A Novel Speckle Suppression Method with Quantitative Combination of Total Variation and Anisotropic Diffusion PDE Model
"> Figure 1
<p>The generation principle of speckle: the upper and lower rectangles represent the SAR image and the corresponding ground area, respectively. The orange and blue boxes denote the minimum resolution units on the ground. Here, we divide the resolution unit into 25 cells, for example, and each cell has at least one scatter whose intensity of reflection is represented by the color depth.</p> "> Figure 2
<p>The relationship between diffusion coefficient and threshold: for a fixed gradient <math display="inline"><semantics> <mrow> <mo>|</mo> <mo>∇</mo> <mi mathvariant="bold-italic">I</mi> <mo>|</mo> <mo>=</mo> <mn>120</mn> </mrow> </semantics></math>, with the increase of the threshold <math display="inline"><semantics> <mi>Ψ</mi> </semantics></math>, the larger diffusion coefficient means stronger edge retention and vice versa.</p> "> Figure 3
<p>Adaptive window size. Assuming that it is currently in a homogeneous region, the window corresponding to pixel <math display="inline"><semantics> <mi>p</mi> </semantics></math> has a small radius. As the position changes, the window radius increases when <math display="inline"><semantics> <mi>q</mi> </semantics></math> is reached. The highlighted pixels consist of the window boundary.</p> "> Figure 4
<p>Effect of adaptive threshold on diffusion coefficient in the ADPDE model: (<b>a</b>) is a row pixel intensity noised by speckle, and (<b>b</b>) is the diffusion coefficient calculated by different fixed thresholds and adaptive threshold.</p> "> Figure 5
<p>Overview of the proposed QAD method. The input image <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="bold-italic">I</mi> <mn>0</mn> </msub> </mrow> </semantics></math> is first evaluated quantitatively by the proposed size-adaptive quantizer. Then, <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="bold-italic">I</mi> <mn>0</mn> </msub> </mrow> </semantics></math> is filtered by TV and ADPDE methods. The adaptive threshold <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="bold-italic">Ψ</mi> <mrow> <mi>AT</mi> </mrow> </msub> </mrow> </semantics></math> is obtained according to the output of quantizer. After the TV filter and threshold-adaptive ADPDE output their result, a weighting controller integrates them by (21).</p> "> Figure 6
<p>Test results of different approaches on various edge-type signals: various edge-type synthetic signals as shown in the first subplot in (<b>a</b>,<b>d</b>,<b>g</b>,<b>j</b>) are used to test the accuracy and stability of each method. Speckle noises with a mean of 1 and different standard derivation are added to them, as shown in the first subplot in (<b>b</b>,<b>c</b>,<b>e</b>,<b>f</b>,<b>h</b>,<b>i</b>,<b>k</b>,<b>l</b>). And the detection results are illustrated below them. As a result, the Sobel detector makes the most mistakes, and the detection result of the ROA detector is not stable enough.</p> "> Figure 7
<p>Monte Carlo experiment results for different methods on different edge-like signals added with Speckle noise. (<b>a</b>) Results of Sobel detector for various synthetic edge-like signals noise by speckle. (<b>b</b>,<b>c</b>) Results of ROA detector and proposed quantizer, respectively, for various signals.</p> "> Figure 8
<p>Experiment results of speckle suppression on synthetic images: (<b>a</b>–<b>c9</b>) are the original images. For each row, the images with number from 1 to 9 represent speckle noised image and filtering results of QAD, SRAD, ROAPDE, WNNM, DA-Frost, EDS, methods in [<a href="#B25-remotesensing-14-00796" class="html-bibr">25</a>] and RGF, respectively. The detail of each image is also displayed in the corner. The denoising results of the proposed method are highlighted by red dotted boxes.</p> "> Figure 9
<p>1-D data comparation for image 1. (<b>a</b>–<b>h</b>) are the Monte Carlo experiments results of applying proposed QAD, SRAD, ROAPDE, WNNM, DA-Frost, EDS, method in [<a href="#B25-remotesensing-14-00796" class="html-bibr">25</a>], and RGF on the first synthetic image.</p> "> Figure 10
<p>1-D data comparation for image 2. (<b>a</b>–<b>h</b>) Monte Carlo experiment results of applying proposed QAD, SRAD, ROAPDE, WNNM, DA-Frost, EDS, method in [<a href="#B25-remotesensing-14-00796" class="html-bibr">25</a>], and RGF on the second synthetic image.</p> "> Figure 10 Cont.
