Estimation of High-Frequency Vibration Parameters for Airborne Terahertz SAR Using Chirplet Decomposition and LS Sequential Estimators
<p>Imaging geometry of THz-SAR.</p> "> Figure 2
<p>Vibration direction diagram.</p> "> Figure 3
<p>Flow chart of the proposed method.</p> "> Figure 4
<p>Single point target imaging results. (<b>a</b>) Without vibration; (<b>b</b>) simple harmonic vibration; (<b>c</b>) multi-component sinusoidal vibration.</p> "> Figure 4 Cont.
<p>Single point target imaging results. (<b>a</b>) Without vibration; (<b>b</b>) simple harmonic vibration; (<b>c</b>) multi-component sinusoidal vibration.</p> "> Figure 5
<p>ICR estimation.</p> "> Figure 6
<p>Objective function curve. (<b>a</b>) The first iteration; (<b>b</b>) the second iteration; (<b>c</b>) the third iteration; (<b>d</b>) re-estimate of the first component.</p> "> Figure 7
<p>Estimation of phase errors.</p> "> Figure 8
<p>Residual phase errors.</p> "> Figure 9
<p>Imaging results. (<b>a</b>) Without compensation; (<b>b</b>) FrFT-QML-RANSAC; (<b>c</b>) Chirplet-LSSE-SRT. P4 and P9 are two selected points for further azimuth responses analyze.</p> "> Figure 9 Cont.
<p>Imaging results. (<b>a</b>) Without compensation; (<b>b</b>) FrFT-QML-RANSAC; (<b>c</b>) Chirplet-LSSE-SRT. P4 and P9 are two selected points for further azimuth responses analyze.</p> "> Figure 10
<p>Azimuth response of point targets. (<b>a</b>) Point target P4 of <a href="#remotesensing-14-03416-f009" class="html-fig">Figure 9</a>c; (<b>b</b>) point target P9 of <a href="#remotesensing-14-03416-f009" class="html-fig">Figure 9</a>c.</p> "> Figure 11
<p>RMSE in different SNRs. (<b>a</b>) Amplitude <math display="inline"><semantics> <mrow> <msub> <mi>A</mi> <mn>1</mn> </msub> </mrow> </semantics></math>; (<b>b</b>) amplitude <math display="inline"><semantics> <mrow> <msub> <mi>A</mi> <mn>2</mn> </msub> </mrow> </semantics></math>; (<b>c</b>) frequency <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mn>1</mn> </msub> </mrow> </semantics></math>; (<b>d</b>) frequency <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mn>2</mn> </msub> </mrow> </semantics></math>; (<b>e</b>) initial phase <math display="inline"><semantics> <mrow> <msub> <mi>φ</mi> <mn>1</mn> </msub> </mrow> </semantics></math>; (<b>f</b>) initial phase <math display="inline"><semantics> <mrow> <msub> <mi>φ</mi> <mn>2</mn> </msub> </mrow> </semantics></math>.</p> "> Figure 11 Cont.
<p>RMSE in different SNRs. (<b>a</b>) Amplitude <math display="inline"><semantics> <mrow> <msub> <mi>A</mi> <mn>1</mn> </msub> </mrow> </semantics></math>; (<b>b</b>) amplitude <math display="inline"><semantics> <mrow> <msub> <mi>A</mi> <mn>2</mn> </msub> </mrow> </semantics></math>; (<b>c</b>) frequency <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mn>1</mn> </msub> </mrow> </semantics></math>; (<b>d</b>) frequency <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mn>2</mn> </msub> </mrow> </semantics></math>; (<b>e</b>) initial phase <math display="inline"><semantics> <mrow> <msub> <mi>φ</mi> <mn>1</mn> </msub> </mrow> </semantics></math>; (<b>f</b>) initial phase <math display="inline"><semantics> <mrow> <msub> <mi>φ</mi> <mn>2</mn> </msub> </mrow> </semantics></math>.</p> "> Figure 12
<p>ICR estimation of the distributed imaging scene.</p> "> Figure 13
