A Novel Imaging Scheme of Squint Multichannel SAR: First Result of GF-3 Satellite
"> Figure 1
<p>The model of the spaceborne SMC-SAR. (<b>a</b>) The observation geometry model of the SMC-SAR; (<b>b</b>) The 2D geometry of the azimuth-range plane model of the SMC-SAR.</p> "> Figure 2
<p>The diagram of the Doppler spectrum. (<b>a</b>) The diagram of the Doppler spectrum before the Doppler centroid compensation; (<b>b</b>) The diagram of the Doppler spectrum after the Doppler centroid compensation.</p> "> Figure 3
<p>The phase imbalance estimation results by FCM before and after the Doppler centroid compensation, where the green line represents the actual phase imbalance, the blue line represents the interference phase between <math display="inline"><semantics> <mrow> <msub> <mi>S</mi> <mn>1</mn> </msub> <mo> </mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>S</mi> <mn>2</mn> </msub> </mrow> </semantics></math> calculated by Equation (13), and the purple line represents the estimation result of <math display="inline"><semantics> <mrow> <msub> <mi>ϕ</mi> <mn>2</mn> </msub> </mrow> </semantics></math> by Equation (14). (<b>a</b>) The estimation results before the Doppler centroid compensation; (<b>b</b>) The estimation results after the Doppler centroid compensation.</p> "> Figure 4
<p>The flowchart of the reconstruction.</p> "> Figure 5
<p>The diagram of range cell migration before and after Doppler centroid compensation.</p> "> Figure 6
<p>The overall imaging scheme proposed in this paper.</p> "> Figure 7
<p>The result of 1D simulation. (<b>a</b>) The spectrum of SMC-SAR data that are alternatively spliced without any preprocessing or reconstruction; (<b>c</b>) The spectrum of SMC-SAR data without Doppler centroid compensation but after phase imbalance compensation and reconstruction. (<b>e</b>) The spectrum of SMC-SAR signal without phase imbalance compensation but after the Doppler centroid compensation and reconstruction; (<b>g</b>) The spectrum of SMC-SAR signal after preprocessing and reconstruction. (<b>b</b>,<b>d</b>,<b>f</b>,<b>h</b>) correspond to the azimuth compression result of (<b>a</b>,<b>c</b>,<b>e</b>,<b>g</b>), respectively.</p> "> Figure 7 Cont.
<p>The result of 1D simulation. (<b>a</b>) The spectrum of SMC-SAR data that are alternatively spliced without any preprocessing or reconstruction; (<b>c</b>) The spectrum of SMC-SAR data without Doppler centroid compensation but after phase imbalance compensation and reconstruction. (<b>e</b>) The spectrum of SMC-SAR signal without phase imbalance compensation but after the Doppler centroid compensation and reconstruction; (<b>g</b>) The spectrum of SMC-SAR signal after preprocessing and reconstruction. (<b>b</b>,<b>d</b>,<b>f</b>,<b>h</b>) correspond to the azimuth compression result of (<b>a</b>,<b>c</b>,<b>e</b>,<b>g</b>), respectively.</p> "> Figure 8
<p>The simulation results imaging based on the ESRM and the MERM. (<b>a</b>) The position of the simulated point targets; (<b>b</b>) The imaging results based on the ESRM; (<b>c</b>) The imaging result based on the MESRM; (<b>d</b>) The enlarged view of the blue rectangle in the (<b>c</b>).</p> "> Figure 9
<p>The 2D simulation results. (<b>a</b>,<b>d</b>,<b>g</b>) are the results with the squint angle of 0, 10, and 20 degrees, respectively; (<b>b</b>,<b>e</b>,<b>h</b>) correspond to the range profiles of (<b>a</b>,<b>d</b>,<b>g</b>), respectively, while (<b>c</b>,<b>f</b>,<b>i</b>) correspond to the azimuth profiles.</p> "> Figure 10
<p>The azimuth spectrum analysis of the GF-3 data. (<b>a</b>) The original azimuth spectrums of the GF-3 data, where the blue line and red line correspond to the first channel and second channel, respectively. (<b>b</b>) The azimuth spectrum after the Doppler centroid compensation. (<b>c</b>) The phase versus azimuth frequency and the estimation result of phase imbalance by FCM. (<b>d</b>) The azimuth spectrum of the GF-3 data after preprocessing and reconstruction.</p> "> Figure 10 Cont.