<p>1-D data comparation for image 2. (<b>a</b>–<b>h</b>) Monte Carlo experiment results of applying proposed QAD, SRAD, ROAPDE, WNNM, DA-Frost, EDS, method in [<a href="#B25-remotesensing-14-00796" class="html-bibr">25</a>], and RGF on the second synthetic image.</p> "> Figure 11
<p>1-D data comparation for image 3. (<b>a</b>–<b>h</b>) Monte Carlo experiment results of applying proposed QAD, SRAD, ROAPDE, WNNM, DA-Frost, EDS, method in [<a href="#B25-remotesensing-14-00796" class="html-bibr">25</a>], and RGF on the third synthetic image.</p> "> Figure 12
<p>Speckle suppression results for the X-band SAR image: (<b>a</b>) The original images. (<b>b</b>–<b>i</b>) Filtering results of QAD, SRAD, ROAPDE, WNNM, DA-Frost, EDS, method in [<a href="#B25-remotesensing-14-00796" class="html-bibr">25</a>] and RGF, respectively. The details of each image are also displayed beside.</p> "> Figure 13
<p>Speckle suppression results for the S-band SAR image: (<b>a</b>) The original images. (<b>b</b>–<b>i</b>) aFiltering results of QAD, SRAD, ROAPDE, WNNM, DA-Frost, EDS, method in [<a href="#B25-remotesensing-14-00796" class="html-bibr">25</a>] and RGF, respectively. The details of each image are also displayed beside.</p> "> Figure 14
<p>Speckle suppression results for the C-band SAR image: (<b>a</b>) The original images. (<b>b</b>–<b>i</b>) Filtering results of QAD, SRAD, ROAPDE, WNNM, DA-Frost, EDS, method in [<a href="#B25-remotesensing-14-00796" class="html-bibr">25</a>] and RGF, respectively. The details of each image are also displayed beside.</p> "> Figure 14 Cont.
<p>Speckle suppression results for the C-band SAR image: (<b>a</b>) The original images. (<b>b</b>–<b>i</b>) Filtering results of QAD, SRAD, ROAPDE, WNNM, DA-Frost, EDS, method in [<a href="#B25-remotesensing-14-00796" class="html-bibr">25</a>] and RGF, respectively. The details of each image are also displayed beside.</p> "> Figure 15
<p>Speckle suppression results for the ultrasonic image: (<b>a</b>) is the original images. (<b>b</b>–<b>i</b>) are filtering results of QAD, SRAD, ROAPDE, WNNM, DA-Frost, EDS, method in [<a href="#B25-remotesensing-14-00796" class="html-bibr">25</a>] and RGF, respectively. The details of each image are also displayed beside.</p> "> Figure 16
<p>Normalized FR results. The lowest bar means the best speckle suppression performance. It is shown that in all cases, the proposed method outperforms other methods in denoising.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Theoretical Backgrounds
2.1.1. Principle of Speckle Noise
2.1.2. Total Variation Model
2.1.3. Anisotropic Diffusion Filter PDE Model
2.2. Proposed Method
2.2.1. Pixel Position Quantizer
2.2.2. Threshold Adaptive ADPDE Model
Algorithm 1 Threshold adaptive ADPDE filter |
Input: The noised image , iteration times , step size for iteration. |
Output: The filtered image . |
Initialize:,,. |
Begin |
1: for do |
2: Obtain the magnitude of image ; |
3: Obtain the quantizer response on by (15); |
4: Calculate the adaptive threshold for every pixel by (18); |
5: Get the diffusion coefficient by (10); |
6: Generate the new image result by gradient descent method in (20). |
10: ; |
11: end |
12: The output image ; |
End |
2.2.3. Combination Model of TV and ADPDE
3. Results
3.1. Monte Carlo Simulations for the Quantizer
3.2. Speckle Suppression on Synthetic Images
3.3. Speckle Suppression on Natural Images
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lang, F.; Yang, J.; Li, D. Adaptive-Window Polarimetric SAR Image Speckle Filtering Based on a Homogeneity Measurement. IEEE Trans. Geosci. Remote Sens. 2015, 53, 5435–5446. [Google Scholar] [CrossRef]
- Chen, S.W.; Cui, X.C.; Wang, X.S.; Xiao, S.P. Speckle-free SAR image ship detection. IEEE Trans. Image Process. 2021, 30, 5969–5983. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Jiang, X.; Li, Z.; Liu, X.; Zhou, Z. Feature-Enhanced Speckle Reduction via Low-Rank and Space-Angle Continuity for Circular SAR Target Recognition. IEEE Trans. Geosci. Remote Sens. 2020, 58, 7734–7752. [Google Scholar] [CrossRef]
- Jahan, F.; Zhou, J.; Member, S.; Awrangjeb, M.; Member, S. Inverse Coefficient of Variation Feature and Multilevel Fusion Technique for Hyperspectral and LiDAR Data Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 367–381. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.H.; Nguyen, T.H.; Daniel, S.; Guériot, D.; Sintès, C.; Le Caillec, J.M. Coarse-to-Fine Registration of Airborne LiDAR Data and Optical Imagery on Urban Scenes. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 3125–3144. [Google Scholar] [CrossRef]
- Jin, S.; Kim, W.; Jeong, J. Fine directional de-interlacing algorithm using modified Sobel operation. IEEE Trans. Consum. Electron. 2008, 54, 587–862. [Google Scholar] [CrossRef]
- Touzi, R.; Lopes, A.; Bousquet, P. A Statistical and Geometrical Edge Detector for SAR Images. IEEE Trans. Geosci. Remote Sens. 1988, 26, 764–773. [Google Scholar] [CrossRef]
- Fu, X.; You, H.; Fu, K. A statistical approach to detect edges in SAR images based on square successive difference of averages. IEEE Geosci. Remote Sens. Lett. 2012, 9, 1094–1098. [Google Scholar] [CrossRef]
- Ma, X.; Shen, H.; Zhang, L.; Yang, J.; Zhang, H. Adaptive Anisotropic Diffusion Method for Polarimetric SAR Speckle Filtering. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 1041–1050. [Google Scholar] [CrossRef]
- Randhawa, S.K.; Sunkaria, R.K.; Puthooran, E. Despeckling of ultrasound images using novel adaptive wavelet thresholding function. Multidimens. Syst. Signal Processing 2019, 30, 1545–1561. [Google Scholar] [CrossRef]
- Gupta, D.; Anand, R.S.; Tyagi, B. Speckle filtering of ultrasound images using a modified non-linear diffusion model in non-subsampled shearlet domain. IET Image Process. 2015, 9, 107–117. [Google Scholar] [CrossRef]
- Woods, J.W.; Biemond, J. Comments on “A Model for Radar Images and Its Application to Adaptive Digital Filtering of Multiplicative Noise”. IEEE Trans. Pattern Anal. Mach. Intell. 1984, PAMI-6, 658–659. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, L.; Lin, G.; Cheng, Y. An Integrated De-speckling Approach for Medical Ultrasound Images Based on Wavelet and Trilateral Filter. Circuits Syst. Signal Processing 2016, 36, 297–314. [Google Scholar] [CrossRef]
- Sun, Z.; Zhang, Z.; Chen, Y.; Liu, S.; Song, Y. Frost Filtering Algorithm of SAR Images with Adaptive Windowing and Adaptive Tuning Factor. IEEE Geosci. Remote Sens. Lett. 2020, 17, 1097–1101. [Google Scholar] [CrossRef]
- Lee, J.-S. Speckle Suppression And Analysis For Synthetic Aperture Radar Images. Opt. Eng. 1986, 25, 255636. [Google Scholar] [CrossRef]
- Chen, Q.; Montesinos, P.; Sen, Q.; Xia, D.S. Ramp preserving Perona—Malik model. Signal Processing 2010, 90, 1963–1975. [Google Scholar] [CrossRef]
- Yu, Y.; Acton, S.T. Speckle reducing anisotropic diffusion. IEEE Trans. Image Processing 2002, 11, 1260–1270. [Google Scholar] [CrossRef] [Green Version]
- Aja-Fernández, S.; Alberola-López, C. On the estimation of the coefficient of variation for anisotropic diffusion speckle filtering. IEEE Trans. Image Processing 2006, 15, 2694–2701. [Google Scholar] [CrossRef]