<p>Estimate of phase errors of the distributed imaging scene.</p> "> Figure 14
<p>Residual phase errors of the distributed imaging scene.</p> "> Figure 15
<p>Imaging results of the distributed imaging scene. (<b>a</b>) Without vibration; (<b>b</b>) without compensation; (<b>c</b>) FrFT-QML-RANSAC; (<b>d</b>) Chirplet-LSSE-SRT.</p> ">
Abstract
:1. Introduction
2. THz-SAR High-Frequency Vibration Error Model and Effect
3. ICR Estimation with Chirplet Decomposition
4. Parameter Estimation with LS Sequential Estimators and SRT
5. The Processing Flow of the Proposed Parameters Estimation Method
6. Simulation Results and Discussion
6.1. Influence of High-Frequency Vibration on Imaging
6.2. Simulation Results of Point Targets
6.3. Simulation Results of Distributed Imaging Scene
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Knipper, R.; Brahm, A.; Heinz, E.; May, T.; Notni, G.; Meyer, H.-G.; Tunnermann, A.; Popp, J. THz Absorption in Fabric and Its Impact on Body Scanning for Security Application. IEEE Trans. Terahertz Sci. Technol. 2015, 5, 999–1004. [Google Scholar] [CrossRef]
- Wang, Q.; Zhou, H.; Wang, Y.; Xia, R.; Liu, Q.; Zhao, B.; Wang, Y. Super-Resolution Imaging Using Very Deep Convolutional Network in Terahertz NDT Field. In Proceedings of the International Charter: Space and Major Disasters (ICSMD), Xi’an, China, 15–17 October 2020; pp. 438–441. [Google Scholar]
- Ding, X.; Xu, J.; Chen, Q.; Fu, C.; Ni, L. Retrieval of ice cloud properties with a dual frequency optimal estimation algorithm for terahertz and millimeter wave cloud radar. In Proceedings of the IET International Radar Conference, Online Conference, 4–6 November 2020; pp. 523–527. [Google Scholar]
- Zuo, F.; Min, R.; Pi, Y.; Li, J.; Hu, R. Improved Method of Video Synthetic Aperture Radar Imaging Algorithm. IEEE Geosci. Remote Sens. Lett. 2019, 16, 897–901. [Google Scholar]
- Kim, S.; Fan, R.; Dominski, F. ViSAR: A 235 GHz radar for airborne applications. In Proceedings of the 2018 IEEE Radar Conference, Oklahoma City, OK, USA, 23–27 April 2018; pp. 1549–1554. [Google Scholar]
- Batra, A.; Sheikh, F.; Khaliel, M.; Wiemeler, M.; Göhringer, D.; Kaiser, T. Object Recognition in High-Resolution Indoor THz SAR Mapped Environment. Sensors 2022, 22, 3762. [Google Scholar] [PubMed]
- Carrara, W.G.; Goodman, R.S.; Majewski, R.M. Spotlight Synthetic Aperture Radar: Signal Processing Algorithms; Artech House: Norwood, MA, USA, 1995; pp. 29, 67–70. [Google Scholar]
- Chen, Z.; Zhang, Z.; Zhou, Y.; Wang, P.; Qiu, J. A Novel Motion Compensation Scheme for Airborne Very High Resolution SAR. Remote Sens. 2021, 13, 2729. [Google Scholar]
- Ren, Y.; Tang, S.; Dong, Q.; Sun, G.; Guo, P.; Jiang, C.; Han, J.; Zhang, L. An Improved Spatially Variant MOCO Approach Based on an MDA for High-Resolution UAV SAR Imaging with Large Measurement Errors. Remote Sens. 2022, 14, 2670. [Google Scholar]
- Wang, Y.; Wang, Z.; Zhao, B.; Xu, L. Compensation for high-frequency vibration of platform in SAR imaging based on adaptive chirplet decomposition. IEEE Geosci. Remote Sens. Lett. 2016, 13, 792–795. [Google Scholar]
- Li, Y.; Ding, L.; Zheng, Q.; Zhu, Y.; Sheng, J. A novel high-frequency vibration error estimation and compensation algorithm for THz-SAR imaging based on local FrFT. Sensors 2020, 20, 2669. [Google Scholar]