<p>The azimuth spectrum analysis of the GF-3 data. (<b>a</b>) The original azimuth spectrums of the GF-3 data, where the blue line and red line correspond to the first channel and second channel, respectively. (<b>b</b>) The azimuth spectrum after the Doppler centroid compensation. (<b>c</b>) The phase versus azimuth frequency and the estimation result of phase imbalance by FCM. (<b>d</b>) The azimuth spectrum of the GF-3 data after preprocessing and reconstruction.</p> "> Figure 11
<p>The imaging results of GF-3 data in SDC mode. (<b>a</b>) is the imaging result based on ESRM without Doppler centroid compensation; (<b>b</b>) is the imaging result based on ESRM after preprocessing and reconstruction; (<b>c</b>) The imaging result using the scheme proposed in this paper.</p> "> Figure 11 Cont.
<p>The imaging results of GF-3 data in SDC mode. (<b>a</b>) is the imaging result based on ESRM without Doppler centroid compensation; (<b>b</b>) is the imaging result based on ESRM after preprocessing and reconstruction; (<b>c</b>) The imaging result using the scheme proposed in this paper.</p> "> Figure 12
<p>The enlarged views of Area 1 and Area 2 in <a href="#remotesensing-14-03962-f011" class="html-fig">Figure 11</a>. (<b>a</b>) The enlarged view of Area 1; (<b>b</b>) The enlarged view of Area 2.</p> "> Figure 13
<p>The 2D simulation results with the squint angle of 35 degrees. (<b>a</b>) is the 2D contour of the point target; (<b>b</b>) is the range profile and (<b>c</b>) is the azimuth profile.</p> ">
Abstract
:1. Introduction
2. Signal Model
2.1. The Geometry Model and the Analysis of the Slant Range
2.2. The Signal Model of the SMC-SAR
3. Methods
3.1. Preprocessing
3.1.1. Doppler Centroid Compensation
3.1.2. Phase Imbalance Estimation
3.2. Reconstruction
3.3. Imaging Based on the MESRM
4. Experiment Results
4.1. Simulation Results
4.1.1. 1D Simulation
4.1.2. 2D Simulation
4.2. GF-3 SDC Mode Data
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Meta, A.; Mittermayer, J.; Prats, P.; Scheiber, R.; Steinbrecher, U. TOPS Imaging With TerraSAR-X: Mode Design and Performance Analysis. IEEE Trans. Geosci. Remote Sens. 2010, 48, 759–769. [Google Scholar] [CrossRef]
- Suess, M.; Grafmueller, B.; Zahn, R. A novel high resolution, wide swath SAR system. IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. In Proceedings of the IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217), Sydney, Australia, 9–13 July 2001; Volume 1013, pp. 1013–1015. [Google Scholar]
- Currie, A. Wide-swath SAR imaging with multiple azimuth beams. In Proceedings of the IEE Colloquium on Synthetic Aperture Radar, London, UK, 29 November 1989; pp. 1–4. [Google Scholar]
- Krieger, G.; Gebert, N.; Moreira, A. SAR Signal Reconstruction from Non-Uniform Displaced Phase Centre Sampling. In Proceedings of the IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium, Anchorage, AK, USA, 20–24 September 2004; pp. 1763–1766. [Google Scholar]
