Quantitatively Assessing the Contributions of Dust Aerosols to Direct Radiative Forcing Based on Remote Sensing and Numerical Simulation
<p>Model domain with the location of sites on the surface elevation topography (m). The Wuwei and Zhangye sites are indicated in red. The red line stands for the CALIPSO overpass at 07:13 UTC on 11 April 2020. The blue rectangular areas A and B represent the dust source region (DSR) and dust affected region (DAR), respectively.</p> "> Figure 2
<p>Spatial distribution of 550 nm aerosol optical depth (AOD) from MODIS retrievals and WRF-Chem simulations: (<b>a</b>) MODIS, (<b>b</b>) CTL, (<b>c</b>) DoubleDust, (<b>d</b>) HalfDust. The simulated AOD was extracted at the same overpass time as MODIS (06:00 UTC on 11 April 2020).</p> "> Figure 3
<p>Cross sections of 532 nm extinction coefficient (km<sup>−1</sup>) along the CALIPSO orbit path (as shown in <a href="#remotesensing-14-00660-f001" class="html-fig">Figure 1</a>) from CALIPSO at 07:13 UTC and WRF-Chem simulations at 07:00 UTC on 11 April 2020: (<b>a</b>) CALIPSO, (<b>b</b>) CTL, (<b>c</b>) DoubleDust, (<b>d</b>) HalfDust.</p> "> Figure 4
<p>Spatial distribution of daytime net radiation fluxes (W/m<sup>2</sup>) at the surface from CERES observations and CTL simulations averaged during 9–12 April 2020: (<b>a</b>) SW from CERES, (<b>b</b>) SW from CTL, (<b>c</b>) LW from CERES, (<b>d</b>) LW from CTL, (<b>e</b>) net from CERES, (<b>f</b>) net from CTL.</p> "> Figure 5
<p>Spatial distribution of daytime dust direct radiative forcing (DRF) (in W/m<sup>2</sup>) under clear-sky conditions from CTL simulation averaged during 09–12 April 2020: (<b>a</b>) SW DRF at the TOA, (<b>b</b>) LW DRF at the TOA, (<b>c</b>) net DRF at the TOA, (<b>d</b>) SW DRF in the ATM, (<b>e</b>) LW DRF in the ATM, (<b>f</b>) net DRF in the ATM, (<b>g</b>) SW DRF at the SFC, (<b>h</b>) LW DRF at the SFC, (<b>i</b>) net DRF at the SFC.</p> "> Figure 6
<p>Spatial distribution of nighttime dust DRF (W/m<sup>2</sup>) under clear-sky conditions from CTL simulation averaged during 9–12 April 2020: (<b>a</b>) SW DRF at the TOA, (<b>b</b>) LW DRF at the TOA, (<b>c</b>) net DRF at the TOA, (<b>d</b>) SW DRF in the ATM, (<b>e</b>) LW DRF in the ATM, (<b>f</b>) net DRF in the ATM, (<b>g</b>) SW DRF at the SFC, (<b>h</b>) LW DRF at the SFC, (<b>i</b>) net DRF at the SFC.</p> "> Figure 7
<p>Differences in modeled daytime and nighttime temperature (°C) caused by dust at the SFC from WRF-Chem simulations averaged during 9–12 April 2020: (<b>a</b>) CTL during the day, (<b>b</b>) DoubleDust during the day, (<b>c</b>) HalfDust during the day, (<b>d</b>) CTL at night, (<b>e</b>) DoubleDust at night, (<b>f</b>) HalfDust at night.</p> "> Figure 8
<p>Differences in simulated daytime and nighttime total fluxes (positive downward, W/m<sup>2</sup>) induced by dust at the SFC from the model averaged during 9–12 April 2020: (<b>a</b>) CTL during the day, (<b>b</b>) DoubleDust during the day (<b>c</b>) HalfDust during the day, (<b>d</b>) CTL at night, (<b>e</b>) DoubleDust at night, (<b>f</b>) HalfDust at night.</p> "> Figure 9
<p>Differences in modeled daytime and nighttime sensible heat fluxes and latent heat fluxes (both are positive upward, W/m<sup>2</sup>) caused by dust at the SFC from CTL averaged during 9–12 April 2020: (<b>a</b>) sensible heat fluxes during the day, (<b>b</b>) sensible heat fluxes at night, (<b>c</b>) latent heat fluxes during the day, (<b>d</b>) latent heat fluxes at night.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Model Description
2.2. Study Area
2.3. Sensitivity Experiments
2.4. Data
3. Results and Discussion
3.1. Model Evaluation
3.2. Spatial Distribution of Radiation Fluxes
3.3. Dust DRF Induced by Different Dust Emissions
3.3.1. Dust DRF in the Daytime
3.3.2. Dust DRF in the Nighttime
3.4. Impact of Dust Emission Changes on Surface Temperature
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Monks, P.; Granier, C.; Fuzzi, S.; Stohl, A.; Williams, M.; Akimoto, H.; Amann, M.; Baklanov, A.; Baltensperger, U.; Bey, I.; et al. Atmospheric composition change—Global and regional air quality. Atmos. Environ. 2009, 43, 5268–5350. [Google Scholar] [CrossRef] [Green Version]
- Liao, H.; Seinfeld, J.H. Radiative forcing by mineral dust aerosols: Sensitivity to key variables. J. Geophys. Res. Earth Surf. 1998, 103, 31637–31645. [Google Scholar] [CrossRef]
- Sokolik, I.N.; Toon, O.B. Incorporation of mineralogical composition into models of the radiative properties of mineral aerosol from UV to IR wavelengths. J. Geophys. Res. Earth Surf. 1999, 104, 9423–9444. [Google Scholar] [CrossRef]
- Huang, J.; Fu, Q.; Su, J.; Tang, Q.; Minnis, P.; Hu, Y.; Yi, Y.; Zhao, Q. Taklimakan dust aerosol radiative heating derived from CALIPSO observations using the Fu-Liou radiation model with CERES constraints. Atmos. Chem. Phys. 2009, 9, 4011–4021. [Google Scholar] [CrossRef]
- Zhao, C.; Hu, Z.; Qian, Y.; Leung, L.R.; Huang, J.; Huang, M.; Jin, J.; Flanner, M.G.; Zhang, R.; Wang, H.; et al. Simulating black carbon and dust and their radiative forcing in seasonal snow: A case study over North China with field campaign measurements. Atmos. Chem. Phys. 2014, 14, 11475–11491. [Google Scholar] [CrossRef] [Green Version]
- Zheng, X. Mechanics of Wind-Blown Sand Movements; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar] [CrossRef]
- Yousif, C.; Quecedo, G.O.; Santos, J.B. Comparison of solar radiation in Marsaxlokk, Malta and Valladolid, Spain. Renew. Energy 2013, 49, 203–206. [Google Scholar] [CrossRef]
- Hansen, J.; Sato, M.; Ruedy, R. Radiative forcing and climate response. J. Geophys. Res. Earth Surf. 1997, 102, 6831–6864. [Google Scholar] [CrossRef]
- Huang, J.; Lin, B.; Minnis, P.; Wang, T.; Wang, X.; Hu, Y.; Yi, Y.; Ayers, J.K. Satellite-based assessment of possible dust aerosols semi-direct effect on cloud water path over East Asia. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef] [Green Version]
- Koren, I.; Kaufman, Y.J.; Remer, L.A.; Martins, J.V. Measurement of the Effect of Amazon Smoke on Inhibition of Cloud Formation. Science 2004, 303, 1342–1345. [Google Scholar] [CrossRef] [Green Version]
- Su, J.; Minnis, P.; Huang, J.; Fu, Q.; Ge, J.; Bi, J. Estimation of Asian dust aerosol effect on cloud radiation forcing using Fu-Liou radiative model and CERES measurements. Atmos. Chem. Phys. 2008, 8, 2763–2771. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Jian, B.; Huang, J.; Hu, Y.; Zhao, C.; Kawamoto, K.; Liao, S.; Wu, M. Long-term variation of cloud droplet number concentrations from space-based Lidar. Remote Sens. Environ. 2018, 213, 144–161. [Google Scholar] [CrossRef]
- Park, S.-U.; Chang, L.-S.; Lee, E.-H. Direct radiative forcing due to aerosols in East Asia during a Hwangsa (Asian dust) event observed on 19–23 March 2002 in Korea. Atmos. Environ. 2005, 39, 2593–2606. [Google Scholar] [CrossRef]
- Huang, J.; Minnis, P.; Yan, H.; Yi, Y.; Chen, B.; Zhang, L.; Ayers, J.K. Dust aerosol effect on semi-arid climate over Northwest China detected from A-Train satellite measurements. Atmos. Chem. Phys. 2010, 10, 6863–6872. [Google Scholar] [CrossRef] [Green Version]
- Nie, W.; Ding, A.; Wang, T.; Kerminen, V.-M.; George, C.; Xue, L.; Wang, W.; Zhang, Q.; Petäjä, T.; Qi, X.; et al. Polluted dust promotes new particle formation and growth. Sci. Rep. 2014, 4, 6634. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.Y.; Wang, Y.Q.; Niu, T.; Gong, S.L.; Zhang, Y.M.; Sun, J.Y. Atmospheric aerosol compositions in China: Spatial/temporal variability, chemical signature, regional haze distribution and comparisons with global aerosols. Atmos. Chem. Phys. 2012, 12, 779–799. [Google Scholar] [CrossRef] [Green Version]
- Choobari, O.A.; Zawar-Reza, P.; Sturman, A. The global distribution of mineral dust and its impacts on the climate system: A review. Atmos. Res. 2014, 138, 152–165. [Google Scholar] [CrossRef]
- Costa, M.J.; Sohn, B.-J.; Levizzani, V.; Silva, A.M. Radiative Forcing of Asian Dust Determined from the Synergized GOME and GMS Satellite Data-A Case Study. J. Meteorol. Soc. Jpn. Ser. II 2006, 84, 85–95. [Google Scholar] [CrossRef] [Green Version]
- Haywood, J.; Boucher, O. Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review. Rev. Geophys. 2000, 38, 513–543. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, T.; Zhang, X.; Gong, S. Dust direct radiative effects on the earth-atmosphere system over east Asia: Early spring cooling and late spring warming. Chin. Sci. Bull. 2011, 56, 1020–1030. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Xia, X.; Zong, X.; Fan, X.; Chen, H.; Li, J. Dust Properties and Radiative Impacts at a Suburban Site during 2004–2017 in the North China Plain. Remote Sens. 2019, 11, 1842. [Google Scholar] [CrossRef] [Green Version]
- Ma, Z.; Fu, C. Some evidence of drying trend over northern China from 1951 to 2004. Chin. Sci. Bull. 2006, 51, 2913–2925. [Google Scholar] [CrossRef]
- Sun, K.; Su, Q.; Ming, Y. Dust Storm Remote Sensing Monitoring Supported by MODIS Land Surface Reflectance Database. Remote Sens. 2019, 11, 1772. [Google Scholar] [CrossRef] [Green Version]
- Kaufman, Y.J.; Tanré, D.; Boucher, O. A Satellite View of Aerosols in the Climate System. Nature 2002, 419, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Prospero, J.M.; Ginoux, P.; Torres, O.; Nicholson, S.E.; Gill, T.E. Environmental characterization of global sources of atmospheric soil dust identified with the nimbus 7 total ozone mapping spectrometer (toms) absorbing aerosol product. Rev. Geophys. 2002, 40, 2-1–2-31. [Google Scholar] [CrossRef]
- Li, J.; Wong, M.S.; Lee, K.H.; Nichol, J.; Chan, P. Review of dust storm detection algorithms for multispectral satellite sensors. Atmos. Res. 2020, 250, 105398. [Google Scholar] [CrossRef]
- Yu, Y.; Notaro, M.; Liu, Z.; Kalashnikova, O.; Alkolibi, F.; Fadda, E.; Bakhrjy, F. Assessing temporal and spatial variations in atmospheric dust over Saudi Arabia through satellite, radiometric, and station data. J. Geophys. Res. Atmos. 2013, 118, 13253–13264. [Google Scholar] [CrossRef]
- Wang, W.; Sheng, L.; Dong, X.; Qu, W.; Sun, J.; Jin, H.; Logan, T. Dust aerosol impact on the retrieval of cloud top height from satellite observations of CALIPSO, CloudSat and MODIS. J. Quant. Spectrosc. Radiat. Transf. 2017, 188, 132–141. [Google Scholar] [CrossRef]
- Huang, J.; Minnis, P.; Yi, Y.; Tang, Q.; Wang, X.; Hu, Y.; Liu, Z.; Ayers, K.; Trepte, C.; Winker, D. Summer dust aerosols detected from CALIPSO over the Tibetan Plateau. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Huang, J.; Kang, L.; Wang, H.; Ma, X.; He, Y.; Yuan, T.; Yang, B.; Huang, Z.; Zhang, G. Emission, transport, and radiative effects of mineral dust from the Taklimakan and Gobi deserts: Comparison of measurements and model results. Atmos. Chem. Phys. 2017, 17, 2401–2421. [Google Scholar] [CrossRef] [Green Version]
- Chaibou, A.A.S.; Ma, X.; Sha, T. Dust radiative forcing and its impact on surface energy budget over West Africa. Sci. Rep. 2020, 10, 12236. [Google Scholar] [CrossRef]
- Liu, X.; Chen, S.; Guo, Z.; Zhou, H.; Chen, Y.; Kang, Y.; Liu, Q.; Huang, G.; Liu, T.; Chen, C.; et al. The influence of dusts on radiation and temperature over the eastern Asia with a regional climate model. Sci. Total Environ. 2021, 792, 148351. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Huang, J.; Zhao, C.; Qian, Y.; Leung, L.R.; Yang, B. Modeling the transport and radiative forcing of Taklimakan dust over the Tibetan Plateau: A case study in the summer of 2006. J. Geophys. Res. Atmos. 2013, 118, 797–812. [Google Scholar] [CrossRef]
- Hu, Z.; Huang, J.; Zhao, C.; Jin, Q.; Ma, Y.; Yang, B. Modeling dust sources, transport, and radiative effects at different altitudes over the Tibetan Plateau. Atmos. Chem. Phys. 2020, 20, 1507–1529. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Chen, S.; Kang, L.; Yuan, T.; Luo, Y.; Alam, K.; Li, J.; He, Y.; Bi, H.; Zhao, D. Direct Radiative Forcing Induced by Light-Absorbing Aerosols in Different Climate Regions Over East Asia. J. Geophys. Res. Atmos. 2020, 125, e2019JD032228. [Google Scholar] [CrossRef]
- Liu, L.; Huang, X.; Ding, A.; Fu, C. Dust-induced radiative feedbacks in north China: A dust storm episode modeling study using WRF-Chem. Atmos. Environ. 2016, 129, 43–54. [Google Scholar] [CrossRef]
- Li, L.; Li, Z.; Chang, W.; Ou, Y.; Goloub, P.; Li, C.; Li, K.; Hu, Q.; Wang, J.; Wendisch, M. Aerosol solar radiative forcing near the Taklimakan Desert based on radiative transfer and regional meteorological simulations during the Dust Aerosol Observation-Kashi campaign. Atmos. Chem. Phys. 2020, 20, 10845–10864. [Google Scholar] [CrossRef]
- Chen, S.-H.; Sun, W.-Y. A one-dimensional time dependent cloud model. J. Meteorol. Soc. Jpn. 2002, 80, 99–118. [Google Scholar] [CrossRef] [Green Version]
- Iacono, M.J.; Delamere, J.S.; Mlawer, E.J.; Shephard, M.W.; Clough, S.A.; Collins, W.D. Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res. 2008, 113. [Google Scholar] [CrossRef]
- Grell, G.A.; Freitas, S.R. A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling. Atmos. Chem. Phys. 2014, 14, 5233–5250. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Dudhia, J. Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part II: Preliminary model validation. Mon. Weather Rev. 2001, 129, 587–604. [Google Scholar] [CrossRef]
- Hong, S.-Y.; Noh, Y.; Dudhia, J. A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes. Mon. Weather Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef] [Green Version]
- Jiménez, P.A.; Dudhia, J.; González-Rouco, J.F.; Navarro, J.; Montávez, J.P.; García-Bustamante, E. A Revised Scheme for the WRF Surface Layer Formulation. Mon. Weather Rev. 2012, 140, 898–918. [Google Scholar] [CrossRef] [Green Version]
- Hewson, M.; McGowan, H.; Phinn, S. Comparing Remotely Sensed and Modelled Aerosol Properties for a Region of Low Aerosol Optical Depth. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Munich, Germany, 22–27 July 2012; pp. 2512–2515. [Google Scholar]
- Shao, Y. Simplification of a dust emission scheme and comparison with data. J. Geophys. Res. Earth Surf. 2004, 109. [Google Scholar] [CrossRef] [Green Version]
- Fast, J.D.; Gustafson, W.I., Jr.; Easter, R.C.; Zaveri, R.A.; Barnard, J.C.; Chapman, E.G.; Grell, G.A.; Peckham, S.E. Evolution of ozone, particulates, and aerosol direct radiative forcing in the vicinity of Houston using a fully coupled meteorology-chemistry-aerosol model. J. Geophys. Res. Atmos. 2006, 111. [Google Scholar] [CrossRef]
- Bohren, C.F.; Huffman, D.R. Absorption and Scattering of Light by Small Particles; Wiley: Hoboken, NJ, USA, 1983. [Google Scholar]
- Shao, Y. A model for mineral dust emission. J. Geophys. Res. Earth Surf. 2001, 106, 20239–20254. [Google Scholar] [CrossRef]
- Shao, Y.; Ishizuka, M.; Mikami, M.; Leys, J.F. Parameterization of size-resolved dust emission and validation with measurements. J. Geophys. Res. Earth Surf. 2011, 116. [Google Scholar] [CrossRef]
- Huang, J.; Wang, T.; Wang, W.; Li, Z.; Yan, H. Climate effects of dust aerosols over East Asian arid and semiarid regions. J. Geophys. Res. Atmos. 2014, 119, 11398–11416. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Tanré, D.; Remer, L.A.; Vermote, E.F.; Chu, A.; Holben, B.N. Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer. J. Geophys. Res. Space Phys. 1997, 102, 17051–17067. [Google Scholar] [CrossRef]
- Hsu, N.C.; Tsay, S.-C.; King, M.D.; Herman, J.R. Aerosol Properties over Bright-Reflecting Source Regions. IEEE Trans. Geosci. Remote Sens. 2004, 42, 557–569. [Google Scholar] [CrossRef]
- Sayer, A.M.; Munchak, L.A.; Hsu, N.C.; Levy, R.C.; Bettenhausen, C.; Jeong, M.-J. MODIS Collection 6 aerosol products: Comparison between Aqua’s e-Deep Blue, Dark Target, and “merged” data sets, and usage recommendations. J. Geophys. Res. Atmos. 2014, 119, 13965–13989. [Google Scholar] [CrossRef]
- Bilbao, J.; Román, R.; Miguel, A. Turbidity coefficients from normal direct solar irradiance in Central Spain. Atmos. Res. 2014, 143, 73–84. [Google Scholar] [CrossRef]
- Campbell, J.R.; Tackett, J.L.; Reid, J.S.; Zhang, J.; Curtis, C.A.; Hyer, E.J.; Sessions, W.R.; Westphal, D.L.; Prospero, J.M.; Welton, E.J.; et al. Evaluating nighttime CALIOP 0.532 μm aerosol optical depth and extinction coefficient retrievals. Atmos. Meas. Tech. 2012, 5, 2143–2160. [Google Scholar] [CrossRef] [Green Version]
- Rutan, D.A.; Kato, S.; Doelling, D.R.; Rose, F.G.; Nguyen, L.T.; Caldwell, T.E.; Loeb, N.G. CERES Synoptic Product: Methodology and Validation of Surface Radiant Flux. J. Atmos. Ocean. Technol. 2015, 32, 1121–1143. [Google Scholar] [CrossRef]
- Bilbao, J.; González, P.S.; Castrillo, A.D.M. UV-B climatology in Central Spain. Int. J. Clim. 2008, 28, 1933–1941. [Google Scholar] [CrossRef]
- Uno, I.; Wang, Z.; Chiba, M.; Chun, Y.S.; Gong, S.L.; Hara, Y.; Jung, E.; Lee, S.-S.; Liu, M.; Mikami, M.; et al. Dust model intercomparison (DMIP) study over Asia: Overview. J. Geophys. Res. Earth Surf. 2006, 111. [Google Scholar] [CrossRef] [Green Version]
- Meloni, D.; di Sarra, A.; Di Iorio, T.; Fiocco, G. Influence of the vertical profile of Saharan dust on the visible direct radiative forcing. J. Quant. Spectrosc. Radiat. Transf. 2005, 93, 397–413. [Google Scholar] [CrossRef]
- Wang, S.; Yuan, W.; Shang, K. The impacts of different kinds of dust events on PM10 pollution in northern China. Atmos. Environ. 2006, 40, 7975–7982. [Google Scholar] [CrossRef]
- Chen, S.; Huang, J.; Qian, Y.; Zhao, C.; Kang, L.; Yang, B.; Wang, Y.; Liu, Y.; Yuan, T.; Wang, T.; et al. An overview of mineral dust modeling over East Asia. J. Meteorol. Res. 2017, 31, 633–653. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, M.; Zhu, J.; Skorokhod, A. Model analysis of soil dust impacts on the boundary layer meteorology and air quality over East Asia in April 2015. Atmos. Res. 2017, 187, 42–56. [Google Scholar] [CrossRef]
- Luo, C.; Mahowald, N.M.; Del Corral, J. Surface radiative forcing by soil dust aerosols and the hydrologic cycle. J. Geophys. Res. 2004, 109, 4203. [Google Scholar] [CrossRef]
- Mallet, M.; Tulet, P.; Serça, D.; Solmon, F.; