1954. [Google Scholar]
- Nelson, D.W.; Sommers, L.E. Total Carbon, Organic Carbon, and Organic Matter. In Methods of Soil Analysis, Part 2, Agronomy Monograph, 2nd ed.; Page, A.I., Miller, R.H., Keeney, D.R., Eds.; ASA-SSSA: Madison, WI, USA, 1982; Volume 9, pp. 534–580. [Google Scholar]
- Bremner, J.; Sparks, D.; Page, A.; Helmke, P.; Loeppert, R.; Soltanpour, P.; Tabatabai, M.; Johnston, C.; Sumner, M. Nitrogen-Total. In Methods of Soil Analysis, Part 3—Chemical Methods; Soil Science Society of America Inc.: Madison, WI, USA, 1996; pp. 1085–1121. [Google Scholar]
- Hossain, M.F.; Chen, W.; Zhang, Y. Bulk density of mineral and organic soils in the Canada’s arctic and sub-arctic. Inf. Process. Agric. 2015, 2, 183–190. [Google Scholar] [CrossRef]
- Li, G.; Zhang, J.; Zhu, L.; Tian, H.; Shi, J.; Ren, X. Spatial variation and driving mechanism of soil organic carbon components in the alluvial/sedimentary zone of the Yellow River. J. Geogr. Sci. 2021, 31, 535–550. [Google Scholar] [CrossRef]
- Tian, H.; Zhang, J.; Zhu, L.; Qin, J.; Liu, M.; Shi, J.; Li, G. Revealing the scale- and location-specific relationship between soil organic carbon and environmental factors in China’s north-south transition zone. Geoderma 2022, 409, 115600. [Google Scholar] [CrossRef]
- Webster, R.; Burgess, T.M. Optimal interpolation and isarithmic mapping of soil properties. III. Changing drift and universal kriging. Eur. J. Soil Sci. 1980, 31, 505–524. [Google Scholar] [CrossRef]
- Tian, H.; Zhang, J.; Zheng, Y.; Shi, J.; Qin, J.; Ren, X.; Bi, R. Prediction of soil organic carbon in mining areas. Catena 2022, 215, 106311. [Google Scholar] [CrossRef]
- Saaty, R.W. The analytic hierarchy process What it is and how it is used. Math. Model. 1987, 9, 161–176. [Google Scholar] [CrossRef]
- Lark, R.M.; Webster, R. Analysing soil variation in two dimensions with the discrete wavelet transform. Eur. J. Soil Sci. 2004, 55, 777–797. [Google Scholar] [CrossRef]
- Zhu, H.; Bi, R.; Sun, R.; Xu, Z.; Lv, C.; Yang, J. Revealing the 2d–scale, location–specific variations of soil properties in the coal mining area of Changhe watershed, China. Land Degrad. Dev. 2020, 31, 2775–2788. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, S.; Zhu, A.; Hu, B.; Shi, Z.; Li, Y. Revealing the scale- and location-specific controlling factors of soil organic carbon in Tibet. Geoderma 2021, 382, 114713. [Google Scholar] [CrossRef]
- Sreenivas, K.; Sujatha, G.; Sudhir, K.; Kiran, D.V.; Fyzee, M.A.; Ravisankar, T.; Dadhwal, V.K. Spatial assessment of soil organic carbon density through random forests based imputation. J. Indian Soc. Remote Sens. 2014, 42, 577–587. [Google Scholar] [CrossRef]
- Were, K.; Bui, D.T.; Dick, Ø.B.; Singh, B.R. A comparative assessment of support vector regression, artificial neural networks, and random forests for predicting and mapping soil organic carbon stocks across an Afromontane landscape. Ecol. Ind. 2015, 52, 394–403. [Google Scholar] [CrossRef]
- Bureau, A.; Dupuis, J.; Hayward, B.; Falls, K.; Van Eerdewegh, P. Mapping complex traits using Random Forest. BMC Genet. 2003, 4, S64. [Google Scholar] [CrossRef]
- R Core Team. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2016. [Google Scholar]
- Li, H.; Wu, Y.; Liu, S.; Xiao, J.; Zhao, W.; Chen, J.; Alexandrov, G.; Cao, Y. Decipher soil organic carbon dynamics and driving forces across China using machine learning. Glob. Chang. Biol. 2022, 28, 3394–3410. [Google Scholar] [CrossRef]
- Johnson, W.C.; Sharpe, D.M. The ratio of total to merchantable forest biomass and its application to the global carbon budget. Can. J. For. Res. 1983, 13, 372–383. [Google Scholar] [CrossRef]
- He, W. Mining Subsidence and Damage in Mountainous Region; China Science and Technology: Beijing, China, 2004. [Google Scholar]
- Liu, S.; Li, W.; Qiao, W.; Wang, Q.; Hu, Y.; Wang, Z. Effect of natural conditions and mining activities on vegetation variations in arid and semiarid mining regions. Ecol. Indic. 2019, 103, 331–345. [Google Scholar] [CrossRef]
- Huang, Y.; Cao, Y.; Pietrzykowski, M.; Zhou, W.; Bai, Z. Spatial distribution characteristics of reconstructed soil bulk density of opencast coal-mine in the loess area of China. Catena 2021, 199, 105116. [Google Scholar] [CrossRef]
- Hu, Z.; Wang, P.; Li, J. Ecological restoration of abandoned mine land in China. J. Resour. Ecol. 2012, 3, 289–296. [Google Scholar]
- Fu, S.; Bai, Z.; Yang, B.; Xie, L. Study on Ecological Loss in Coal Mining Area Based on Net Primary Productivity of Vegetation. Land 2022, 11, 1004. [Google Scholar] [CrossRef]
- Yang, F.; Wang, J.; Zhang, C.; Li, J.; Xie, H.; Zhuoge, Z. The Impact of Human Activities on Net Primary Productivity in a Grassland Open-Pit Mine: The Case Study of the Shengli Mining Area in Inner Mongolia, China. Land 2022, 11, 743. [Google Scholar] [CrossRef]
- He, Y.; Piao, S.; Li, X.; Chen, A.; Qin, D. Global patterns of vegetation carbon use efficiency and their climate drivers deduced from MODIS satellite data and process-based models. Agric. For. Meteorol. 2018, 256–257, 150–158. [Google Scholar] [CrossRef]
- Xie, C.; Wu, S.; Zhuang, Q.; Zhang, Z.; Hou, G.; Luo, G.; Hu, Z. Where Anthropogenic Activity Occurs, Anthropogenic Activity Dominates Vegetation Net Primary Productivity Change. Remote Sens. 2022, 14, 1092. [Google Scholar] [CrossRef]
- Werner, B.A.; Johnson, W.C.; Guntenspergen, G.R. Evidence for 20th century climate warming and wetland drying in the North American Prairie Pothole Region. Ecol. Evol. 2013, 3, 3471–3482. [Google Scholar] [CrossRef]
- Yan, W.; Wang, Y.; Chaudhary, P.; Ju, P.; Zhu, Q.; Kang, X.; Chen, H.; He, Y. Effects of climate change and human activities on net primary production of wetlands on the Zoige Plateau from 1990 to 2015. Glob. Ecol. Conserv. 2022, 35, e02052. [Google Scholar] [CrossRef]
- Guo, D.; Song, X.; Hu, R.; Cai, S.; Zhu, X.; Hao, Y. Grassland type-dependent spatiotemporal characteristics of productivity in Inner Mongolia and its response to climate factors. Sci. Total Environ. 2021, 775, 145644. [Google Scholar] [CrossRef]
- Sun, Y.; Feng, Y.; Wang, Y.; Zhao, X.; Yang, Y.; Tang, Z.; Wang, S.; Su, H.; Zhu, J.; Chang, J.; et al. Field-based estimation of net primary productivity and its above- and belowground partitioning in global grasslands. J. Geophys. Res.-Biogeosci. 2021, 126, e2021JG006472. [Google Scholar] [CrossRef]
- Wang, T.; Kang, F.F.; Cheng, X.Q.; Han, H.R.; Bai, Y.C.; Ma, J.Y. Spatial variability of organic carbon and total nitrogen in the soils of a subalpine forested catchment at Mt. Taiyue, China. Catena 2017, 155, 41–52. [Google Scholar] [CrossRef]
- Ni, Y.; Jian, Z.; Zeng, L.; Liu, J.; Lei, L.; Zhu, J.; Xu, J.; Xiao, W. Climate, soil nutrients, and stand characteristics jointly determine large-scale patterns of biomass growth rates and allocation in Pinus massoniana plantations. For. Ecol. Manag. 2022, 504, 119839. [Google Scholar] [CrossRef]
- Qiao, L.; Wang, X.; Smith, P.; Fan, J.; Lu, Y.; Emmett, B.; Li, R.; Dorling, S.; Chen, H.; Liu, S.; et al. Soil quality both increases crop production and improves resilience to climate change. Nat. Clim. Chang. 2022, 12, 574–580. [Google Scholar] [CrossRef]
- Zarzosa, P.S.; Herraiz, A.D.; Olmo, M.; Ruiz-Benito, P.; Barrón, V.; Bastias, C.C.; de la Riva, E.G.; Villar, R. Linking functional traits with tree growth and forest productivity in Quercus ilex forests along a climatic gradient. Sci. Total. Environ. 2021, 786, 147468. [Google Scholar] [CrossRef]
- Viana, J.; Dalling, J. Soil fertility and water availability effects on trait dispersion and phylogenetic relatedness of tropical terrestrial ferns. Oecologia 2022, 198, 733–748. [Google Scholar] [CrossRef]
- Cleveland, C.C.; Townsend, A.R.; Taylor, P.; Alvarez-Clare, S.; Bustamante, M.M.C.; Chuyong, G.; Dobrowski, S.Z.; Grierson, P.; Harms, K.E.; Houlton, B.Z.; et al. Relationships among net primary productivity, nutrients and climate in tropical rain forest: A pan-tropical analysis. Ecol. Lett. 2011, 14, 939–947. [Google Scholar] [CrossRef]
- Doughty, C.E.; Goldsmith, G.R.; Raab, N.; Girardin, C.A.J.; FarfanAmezquita, F.; Huaraca-Huasco, W.; Silva-Espejo, J.E.; AraujoMurakami, A.; da Costa, A.C.L.; Rocha, W.; et al. What controls variation in carbon use efficiency among Amazonian tropical forests? Biotropica 2018, 50, 16–25. [Google Scholar] [CrossRef]
- Reichert, J.M.; Suzuki, L.E.A.S.; Reinert, D.J.; Horn, R.; Håkansson, I. Reference bulk density and critical degree-of-compactness for no-till crop production in subtropical highly weathered soils. Soil Tillage Res. 2009, 102, 242–254. [Google Scholar] [CrossRef]
- Xu, Z.; Zhao, S.; Wang, P.; Bi, R. Evaluation of the impacts of coal mining on farmland quality in mine-agriculture regions in China. Trans. CSAE 2020, 36, 273–282. [Google Scholar]
- He, H.; Xia, G.T.; Yang, W.J.; Zhu, Y.P.; Wang, G.D.; Shen, W.B. Response of soil C:N:P stoichiometry, organic carbon stock, and release to wetland grasslandification in Mu Us Desert. J. Soils Sediments 2019, 19, 3954–3968. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Masto, R.E.; Yadav, A.; George, J.; Ram, L.; Shukla, S. Soil quality index for evaluation of reclaimed coal mine spoil. Sci. Total Environ. 2016, 542, 540–550. [Google Scholar] [CrossRef] [PubMed]
- Braimoh, A.K.; Vlek, P.L.G. Soil quality and other factors influencing maize yield in northern Ghana. Soil Use Manag. 2006, 22, 165–171. [Google Scholar] [CrossRef]
- Yang, W.; Zheng, F.; Han, Y.; Wang, Z.; Yi, Y.; Feng, Z. Investigating Spatial Distribution of Soil Quality Index and Its Impacts on Corn Yield in a Cultivated Catchment of the Chinese Mollisol Region. Soil Sci. Soc. Am. J. 2016, 80, 317–327. [Google Scholar] [CrossRef]
- Lieth, H. Modeling the Primary Productivity of the World. In Primary Productivity of the Biosphere; Lieth, H., Whittaker, R.H., Eds.; Springer: Berlin/Heidelberg, Germany, 1975. [Google Scholar]
- Churkina, G.; Running, S.W. Contrasting climatic controls on the estimated productivity of global terrestrial biomes. Ecosystems 1998, 1, 206–215. [Google Scholar] [CrossRef]
- Feng, Y.; Wang, J.; Bai, Z.; Reading, L. Effects of surface coal mining and land reclamation on soil properties: A review. Earth Sci. Rev. 2019, 191, 12–25. [Google Scholar] [CrossRef]
- Geng, S.; Li, W.; Kang, T.; Shi, P.; Zhu, W. An integrated index based on climatic constraints and soil quality to simulate vegetation productivity patterns. Ecol. Indic. 2021, 129, 108015. [Google Scholar] [CrossRef]
Driver Categories | Factors | Data Sources |
---|---|---|
Climate | Mean annual temperature (MAT) | The climate data were sourced from the basic geographic database of the Changhe watershed, and the years were 2010–2015; each factor was spatially interpolated using the ANUSPLIN method to generate a raster dataset with a pixel size of 30 m [37]. |
Mean annual precipitation (MAP) | ||
Mean annual evapotranspiration (MAE) | ||
Mean annual solar radiation (MAS) | ||
Soil property | Clay fraction (CF) | Refer to 2.3.1 Soil sampling. |
Soil organic carbon (SOC) | ||
Total nitrogen (TN) | ||
Available phosphorus (AP) | ||
Available potassium (AK) | ||
pH | ||
Bulk density (BD) | ||
Mining activities | Land degradation (LD) | Refer to 2.3.2 Land degradation. |
NPP | A | B | Forest | Grassland | Farmland | Construction Land |
---|---|---|---|---|---|---|
Simulated value | 247.61 | 276.66 | 429.38 | 286.93 | 244.40 | 167.52 |
Measured value | 248.96 | 275.15 | - | - | - | - |
MOD17A3 | - | - | 402.24 | 265.76 | 261.03 | 174.31 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, H.; Liu, S.; Zhu, W.; Zhang, J.; Zheng, Y.; Shi, J.; Bi, R. Deciphering the Drivers of Net Primary Productivity of Vegetation in Mining Areas. Remote Sens. 2022, 14, 4177. https://doi.org/10.3390/rs14174177
Tian H, Liu S, Zhu W, Zhang J, Zheng Y, Shi J, Bi R. Deciphering the Drivers of Net Primary Productivity of Vegetation in Mining Areas. Remote Sensing. 2022; 14(17):4177. https://doi.org/10.3390/rs14174177
Chicago/Turabian StyleTian, Huiwen, Shu Liu, Wenbo Zhu, Junhua Zhang, Yaping Zheng, Jiaqi Shi, and Rutian Bi. 2022. "Deciphering the Drivers of Net Primary Productivity of Vegetation in Mining Areas" Remote Sensing 14, no. 17: 4177. https://doi.org/10.3390/rs14174177
APA StyleTian, H., Liu, S., Zhu, W., Zhang, J., Zheng, Y., Shi, J., & Bi, R. (2022). Deciphering the Drivers of Net Primary Productivity of Vegetation in Mining Areas. Remote Sensing, 14(17), 4177. https://doi.org/10.3390/rs14174177