- May, V.; Keller, Y.; Sharon, N.; Shkolnisky, Y. An Algorithm for Improving Non-Local Means Operators via Low-Rank Approximation. IEEE Trans. Image Processing 2016, 25, 1340–1353. [Google Scholar] [CrossRef] [Green Version]
- Deledalle, C.A.; Denis, L.; Tupin, F. Iterative weighted maximum likelihood denoising with probabilistic patch-based weights. IEEE Trans. Image Processing 2009, 18, 2661–2672. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.; Lv, Y.; Liu, Q.; Qin, B. Detail-Preserving Image Denoising via Adaptive Clustering and Progressive PCA Thresholding. IEEE Access 2018, 6, 6303–6315. [Google Scholar] [CrossRef]
- Karnaukhov, V.N.; Mozerov, M.G. Fast Non-Local Mean Filter Algorithm Based on Recursive Calculation of Similarity Weights. J. Commun. Technol. Electron. 2018, 63, 1475–1477. [Google Scholar] [CrossRef]
- Gómez Flores, W.; Pereira, W.C.d.A.; Infantosi, A.F.C. Breast Ultrasound Despeckling Using Anisotropic Diffusion Guided by Texture Descriptors. Ultrasound Med. Biol. 2014, 40, 2609–2621. [Google Scholar] [CrossRef] [PubMed]
- Mei, K.; Hu, B.; Fei, B.; Qin, B. Phase Asymmetry Ultrasound Despeckling With Fractional Anisotropic Diffusion and Total Variation. IEEE Trans. Image Processing 2020, 29, 2845–2859. [Google Scholar] [CrossRef] [PubMed]
- Abdullah Yahya, A.; Tan, J.; Su, B.; Liu, K.; Hadi, A.N. Image edge detection method based on anisotropic diffusion and total variation models. J. Eng. 2019, 2019, 455–460. [Google Scholar] [CrossRef]
- Mastriani, M.; Giraldez, A.E. Enhanced Directional Smoothing Algorithm for Edge-Preserving Smoothing of Synthetic-Aperture Radar Images. Meas. Sci. Rev. 2014, 4, 1–11. [Google Scholar]
- Jing, W.; Jin, T.; Xiang, D. Edge-Aware Superpixel Generation for SAR Imagery With One Iteration Merging. IEEE Geosci. Remote Sens. Lett. 2020, 18, 1600–1604. [Google Scholar] [CrossRef]
- Gu, S.; Zhang, L.; Zuo, W.; Feng, X. Weighted nuclear norm minimization with application to image denoising. Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. 2014, 2862–2869. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Xu, L.; Clausi, D.A.; Wong, A. A Bayesian Joint Decorrelation and Despeckling of SAR Imagery. IEEE Geosci. Remote Sens. Lett. 2019, 16, 1393–1397. [Google Scholar] [CrossRef]
- Di Martino, G.; Iodice, A.; Riccio, D.; Ruello, G. Equivalent number of scatterers for SAR speckle modeling. IEEE Trans. Geosci. Remote Sens. 2014, 52, 2555–2564. [Google Scholar] [CrossRef]
- Rudin, L.I.; Osher, S.; Fatemi, E. Nonlinear total variation based noise removal algorithms. Phys. D 1992, 60, 259–268. [Google Scholar] [CrossRef]
- Ma, J.; Plonka, G. Combined curvelet shrinkage and nonlinear anisotropic diffusion. IEEE Trans. Image Processing 2007, 16, 2198–2206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anfinsen, S.N.; Doulgeris, A.P.; Eltoft, T. Estimation of the equivalent number of looks in polarimetric sar imagery. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Boston, MA, USA, 7–11 July 2008; Volume 4, pp. 487–490. [Google Scholar]
- Karimi, N.; Taban, M.R. A convex variational method for super resolution of SAR image with speckle noise. Signal Processing Image Commun. 2021, 90, 116061. [Google Scholar] [CrossRef]
- Huang, Y.; Xia, W.; Lu, Z.; Liu, Y.; Chen, H.; Zhou, J.; Fang, L.; Zhang, Y. Noise-Powered Disentangled Representation for Unsupervised Speckle Reduction of Optical Coherence Tomography Images. IEEE Trans. Med. Imaging 2021, 40, 2600–2614. [Google Scholar] [CrossRef]
- Gomez, L.; Ospina, R.; Frery, A.C. Unassisted quantitative evaluation of despeckling filters. Remote Sens. 2017, 9, 389. [Google Scholar] [CrossRef] [Green Version]
Index | Formula | Parameters |
---|---|---|
Equivalent number of looks (ENL) [33] | μ-Intensity average of image σ-Intensity variance of image | |
Peak signal-to-noise ratio (PSNR) [34] | Max-The maximum intensity of the image MSE- Mean square error [34] | |
Structure similarity index measure (SSIM) [35] | C1, C2-Two constants to avoid the denominator being zero. We set C1 = 6.5025 and C2 = 58.5225 in this paper. |
Image | Index | QAD | SRAD | ROAPDE | WNNM | DA-Frost | EDS | Method in [25] | RGF |
---|---|---|---|---|---|---|---|---|---|
1 | ENL | 1148.208 | 188.8266 | 788.4655 | 2456.825 | 732.6817 | 47.5501 | 19.5870 | 265.1043 |
PSNR | 28.3762 | 24.4482 | 21.7142 | 25.3275 | 24.3889 | 22.5461 | 19.3740 | 24.3943 | |
SSIM | 0.9920 | 0.9794 | 0.9593 | 0.9789 | 0.9791 | 0.9698 | 0.9392 | 0.9792 | |
2 | ENL | 173.7292 | 72.0986 | 124.7040 | 170.5701 | 187.0147 | 35.7569 | 18.8991 | 79.6633 |
PSNR | 26.9975 | 25.5037 | 22.6524 | 26.9237 | 25.9660 | 23.7714 | 20.7938 | 25.3325 | |
SSIM | 0.9832 | 0.9761 | 0.9519 | 0.9834 | 0.9786 | 0.9662 | 0.9362 | 0.9751 | |
3 | ENL | 127.1609 | 77.2870 | 123.3472 | 81.7275 | 160.5184 | 45.4357 | 20.2846 | 86.8317 |
PSNR | 25.4831 | 26.0161 | 23.6909 | 25.8179 | 22.2074 | 23.1071 | 19.9500 | 25.9086 | |
SSIM | 0.9748 | 0.9602 | 0.9447 | 0.9628 | 0.9181 | 0.9447 | 0.8970 | 0.9693 |
Image | Region | Original | QAD | SRAD | ROAPDE | WNNM | DA-Frost | EDS | Method in [25] | RGF |
---|---|---|---|---|---|---|---|---|---|---|
X-band | Region 1 | 3.7552 | 78.9749 | 28.6375 | 77.1546 | 6.3818 | 18.7063 | 9.8756 | 3.7607 | 33.3181 |
Region 2 | 3.1325 | 30.8681 | 17.3108 | 30.3656 | 8.2419 | 11.6715 | 7.6006 | 3.1375 | 19.3260 | |
Region 3 | 1.9163 | 7.1138 | 6.3428 | 8.9477 | 3.0102 | 4.1101 | 3.6157 | 1.9189 | 6.7453 | |
S-band | Region 1 | 3.4429 | 8.4866 | 7.3068 | 12.9362 | 3.5752 | 9.2775 | 4.7948 | 3.4463 | 7.9731 |
Region 2 | 14.0738 | 70.1042 | 29.4621 | 44.3013 | 24.6344 | 66.3731 | 22.2277 | 14.1087 | 31.4164 | |
Region 3 | 14.5170 | 39.8835 | 27.0439 | 33.2399 | 24.8324 | 39.2225 | 21.5914 | 14.5341 | 28.2677 | |
C-band | Region 1 | 0.8809 | 1.7718 | 1.6442 | 1.8236 | 0.9461 | 1.5046 | 1.4087 | 0.8819 | 1.6997 |
Region 2 | 1.4821 | 4.2169 | 3.8279 | 4.2096 | 1.5261 | 3.1057 | 2.6813 | 1.4843 | 4.0827 | |
Region 3 | 2.2523 | 13.2380 | 10.4906 | 21.9790 | 2.3085 | 6.8664 | 5.0904 | 2.2554 | 12.5298 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Wang, Z.; Yu, W.; Luo, Y.; Yu, Z. A Novel Speckle Suppression Method with Quantitative Combination of Total Variation and Anisotropic Diffusion PDE Model. Remote Sens. 2022, 14, 796. https://doi.org/10.3390/rs14030796
Li J, Wang Z, Yu W, Luo Y, Yu Z. A Novel Speckle Suppression Method with Quantitative Combination of Total Variation and Anisotropic Diffusion PDE Model. Remote Sensing. 2022; 14(3):796. https://doi.org/10.3390/rs14030796
Chicago/Turabian StyleLi, Jiamu, Zijian Wang, Wenbo Yu, Yunhua Luo, and Zhongjun Yu. 2022. "A Novel Speckle Suppression Method with Quantitative Combination of Total Variation and Anisotropic Diffusion PDE Model" Remote Sensing 14, no. 3: 796. https://doi.org/10.3390/rs14030796
APA StyleLi, J., Wang, Z., Yu, W., Luo, Y., & Yu, Z. (2022). A Novel Speckle Suppression Method with Quantitative Combination of Total Variation and Anisotropic Diffusion PDE Model. Remote Sensing, 14(3), 796. https://doi.org/10.3390/rs14030796