Evaluation of Simulated AVIRIS-NG Imagery Using a Spectral Reconstruction Method for the Retrieval of Leaf Chlorophyll Content
"> Figure 1
<p>(<b>a</b>) Simulated AVIRIS-NG (bands 97, 56, and 36); (<b>b</b>) Sentinel-2 imagery (bands 8, 4, and 3); (<b>c</b>) clipped area for Sentinel-2 imagery; (<b>d</b>) AVIRIS-NG imagery (bands 97, 56, and 36); (<b>e</b>) clipped area for simulated AVIRIS-NG imagery.</p> "> Figure 2
<p>(<b>a</b>) Spectral response function for the sensors of AVIRIS-NG (for the first 90 bands); (<b>b</b>) spectral response function for the sensors of Sentinel-2.</p> "> Figure 3
<p>Comparison of vegetation spectra for AVIRIS-NG and simulated AVIRIS-NG.</p> "> Figure 4
<p>Comparison of soil spectra for AVIRIS-NG and simulated AVIRIS-NG.</p> "> Figure 5
<p>Classification on the simulated image.</p> "> Figure 6
<p>ROC curve for the classification with AUC values.</p> "> Figure 7
<p>Class separability chart.</p> "> Figure 8
<p>Chlorophyll map for the simulated AVIRIS-NG.</p> "> Figure 9
<p>Comparison of LCC estimated with in situ data.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data Acquisition
2.2. Remotely Sensed Data
2.2.1. Hyperspectral Data
2.2.2. Multispectral Data
2.2.3. Ground Data
2.3. Simulating AVIRIS-NG from Sentinel-2 Using UPDM
2.3.1. Calculating Standard Spectra
2.3.2. Spectral Unmixing
2.4. Classification Using Spectral Angle Mapper (SAM)
Calculation of Vegetation Index for the Retrieval of LCC
3. Results
3.1. Simulation of AVIRIS-NG Imagery
3.2. Classification of Simulated Image
3.3. Class Separability Analysis
3.4. LCC Retrieval
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Varshney, P.K.; Arora, M.K. Advanced Image Processing Techniques for Remotely Sensed Hyperspectral Data; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Kavzoglu, T. Simulating Landsat ETM+ imagery using DAIS 7915 hyperspectral scanner data. Int. J. Remote Sens. 2004, 25, 5049–5067. [Google Scholar] [CrossRef]
- Justice, C.O.; Markham, B.L.; Townshend, J.R.G.; Kennard, R.L. Spatial degradation of satellite data. Int. J. Remote Sens. 1989, 10, 1539–1561. [Google Scholar] [CrossRef]
- Li, J.; Sensing, R. Spatial quality evaluation of fusion of different resolution images. Int. Arch. Photogramm. Remote Sens. 2000, 33, 339–346. [Google Scholar]
- Liu, B.; Zhang, L.; Zhang, X.; Zhang, B.; Tong, Q.J.S. Simulation of EO-1 hyperion data from ALI multispectral data based on the spectral reconstruction approach. Sensors 2009, 9, 3090–3108. [Google Scholar] [CrossRef]
- Houborg, R.; Anderson, M.; Daughtry, C. Utility of an image-based canopy reflectance modeling tool for remote estimation of LAI and leaf chlorophyll content at the field scale. Remote Sens. Environ. 2009, 113, 259–274. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; Miller, J.R.; Morales, A.; Berjón, A.; Agüera, J. Hyperspectral indices and model simulation for chlorophyll estimation in open-canopy tree crops. Remote Sens. Environ. 2004, 90, 463–476. [Google Scholar] [CrossRef]
- Singh, P.; Pandey, P.C.; Petropoulos, G.P.; Pavlides, A.; Srivastava, P.K.; Koutsias, N.; Deng, K.A.K.; Bao, Y. Hyperspectral remote sensing in precision agriculture: Present status, challenges, and future trends. In Hyperspectral Remote Sensing; Elsevier: Amsterdam, The Netherlands, 2020; pp. 121–146. [Google Scholar]
- Curran, P.J.; Kupiec, J.A.; Smith, G.M. Remote sensing the biochemical composition of a slash pine canopy. IEEE Trans. Geosci. Remote Sens. 1997, 35, 415–420. [Google Scholar] [CrossRef]