- Wang, Z.; Wang, Y.; Xu, L. Parameter Estimation of Hybrid Linear Frequency Modulation-Sinusoidal Frequency Modulation Signal. IEEE Signal Processing Lett. 2017, 24, 1238–1241. [Google Scholar]
- Wang, Z.; Wang, Y.; Xu, L. Method for High-resolution SAR Imaging Based on Inverse Radon Transform. J. Eng. 2019, 20, 6951–6955. [Google Scholar]
- Wang, Z.; Wang, Y.; Xu, L. Time-Frequency Ridge-based Parameter Estimation for Sinusoidal Frequency Modulation Signals. In Proceedings of the International Conference in Communications, Signal Processing, and Systems (CSPS), Harbin, China, 14–17 July 2017; pp. 1375–1380. [Google Scholar]
- Xia, H.; Chen, Q.; Li, Y.; Fu, C.; Wang, H. A high frequency vibration compensation approach in terahertz SAR based on wavelet multi-resolution analysis. In Proceedings of the Inter-American Social Security Conference (CISS), Shanghai, China, 10–12 October 2018; pp. 1–5. [Google Scholar]
- Xia, W.; Huang, L. Target vibration estimation in SAR based on phaseanalysis method. EURASIP J. Adv. Signal Processing 2016, 94, 1–11. [Google Scholar]
- Sun, Z.; Chen, J.; Cao, X.; Guo, L. Parameter estimation of multicomponent SFM signals based on discrete sinusoidal frequency modulation transform. Syst. Eng. Electron. 2012, 34, 1973–1979. [Google Scholar]
- Wang, Y.; Wang, Z.; Zhao, B.; Xu, L. Enhancement of azimuth focus performance in high-resolution SAR imaging based on the compensation for sensors platform vibration. IEEE Sens. J. 2016, 16, 6333–6345. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Z.; Zhao, B.; Xu, L. Parameters Estimation of Sinusoidal Frequency Modulation Signal with Application in Synthetic Aperture Radar Imaging. J. Appl. Remote Sens. 2016, 10, 020502. [Google Scholar]
- Zhang, Y.; Sun, J.; Lei, P.; Hong, W. SAR-based paired echo focusing and suppression of vibrating targets. IEEE Trans. Geosci. Remote Sens. 2014, 52, 7593–7605. [Google Scholar]
- Li, Y.; Wu, Q.; Wu, J.; Li, P.; Zheng, Q.; Ding, L. Estimation of High-Frequency Vibration Parameters for Terahertz SAR Imaging Based on FrFT With Combination of QML and RANSAC. IEEE Access 2021, 9, 5485–5496. [Google Scholar]
- Zhang, Y.; Sun, J.; Lei, P.; Wang, H. High-frequency vibration compensation of helicopter-borne THz-SAR. IEEE Trans. Aerosp. Electron. Syst. 2016, 52, 1460–1466. [Google Scholar]
- Sun, J.; Hao, Z.; Li, Q.; Li, D. Vibration Compensation of Airborne Terahertz SAR Based on Along Track Interferometry. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Charvat, G.L. Small and Short-Range Radar Systems; CRC Press: Boca Raton, FL, USA, 2014; pp. 29, 69–76. [Google Scholar]
- He, Q.; Zhang, Q.; Luo, Y.; Sun, L. Sinusoidal frequency modulation Fourier-Bessel series for multicomponent SFM signal estimation and separation. Math. Probl. Eng. 2017, 2017, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Prasad, A.; Kundu, D.; Mitra, A. Sequential estimation of the sum of sinusoidal model parameters. J. Stat. Plan. Inference 2008, 138, 1297–1313. [Google Scholar] [CrossRef] [Green Version]
- Richards, F.S.G. A Method of Maximum-Likelihood Estimation. J. R. Stat. Soc. Ser. B Methodol. 1961, 23, 469–475. [Google Scholar] [CrossRef]