- Krieger, G.; Gebert, N.; Moreira, A. Unambiguous SAR Signal Reconstruction From Nonuniform Displaced Phase Center Sampling. IEEE Geosci. Remote Sens. Lett. 2004, 1, 260–264. [Google Scholar] [CrossRef]
- Moreira, A.; Huang, Y. Airborne SAR processing of highly squinted data using a chirp scaling approach with integrated motion compensation. IEEE Trans. Geosci. Remote Sens. 1994, 32, 1029–1040. [Google Scholar] [CrossRef]
- Gebert, N.; Krieger, G.; Moreira, A. Multi-Channel ScanSAR for High-Resolution Ultra-Wide-Swath Imaging. In Proceedings of the 7th European Conference on Synthetic Aperture Radar, Boston, MA, USA, 2–5 June 2008; pp. 1–4. [Google Scholar]
- Li, S.; Yang, R. Error Analysis of Displaced Phase Centers Multiple Azimuth Beam Synthetic Aperture Radar. Acta Electron. Sin. 2004, 32, 1436–1440. [Google Scholar]
- Liu, G.; Wang, Y.; Lin, Y. Unambiguous reconstruction and imaging of nonuniform sampling SAR signals. In Proceedings of the 2007 1st Asian and Pacific Conference on Synthetic Aperture Radar, Huangshan, China, 5–9 November 2007; pp. 253–256. [Google Scholar]
- Raney, R.K.; Runge, H.; Bamler, R.; Cumming, I.G.; Wong, F.H. Precision SAR processing using chirp scaling. IEEE Trans. Geosci. Remote Sens. 1994, 32, 786–799. [Google Scholar] [CrossRef]
- Fan, W.; Zhang, M.; Li, J.; Wei, P. Modified Range-Doppler Algorithm for High Squint SAR Echo Processing. IEEE Geosci. Remote Sens. Lett. 2019, 16, 422–426. [Google Scholar] [CrossRef]
- Davidson, G.W.; Cumming, I.G.; Ito, M.R. A chirp scaling approach for processing squint mode SAR data. IEEE Trans. Aerosp. Electron. Syst. 1996, 32, 121–133. [Google Scholar] [CrossRef]
- Sun, G.; Jiang, X.; Xing, M. Focus Improvement of Highly Squinted Data Based on Azimuth Nonlinear Scaling. IEEE Trans. Geosci. Remote Sens. 2011, 49, 2308–2322. [Google Scholar] [CrossRef]
- Zhang, S.; Xing, M.; Xia, X.; Li, J.; Guo, R.; Bao, Z. A Robust Imaging Algorithm for Squint Mode Multi-Channel High-Resolution and Wide-Swath SAR With Hybrid Baseline and Fluctuant Terrain. IEEE J. Sel. Top. Signal Processing 2015, 9, 1583–1598. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, P.; Chen, J.; Men, Z.; Cui, L.; Zhuang, L. A Novel Imaging Algorithm for High-Resolution Wide-Swath Space-Borne SAR Based on a Spatial-Variant Equivalent Squint Range Model. Remote Sens. 2022, 14, 368. [Google Scholar] [CrossRef]
- Shang, M.; Qiu, X.; Han, B.; Ding, C.; Hu, Y. Channel Imbalances and Along-Track Baseline Estimation for the GF-3 Azimuth Multichannel Mode. Remote Sens. 2019, 11, 1297. [Google Scholar] [CrossRef]
- Yang, J.; Qiu, X.; Shang, M.; Zhong, L.; Ding, C. Phase Imbalance Estimation for Azimuth Multi-Channel ScanSAR system. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2021, 14, 3875–3886. [Google Scholar] [CrossRef]
- Kim, J.-H.; Younis, M.; Prats-Iraola, P.; Gabele, M.; Krieger, G. First Spaceborne Demonstration of Digital Beamforming for Azimuth Ambiguity Suppression. IEEE Trans. Geosci. Remote Sens. 2013, 51, 579–590. [Google Scholar] [CrossRef]
