Removing InSAR Topography-Dependent Atmospheric Effect Based on Deep Learning
"> Figure 1
<p>(<b>a</b>) Topographic map of the study area; (<b>b</b>) location of the study area; (<b>c</b>,<b>d</b>) images of the study area from Google Earth.</p> "> Figure 2
<p>Flowchart of the proposed method.</p> "> Figure 3
<p>(<b>a</b>–<b>f</b>) Original interferometric pair; (<b>g</b>–<b>l</b>) simulated phase interferometric pair by MLP neural network model; (<b>m</b>–<b>r</b>) interferometric pairs after atmospheric correction by MLP neural network model.</p> "> Figure 4
<p>The correction effects of three topography-dependent atmospheric delay correction methods on InSAR interferograms.</p> "> Figure 5
<p>Changes in phase standard deviation before and after atmospheric correction by three methods.</p> "> Figure 6
<p>Interferometric map 20210604–20210610 phase and elevation linear fit analysis:(<b>a</b>) the original phase with elevation; (<b>b</b>) phase corrected by linear model with elevation; (<b>c</b>) phase corrected by GACOS with elevation; (<b>d</b>) phase corrected by MLP neural network model with elevation.</p> "> Figure 7
<p>(<b>a</b>) Original displacement results; (<b>b</b>) displacement results after linear model correction; (<b>c</b>) displacement results after GACOS correction; (<b>d</b>) displacement results after correction of MLP neural network model.</p> "> Figure 8
<p>(<b>a</b>) The MLP neural network atmosphere corrects the displacement results; (<b>b</b>) remote interpretation of displacement.</p> "> Figure 9
<p>(<b>a</b>) Original displacement results; (<b>b</b>) displacement results after linear model correction; (<b>c</b>) displacement results after GACOS correction; (<b>d</b>) displacement results after correction of MLP neural network model.</p> "> Figure 10
<p>(<b>a</b>) The MLP neural network atmosphere corrects the displacement results; (<b>b</b>) remote interpretation of displacement.</p> ">
Abstract
:1. Introduction
2. Study Area and Data Source
2.1. Study Area
2.2. Data Source
3. Methodology
3.1. DInSAR Processing
3.2. MLP-Based Topography-Dependent Atmospheric Correction Method
3.3. Linear Model Correction
3.4. GACOS Correction Method
4. Results and Discussion
4.1. Analysis of Correction Effect
4.2. Linear Model and GACOS Correction Method
4.3. Comparative Analysis of Topographic-Phase Correlations
5. Displacement Identification after MLP Correction
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Poreh, D.; Pirasteh, S. InSAR observations and analysis of the Medicina Geodetic Observatory and CosmoSkyMed images. Nat. Hazards 2020, 103, 3145–3161. [Google Scholar] [CrossRef]
- Tofani, V.; Segoni, S.; Agostini, A.; Catani, F.; Casagli, N. Use of remote sensing for landslide studies in Europe. Nat. Hazards Earth Syst. Sci. 2013, 13, 299–309. [Google Scholar] [CrossRef]
- Dai, K.; Tie, Y.; Xu, Q.; Feng, Y.; Zhuo, G.; Shi, X. Early Identification of Potential Landslide Geohazards inAlpine-canyon Terrain Based on SAR Interferometry—A Case Study of the Middle Section of Yalong River. J. Radars 2020, 9, 554–568. [Google Scholar]
- Dai, K.; Li, Z.; Xu, Q.; Bürgmann, R.; Milledge, D.G.; Tomas, R.; Fan, X.; Zhao, C.; Liu, X.; Peng, J.; et al. Entering the era of earth observation-based landslide warning systems: A novel and exciting framework. IEEE Geosci. Remote Sens. Mag. 2020, 8, 136–153. [Google Scholar] [CrossRef]
- Fan, X.; Xu, Q.; Scaringi, G.; Dai, L.; Li, W.; Dong, X.; Zhu, X.; Pei, X.; Dai, K.; Havenith, H.B. Failure mechanism and kinematics of the deadly June 24th 2017 Xinmo landslide, Maoxian, Sichuan, China. Landslides 2017, 14, 2129–2146. [Google Scholar] [CrossRef]
- Dai, K.; Li, Z.; Tomás, R.; Liu, G.; Yu, B.; Wang, X.; Cheng, H.; Chen, J.; Stockamp, J. Monitoring activity at the Daguangbao mega-landslide (China) using Sentinel-1 TOPS time series interferometry. Remote Sens. Environ. 2016, 186, 501–513. [Google Scholar] [CrossRef]
- Dai, K.; Deng, J.; Xu, Q.; Li, Z.; Shi, X.; Wen, N.; Zhang, L.; Zhuo, G. Interpretation and sensitivity analysis of the LOS displacements from InSAR in landslide measurement. GIScience Remote Sens. 2022, 59, 1226–1242. [Google Scholar] [CrossRef]
- Pourkhosravani, M.; Mehrabi, A.; Pirasteh, S.; Derakhshani, R. Monitoring of Maskun landslide and determining its quantitative relationship to different climatic conditions using D-InSAR and PSI techniques. Geomat. Nat. Hazards Risk 2022, 13, 1134–1153. [Google Scholar] [CrossRef]
- Ding, K.; He, P.; Wen, Y.; Chen, Y.; Wang, D.; Li, S.; Wang, Q. The 2017 M w 7.3 Ezgeleh, Iran earthquake determined from InSAR measurements and teleseismic waveforms. Geophys. J. Int. 2018, 215, 1728–1738. [Google Scholar] [CrossRef]
- Zhao, L.; Liang, R.; Shi, X.; Dai, K.; Cheng, J.; Cao, J. Detecting and Analyzing the Displacement of a Small-Magnitude Earthquake Cluster in Rong County, China by the GACOS Based InSAR Technology. Remote Sens. 2021, 13, 4137. [Google Scholar] [CrossRef]
- Béjar-Pizarro, M.; Álvarez Gómez, J.A.; Staller, A.; Luna, M.P.; Pérez-López, R.; Monserrat, O.; Chunga, K.; Lima, A.; Galve, J.P.; Martínez Díaz, J.J.; et al. InSAR-based mapping to support decision-making after an earthquake. Remote Sens. 2018, 10, 899. [Google Scholar] [CrossRef] [Green Version]
- Mehrabi, A.; Pirasteh, S.; Rashidi, A.; Pourkhosravani, M.; Derakhshani, R.; Liu, G.; Mao, W.; Xiang, W. Observing new evidence of intensified activity of the Anar fault based on the Persistent Scatterer Interferometry and radon anomaly. Remote Sens. 2021, 13, 2072. [Google Scholar] [CrossRef]
- Poreh, D.; Pirasteh, S. InSAR and Landsat ETM+ incorporating with CGPS and SVM to determine subsidence rates and effects on Mexico City. Geoenviron. Disasters 2021, 8, 2–19. [Google Scholar] [CrossRef]
- Shi, X.; Chen, C.; Dai, K.; Deng, J.; Wen, N.; Yin, Y.; Dong, X. Monitoring and Predicting the Subsidence of Dalian Jinzhou Bay International Airport, China by Integrating InSAR Observation and Terzaghi Consolidation Theory. Remote Sens. 2022, 14, 2332. [Google Scholar] [CrossRef]
- Chen, K.; Liu, G.; Xiang, W.; Chen, R.; Sun, T.; Qian, K.; Pirasteh, S.; Chen, X. Assimilation of SBAS-InSAR Vertical Displacement into Land Surface Model to Improve the Estimation of Terrestrial Water Storage. J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 2826–2835. [Google Scholar] [CrossRef]
- Di Traglia, F.; De Luca, C.; Manzo, M.; Nolesini, T.; Casagli, N.; Lanari, R.; Casu, F. Joint exploitation of spaceborne and ground-based multitemporal InSAR measurements for volcano monitoring: The Stromboli volcano case study. Remote Sens. Environ. 2021, 260, 112441. [Google Scholar] [CrossRef]
- Lazecký, M.; Spaans, K.; González, P.J.; Maghsoudi, Y.; Morishita, Y.; Albino, F.; Elliott, J.; Greenall, N.; Hatton, E.; Hooper, A.; et al. LiCSAR: An automatic InSAR tool for measuring and monitoring tectonic and volcanic activity. Remote Sens. 2020, 12, 2430. [Google Scholar] [CrossRef]
- Doke, R.; Kikugawa, G.; Itadera, K. Very local subsidence near the hot spring region in Hakone Volcano, Japan, inferred from InSAR time series analysis of ALOS/PALSAR data. Remote Sens. 2020, 12, 2842. [Google Scholar] [CrossRef]
- Yan, S.; Ruan, Z.; Liu, G.; Deng, K.; Lv, M.; Perski, Z. Deriving ice motion patterns in mountainous regions by integrating the intensity-based pixel-tracking and phase-based D-InSAR and MAI approaches: A case study of the Chongce glacier. Remote Sens. 2016, 8, 611. [Google Scholar] [CrossRef]
- Zhang, X.; Feng, M.; Zhang, H.; Wang, C.; Tang, Y.; Xu, J.; Yan, D.; Wang, C. Detecting Rock Glacier Displacement in the Central Himalayas Using Multi-Temporal InSAR. Remote Sens. 2021, 13, 4738. [Google Scholar] [CrossRef]
- Cigna, F.; Bianchini, S.; Casagli, N. How to assess landslide activity and intensity with Persistent Scatterer Interferometry (PSI): The PSI-based matrix approach. Landslides 2013, 10, 267–283. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Fielding, E.J.; Cross, P.; Muller, J.P. Interferometric synthetic aperture radar atmospheric correction: GPS topography-dependent turbulence model. J. Geophys. Res. Solid Earth 2006, 111, B02404. [Google Scholar] [CrossRef]
- Gong, W.; Meyer, F.J.; Liu, S.; Hanssen, R.F. Temporal filtering of InSAR data using statistical parameters from NWP models. IEEE Trans. Geosci. Remote Sens. 2015, 53, 4033–4044. [Google Scholar] [CrossRef]
- Zebker, H.A.; Rosen, P.A.; Hensley, S. Atmospheric effects in interferometric synthetic aperture radar surface deformation and topographic maps. J. Geophys. Res. Solid Earth 1977, 102, 7547–7563. [Google Scholar] [CrossRef]
- Williams, S.; Bock, Y.; Fang, P. Integrated satellite interferometry: Tropospheric noise, GPS estimates and implications for interferometric synthetic aperture radar products. J. Geophys. Res. Solid Earth 1998, 103, 27051–27067. [Google Scholar] [CrossRef]
- Li, Z.; Ding, X.; Huang, C.; Wadge, G.; Zheng, D.; Physics, S.-T. Modeling of atmospheric effects on InSAR measurements by incorporating terrain elevation information. J. Atmos. Sol.-Terr. Phys. 2006, 68, 1189–1194. [Google Scholar] [CrossRef]
- Hanssen, R.F. Radar Interferometry: Data Interpretation and Error Analysis; Science Press: Beijing, China; Springer Science & Business Media: Berlin, Germany, 2001; Volume 2. [Google Scholar]
- Neu, D.; Petit, D.; Puyssegur, B.; Michel, M.; Grosprêtre, F.; Blum, A. Nouveautes dans le bilan des tumeurs des parties molles en scanner et IRM. J. Radiol. 2007, 88, 1375. [Google Scholar] [CrossRef]
- Delacourt, C.; Briole, P.; Achache, J.J.G.R.L. Tropospheric corrections of SAR interferograms with strong topography. Application to Etna. Geophys. Res. Lett. 1998, 25, 2849–2852. [Google Scholar] [CrossRef]
- Wicks, C.W., Jr.; Dzurisin, D.; Ingebritsen, S.; Thatcher, W.; Lu, Z.; Iverson, J. Magmatic activity beneath the quiescent Three Sisters volcanic center, central Oregon Cascade Range, USA. Geophys. Res. Lett. 2002, 29, 26-1–26-4. [Google Scholar] [CrossRef]
- Bonforte, A.; Ferretti, A.; Prati, C.; Puglisi, G.; Rocca, F.; Physics, S.-T. Calibration of atmospheric effects on SAR interferograms by GPS and local atmosphere models: First results. J. Atmos. Sol.-Terr. Phys. 2021, 63, 1343–1357. [Google Scholar] [CrossRef]
- Bock, Y.; Williams, S. Transactions American Geophysical Union. Integrated satellite interferometry in southern California. Eos Trans. Am. Geophys. Union 1997, 78, 293–300. [Google Scholar] [CrossRef]
- Li, Z.; Muller, J.P.; Cross, P. Comparison of precipitable water vapor derived from radiosonde, GPS, and Moderate-Resolution Imaging Spectroradiometer measurements. J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef]