- Matson, P.; Johnson, L.; Billow, C.; Miller, J.; Pu, R. Seasonal patterns and remote spectral estimation of canopy chemistry across the Oregon transect. Ecol. Appl. 1994, 4, 280–298. [Google Scholar] [CrossRef]
- Zarco-tejada, P.J.; Miller, J.R. Land cover mapping at BOREAS using red edge spectral parameters from CASI imagery. J. Geophys. Res. Atmos. 1999, 104, 27921–27933. [Google Scholar] [CrossRef]
- Johnson, L.F.; Hlavka, C.A.; Peterson, D.L. Multivariate analysis of AVIRIS data for canopy biochemical estimation along the Oregon transect. Remote Sens. Environ. 1994, 47, 216–230. [Google Scholar] [CrossRef]
- Moulin, S. Impacts of model parameter uncertainties on crop reflectance estimates: A regional case study on wheat. Int. J. Remote Sens. 1999, 20, 213–218. [Google Scholar] [CrossRef]
- Demarez, V. Seasonal variation of leaf chlorophyll content of a temperate forest. Inversion of the PROSPECT model. Int. J. Remote Sens. 1999, 20, 879–894. [Google Scholar] [CrossRef]
- Ganapol, B.D.; Johnson, L.F.; Hammer, P.D.; Hlavka, C.A.; Peterson, D.L. LEAFMOD: A new within-leaf radiative transfer model. Remote Sens. Environ. 1998, 63, 182–193. [Google Scholar] [CrossRef]
- Jacquemoud, S.; Baret, F. PROSPECT: A model of leaf optical properties spectra. Remote Sens. Environ. 1990, 34, 75–91. [Google Scholar] [CrossRef]
- Renzullo, L.J.; Blanchfield, A.L.; Guillermin, R.; Powell, K.S.; Held, A.A. Comparison of PROSPECT and HPLC estimates of leaf chlorophyll contents in a grapevine stress study. Int. J. Remote Sens. 2006, 27, 817–823. [Google Scholar] [CrossRef]
- Verma, B.; Prasad, R.; Srivastava, P.K.; Yadav, S.A.; Singh, P.; Singh, R.K. Investigation of optimal vegetation indices for retrieval of leaf chlorophyll and leaf area index using enhanced learning algorithms. Comput. Electron. Agric. 2022, 192, 106581. [Google Scholar] [CrossRef]
- Verrelst, J.; Muñoz, J.; Alonso, L.; Delegido, J.; Rivera, J.P.; Camps-Valls, G.; Moreno, J. Machine learning regression algorithms for biophysical parameter retrieval: Opportunities for Sentinel-2 and-3. Remote Sens. Environ. 2012, 118, 127–139. [Google Scholar] [CrossRef]
- Li, F.; Mistele, B.; Hu, Y.; Chen, X.; Schmidhalter, U. Reflectance estimation of canopy nitrogen content in winter wheat using optimised hyperspectral spectral indices and partial least squares regression. Eur. J. Agron. 2014, 52, 198–209. [Google Scholar] [CrossRef]
- Zhang, L.; Furumi, S.; Muramatsu, K.; Fujiwara, N.; Daigo, M.; Zhang, L. Sensor-Independent Analysis Method for Hyper-Multispectral Data Based on the Pattern Decomposition Method. Int. J. Remote Sens. 2006, 27, 4899–4910. [Google Scholar] [CrossRef]
- Hirapara, J.; Singh, P.; Singh, M.; Patel, C.D. Analysis of rainfall characteristics for crop planning in north and south Saurashtra region of Gujarat. J. Agric. Eng. 2020, 57, 162–171. [Google Scholar]
- Srivastava, P.K.; Malhi, R.K.M.; Pandey, P.C.; Anand, A.; Singh, P.; Pandey, M.K.; Gupta, A. Revisiting hyperspectral remote sensing: Origin, processing, applications and way forward. In Hyperspectral Remote Sensing; Elsevier: Amsterdam, The Netherlands, 2020; pp. 3–21. [Google Scholar]
- Bhattacharya, B.; Green, R.O.; Rao, S.; Saxena, M.; Sharma, S.; Kumar, K.A.; Srinivasulu, P.; Sharma, S.; Dhar, D.; Bandyopadhyay, S.; et al. An overview of AVIRIS-NG airborne hyperspectral science campaign over India. Curr. Sci. 2019, 116, 1082–1088. [Google Scholar] [CrossRef]
- Chapman, J.W.; Thompson, D.R.; Helmlinger, M.C.; Bue, B.D.; Green, R.O.; Eastwood, M.L.; Geier, S.; Olson-Duvall, W.; Lundeen, S.R. Spectral and radiometric calibration of the next generation airborne visible infrared spectrometer (AVIRIS-NG). Remote Sens. 2019, 11, 2129. [Google Scholar] [CrossRef] [Green Version]
- Anand, A.; Malhi, R.K.M.; Srivastava, P.K.; Singh, P.; Mudaliar, A.N.; Petropoulos, G.P.; Kiran, G.S. Optimal band characterization in reformation of hyperspectral indices for species diversity estimation. Phys. Chem. Earth 2021, 126, 103040. [Google Scholar] [CrossRef]
- Pandey, P.C.; Pandey, M.K.; Gupta, A.; Singh, P.; Srivastava, P.K. Spectroradiometry: Types, data collection, and processing. In Advances in Remote Sensing for Natural Resource Monitoring; Pandey, P.C., Sharma, L.K., Eds.; Wiley: Hoboken, NJ, USA, 2021; pp. 9–27. [Google Scholar]
- Uddling, J.; Gelang-Alfredsson, J.; Piikki, K.; Pleijel, H. Evaluating the relationship between leaf chlorophyll concentration and SPAD-502 chlorophyll meter readings. Photosynth. Res. 2007, 91, 37–46. [Google Scholar] [CrossRef]
- Singh, P.; Srivastava, P.K.; Malhi, R.K.M.; Chaudhary, S.K.; Verrelst, J.; Bhattacharya, B.K.; Raghubanshi, A.S. Denoising AVIRIS-NG data for generation of new chlorophyll indices. IEEE Sens. J. 2020, 21, 6982–6989. [Google Scholar] [CrossRef]
- Badola, A.; Panda, S.K.; Roberts, D.A.; Waigl, C.F.; Bhatt, U.S.; Smith, C.W.; Jandt, R.R. Hyperspectral Data Simulation (Sentinel-2 to AVIRIS-NG) for Improved Wildfire Fuel Mapping, Boreal Alaska. Remote Sens. 2021, 13, 1693. [Google Scholar] [CrossRef]
- Hati, J.P.; Samanta, S.; Chaube, N.R.; Misra, A.; Giri, S.; Pramanick, N.; Gupta, K.; Majumdar, S.D.; Chanda, A.; Mukhopadhyay, A.; et al. Mangrove classification using airborne hyperspectral AVIRIS-NG and comparing with other spaceborne hyperspectral and multispectral data. Egypt. J. Remote Sens. Space Sci. 2021, 24, 273–281. [Google Scholar]
- Ahmad, S.; Pandey, A.C.; Kumar, A.; Lele, N.V. Potential of hyperspectral AVIRIS-NG data for vegetation characterization, species spectral separability, and mapping. Appl. Geomat. 2021, 13, 361–372. [Google Scholar] [CrossRef]
Overall Accuracy | Precision | Recall | F1-Score | Kappa Coefficient |
---|---|---|---|---|
87.40% | 85.63% | 83.29% | 84.47% | 0.85 |
Classes | Producer Accuracy (%) | User Accuracy (%) |
---|---|---|
Fennel | 100 | 78.4 |
Millets | 74.22 | 89.95 |
Tobacco | 72.51 | 95.63 |
Chickpea | 98.85 | 94.44 |
Maize | 66.41 | 90.23 |
Wheat | 42.68 | 98 |
Tobacco stubbles | 97.72 | 73.94 |
Chili | 99.84 | 84.86 |
Wheat stubbles | 86.5 | 92.06 |
Water | 100 | 42.8 |
Urban | 88.12 | 98.24 |
Road | 72.65 | 89.17 |
Unclassified | 0.07 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Verma, B.; Prasad, R.; Srivastava, P.K.; Singh, P.; Badola, A.; Sharma, J. Evaluation of Simulated AVIRIS-NG Imagery Using a Spectral Reconstruction Method for the Retrieval of Leaf Chlorophyll Content. Remote Sens. 2022, 14, 3560. https://doi.org/10.3390/rs14153560
Verma B, Prasad R, Srivastava PK, Singh P, Badola A, Sharma J. Evaluation of Simulated AVIRIS-NG Imagery Using a Spectral Reconstruction Method for the Retrieval of Leaf Chlorophyll Content. Remote Sensing. 2022; 14(15):3560. https://doi.org/10.3390/rs14153560
Chicago/Turabian StyleVerma, Bhagyashree, Rajendra Prasad, Prashant K. Srivastava, Prachi Singh, Anushree Badola, and Jyoti Sharma. 2022. "Evaluation of Simulated AVIRIS-NG Imagery Using a Spectral Reconstruction Method for the Retrieval of Leaf Chlorophyll Content" Remote Sensing 14, no. 15: 3560. https://doi.org/10.3390/rs14153560
APA StyleVerma, B., Prasad, R., Srivastava, P. K., Singh, P., Badola, A., & Sharma, J. (2022). Evaluation of Simulated AVIRIS-NG Imagery Using a Spectral Reconstruction Method for the Retrieval of Leaf Chlorophyll Content. Remote Sensing, 14(15), 3560. https://doi.org/10.3390/rs14153560