- Yang, T.; Li, Z.; Liu, Y.; Bao, Z. Channel error estimation methods for multi-channel HRWS SAR systems. In Proceedings of the 2013 IEEE International Geoscience and Remote Sensing Symposium—IGARSS, Melbourne, Australia, 21–26 July 2013; pp. 4507–4510. [Google Scholar]
- Liu, A.; Liao, G.; Ma, L.; Xu, Q. An Array Error Estimation Method for Constellation SAR Systems. IEEE Geosci. Remote Sens. Lett. 2010, 7, 731–735. [Google Scholar] [CrossRef]
- Zhu, Y.; Chen, J.; Zeng, H.; Kuang, H.; Wang, P.; Yang, W.; Yu, Z. Modified reconstruction method of squinted multi-channel SAR sigal. In Proceedings of the 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 13–18 July 2014; pp. 632–635. [Google Scholar]
- Dong, X.; Zhang, Y. A Novel Compressive Sensing Algorithm for SAR Imaging. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2014, 7, 708–720. [Google Scholar] [CrossRef]
- Xu, W.; Li, R.; Fang, C.; Huang, P.; Tan, W.; Qi, Y. Azimuth Multichannel Reconstruction Based on Advanced Hyperbolic Range Equation. Remote Sens. 2021, 13, 4705. [Google Scholar] [CrossRef]
- Lv, Y.; Zhong, L.; Qiu, X.; Yuan, X.; Yang, J.; Hu, Y.; Ding, C. Improving the Image Quality of Moving Ships for GF-3NG Based on Simultaneous AIS Information. Remote Sens. 2021, 13, 1951. [Google Scholar] [CrossRef]
- Huang, Y.; Li, C.; Chen, J.; Zhou, Y. Refined Chirp Scaling Algorithm for High Resolution Spaceborne SAR Imaging. Acta Electron. Sin. 2000, 28, 35–38. [Google Scholar]
Parameters | Symbol | Value |
---|---|---|
Carrier Frequency | 5.4 (GHz) | |
Azimuth Antenna Length | 7.5 (m) | |
Bandwidth | 100 (MHz) | |
Pulse Width | 54 (us) | |
Sample Rate | 133.3 (MHz) | |
Azimuth Channel Number | 2 | |
SAR Velocity | 7531 (m/s) | |
Pulse Repetition Frequency | 2410 (Hz) | |
Beam Width | 0.4241 (deg) | |
SAR Height | 785.05 (km) | |
Squint Angle | 20 (deg) | |
Main Doppler Ambiguity | 38 | |
Doppler Centroid | 92,800 (Hz) |
Squint Angle (degree) | Range | Azimuth | ||||||
---|---|---|---|---|---|---|---|---|
0 | 1.328 | 1.336 | −13.256 | −10.069 | 3.322 | 3.320 | −13.267 | −10.407 |
10 | 1.328 | 1.336 | −13.202 | −9.998 | 3.426 | 3.418 | −13.265 | −10.480 |
20 | 1.328 | 1.336 | −12.282 | −9.237 | 3.763 | 3.760 | −13.264 | −10.555 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, Y.; Shang, M.; Zhong, L.; Qiu, X.; Ding, C. A Novel Imaging Scheme of Squint Multichannel SAR: First Result of GF-3 Satellite. Remote Sens. 2022, 14, 3962. https://doi.org/10.3390/rs14163962
Lv Y, Shang M, Zhong L, Qiu X, Ding C. A Novel Imaging Scheme of Squint Multichannel SAR: First Result of GF-3 Satellite. Remote Sensing. 2022; 14(16):3962. https://doi.org/10.3390/rs14163962
Chicago/Turabian StyleLv, Yini, Mingyang Shang, Lihua Zhong, Xiaolan Qiu, and Chibiao Ding. 2022. "A Novel Imaging Scheme of Squint Multichannel SAR: First Result of GF-3 Satellite" Remote Sensing 14, no. 16: 3962. https://doi.org/10.3390/rs14163962
APA StyleLv, Y., Shang, M., Zhong, L., Qiu, X., & Ding, C. (2022). A Novel Imaging Scheme of Squint Multichannel SAR: First Result of GF-3 Satellite. Remote Sensing, 14(16), 3962. https://doi.org/10.3390/rs14163962