- Li, Z.; Muller, J.P.; Cross, P.; Albert, P.; Fischer, J.; Bennartz, R. Assessment of the potential of MERIS near-infrared water vapour products to correct ASAR interferometric measurements. Int. J. Remote Sens. 2007, 27, 349–365. [Google Scholar] [CrossRef]
- Shi, X.; Yang, C.; Zhang, L.; Jiang, H.; Liao, M.; Zhang, L.; Liu, X. Mapping and characterizing displacements of active loess slopes along the upstream Yellow River with multi-temporal InSAR datasets. Sci. Total Environ. 2019, 674, 200–210. [Google Scholar] [CrossRef] [PubMed]
- Jolivet, R.; Agram, P.S.; Lin, N.Y.; Simons, M.; Doin, M.P.; Peltzer, G.; Li, Z. Improving InSAR geodesy using global atmospheric models. J. Geophys. Res. Solid Earth 2014, 119, 2324–2341. [Google Scholar] [CrossRef]
- Parker, A.L.; Biggs, J.; Walters, R.J.; Ebmeier, S.K.; Wright, T.J.; Teanby, N.A.; Lu, Z. Systematic assessment of atmospheric uncertainties for InSAR data at volcanic arcs using large-scale atmospheric models: Application to the Cascade volcanoes, United States. Remote Sens. Environ. 2015, 170, 102–114. [Google Scholar] [CrossRef]
- Yu, C.; Li, Z.; Penna, N.T. Interferometric synthetic aperture radar atmospheric correction using a GPS-based iterative tropospheric decomposition model. Remote Sens. Environ. 2018, 204, 109–121. [Google Scholar] [CrossRef]
- Beauducel, A.; Debener, S.; Brocke, B.; Kayser, J. On the reliability of augmenting/reducing: Peak amplitudes and principal component analysis of auditory evoked potentials. J. Psychophysiol. 2000, 14, 226. [Google Scholar] [CrossRef]
- Li, Z.; Ding, X.; Liu, G. Modeling atmospheric effects on InSAR with meteorological and continuous GPS observations: Algorithms and some test results. J. Atmos. Sol.-Terr. Phys. 2004, 66, 907–917. [Google Scholar] [CrossRef]
- Zhu, S.; Yin, P.; Wang, M.; Wang, C.; Wang, W.; Li, J.; Zhao, H. Instability mechanism and disaster mitigation measures of long-distancelandslide at high location in Jinsha River junction zone: Case study of Sela landslide in Jinsha River, Tibet. Chin. J. Geotech. Eng. 2021, 43, 688–697. [Google Scholar]
- Xiao, R.; Jiang, M.; Li, Z.; He, X. New insights into the 2020 Sardoba dam failure in Uzbekistan from Earth observation. Int. J. Appl. Earth Obs. Geoinf. 2022, 107, 102705. [Google Scholar] [CrossRef]
- Torres, R.; Snoeij, P.; Geudtner, D.; Bibby, D.; Davidson, M.; Attema, E.; Potin, P.; Rommen, B.; Floury, N.; Brown, M. GMES Sentinel-1 mission. Remote Sens. Environ. 2012, 120, 9–24. [Google Scholar] [CrossRef]
- Bouchra, A.; Mustapha, H.; Mohammed, R. D-InSAR analysis of Sentinel-1 data for landslide detection in northern Morocco, case study: Chefchaouen. J. Geosci. Environ. Protect. 2020, 8, 84–103. [Google Scholar] [CrossRef]
- Goldstein, R.M.; Werner, C. Radar interferogram filtering for geophysical applications. Geophys. Res. Lett. 1998, 25, 4035–4038. [Google Scholar] [CrossRef]
- Costantini, M. A novel phase unwrapping method based on network programming. IEEE Trans. Geosci. Remote Sens. 1998, 36, 813–821. [Google Scholar] [CrossRef]
- Hooper, A.; Zebker, H.A. Phase unwrapping in three dimensions with application to InSAR time series. JOSA A 2007, 24, 2737–2747. [Google Scholar] [CrossRef] [PubMed]
- Tolstikhin, I.O.; Houlsby, N.; Kolesnikov, A.; Beyer, L.; Zhai, X.; Unterthiner, T.; Yung, J.; Steiner, A.; Keysers, D.; Uszkoreit, J.; et al. MLP-Mixer: An all-MLP architecture for vision. Adv. Neural Inf. Process. Syst. 2021, 34, 24261–24272. [Google Scholar]