- Wang, J.; Li, Y.; Song, M.; Huang, P.; Xing, M. Noise Robust High-Speed Motion Compensation for ISAR Imaging Based on Parametric Minimum Entropy Optimization. Remote Sens. 2022, 14, 2178. [Google Scholar] [CrossRef]
- Jia, X.; Song, H.; He, W. A Novel Method for Refocusing Moving Ships in SAR Images via ISAR Technique. Remote Sens. 2021, 13, 2738. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Center frequency | 216 GHz |
Azimuth beam width | 2.6° |
Azimuth resolution | 0.1 m |
Range resolution | 0.2 m |
Slant range of scene center | 800 m |
Platform height | 200 m |
Platform velocity | 30 m/s |
Pulse width | 30 μs |
Signal bandwidth | 1.0 GHz |
Sample frequency | 320 MHz |
Pulse repetition frequency | 6000 Hz |
Parameter | Component 1 | Component 2 | Component 3 | Re-Estimate of Component 1 |
---|---|---|---|---|
34.900 | 18.300 | 49.640 | 35.000 | |
0.939 | 1.508 | 0.027 | 1.068 | |
2.595 | 2.604 | 6.070 | 2.599 |
Parameter | True Value | Chirplet-LSSE-SRT | FrFT-QML-RANSAC |
---|---|---|---|
18.300 | 18.300 | 18.310 | |
35.000 | 35.000 | 35.020 | |
1.500 | 1.508 | 1.536 | |
1.000 | 1.068 | 0.957 | |
2.618 | 2.604 | 2.601 | |
2.618 | 2.599 | 2.585 |
Target No. | Perfect Compensation | FrFT-QML-RANSAC | Chirplet-LSSE-SRT | ||||||
---|---|---|---|---|---|---|---|---|---|
PSLR/dB | ISLR/dB | IRW/m | PSLR/dB | ISLR/dB | IRW/m | PSLR/dB | ISLR/dB | IRW/m | |
P1 | −13.23 | −8.67 | 0.10 | −10.88 | −6.62 | 0.11 | −13.20 | −8.10 | 0.11 |
P2 | −13.27 | −8.49 | 0.10 | −10.92 | −6.11 | 0.10 | −13.23 | −8.02 | 0.10 |
P3 | −13.29 | −8.60 | 0.10 | −11.08 | −6.35 | 0.11 | −13.28 | −8.20 | 0.11 |
P4 | −13.30 | −8.57 | 0.10 | −10.81 | −6.27 | 0.10 | −13.27 | −8.12 | 0.10 |
P5 | −13.31 | −8.58 | 0.10 | −11.14 | −6.26 | 0.10 | −13.30 | −8.18 | 0.10 |
P6 | −13.31 | −8.56 | 0.10 | −11.05 | −6.20 | 0.10 | −13.27 | −8.04 | 0.10 |
P7 | −13.28 | −8.68 | 0.10 | −11.00 | −6.69 | 0.11 | −13.21 | −8.31 | 0.11 |
P8 | −13.29 | −8.52 | 0.10 | −11.17 | −6.23 | 0.10 | −13.24 | −8.12 | 0.10 |
P9 | −13.28 | −8.51 | 0.10 | −10.91 | −6.30 | 0.11 | −13.19 | −8.16 | 0.11 |
Parameter | True Value | Chirplet-LSSE-SRT | FrFT-QML-RANSAC |
---|---|---|---|
18.300 | 18.300 | 18.230 | |
35.000 | 35.020 | 34.980 | |
1.500 | 1.506 | 1.503 | |
1.000 | 0.998 | 0.961 | |
2.618 | 2.616 | 2.583 | |
2.618 | 2.591 | 2.571 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hao, Z.; Sun, J.; Li, Q.; Shan, T. Estimation of High-Frequency Vibration Parameters for Airborne Terahertz SAR Using Chirplet Decomposition and LS Sequential Estimators. Remote Sens. 2022, 14, 3416. https://doi.org/10.3390/rs14143416
Hao Z, Sun J, Li Q, Shan T. Estimation of High-Frequency Vibration Parameters for Airborne Terahertz SAR Using Chirplet Decomposition and LS Sequential Estimators. Remote Sensing. 2022; 14(14):3416. https://doi.org/10.3390/rs14143416
Chicago/Turabian StyleHao, Zhaoxin, Jinping Sun, Qing Li, and Tao Shan. 2022. "Estimation of High-Frequency Vibration Parameters for Airborne Terahertz SAR Using Chirplet Decomposition and LS Sequential Estimators" Remote Sensing 14, no. 14: 3416. https://doi.org/10.3390/rs14143416
APA StyleHao, Z., Sun, J., Li, Q., & Shan, T. (2022). Estimation of High-Frequency Vibration Parameters for Airborne Terahertz SAR Using Chirplet Decomposition and LS Sequential Estimators. Remote Sensing, 14(14), 3416. https://doi.org/10.3390/rs14143416