- Chan, K.H.R.; Yu, Y.; You, C.; Qi, H.; Wright, J.; Ma, Y.R. A white-box deep network from the principle of maximizing rate reduction. arXiv 2021, arXiv:2105.10446. [Google Scholar]
- Doin, M.P.; Lasserre, C.; Peltzer, G.; Cavalié, O.; Doubre, C. Corrections of stratified tropospheric delays in SAR interferometry: Validation with global atmospheric models. J. Appl. Geophys. 2009, 69, 35–50. [Google Scholar] [CrossRef]
- Lin, Y.N.N.; Simons, M.; Hetland, E.A.; Muse, P.; DiCaprio, C. A multiscale approach to estimating topographically correlated propagation delays in radar interferograms. Geochem. Geophys. Geosystems 2010, 11. [Google Scholar] [CrossRef]
- Cavalié, O.; Doin, M.P.; Lasserre, C.; Briole, P. Ground motion measurement in the Lake Mead area, Nevada, by differential synthetic aperture radar interferometry time series analysis: Probing the lithosphere rheological structure. J. Geophys. Res. Solid Earth 2007, 112. [Google Scholar] [CrossRef]
- Yu, C.; Penna, N.T.; Li, Z. Generation of real-time mode high-resolution water vapor fields from GPS observations. J. Geophys. Res. Atmos. 2017, 122, 2008–2025. [Google Scholar] [CrossRef]
- Xiao, R.; Yu, C.; Li, Z.; He, X. Statistical assessment metrics for InSAR atmospheric correction: Applications to generic atmospheric correction online service for InSAR (GACOS) in Eastern China. Int. J. Appl. Earth Obs. Geoinf. 2021, 96, 102289. [Google Scholar] [CrossRef]
SAR System Parameters | Values | SAR System Parameters | Values |
---|---|---|---|
Date of launch | April 2014 | The angle of incidence | 29.1–46.0° |
Operation band | C | Resolution | 5 m × 20 m |
Revisit period | 12d | Width | 250 km |
Proposed shooting mode | IW | Polarization mode | HH + HV/VV + VH/HH/VV |
Interferometric Pair | Phase Standard Deviation (stdDev) | ||
---|---|---|---|
Original Phase | Corrected Phase | Rate of Change | |
20210421–20210503 | 2.5847 | 1.0807 | 58% |
20210421–20210515 | 2.5763 | 0.6896 | 73% |
20210503–20210515 | 2.4871 | 0.6379 | 74% |
20210517–20210604 | 2.5069 | 0.7856 | 69% |
20210523–20210604 | 3.1698 | 0.6192 | 80% |
20210604–20210610 | 4.6820 | 0.7508 | 84% |
The Interferometric Pairs with a Reduced Standard Deviation | Linear Model | GACOS | MLP Neural Network |
---|---|---|---|
Number | 16 | 20 | 27 |
Percentage | 59% | 88% | 100% |
Average reduction | 11.1% | 17.4% | 64% |
The average increment of interferometric pairs with increasing standard deviation. | 22.1% | 10.5% | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.; Dai, K.; Tang, X.; Cheng, J.; Pirasteh, S.; Wu, M.; Shi, X.; Zhou, H.; Li, Z. Removing InSAR Topography-Dependent Atmospheric Effect Based on Deep Learning. Remote Sens. 2022, 14, 4171. https://doi.org/10.3390/rs14174171
Chen C, Dai K, Tang X, Cheng J, Pirasteh S, Wu M, Shi X, Zhou H, Li Z. Removing InSAR Topography-Dependent Atmospheric Effect Based on Deep Learning. Remote Sensing. 2022; 14(17):4171. https://doi.org/10.3390/rs14174171
Chicago/Turabian StyleChen, Chen, Keren Dai, Xiaochuan Tang, Jianhua Cheng, Saied Pirasteh, Mingtang Wu, Xianlin Shi, Hao Zhou, and Zhenhong Li. 2022. "Removing InSAR Topography-Dependent Atmospheric Effect Based on Deep Learning" Remote Sensing 14, no. 17: 4171. https://doi.org/10.3390/rs14174171
APA StyleChen, C., Dai, K., Tang, X., Cheng, J., Pirasteh, S., Wu, M., Shi, X., Zhou, H., & Li, Z. (2022). Removing InSAR Topography-Dependent Atmospheric Effect Based on Deep Learning. Remote Sensing, 14(17), 4171. https://doi.org/10.3390/rs14174171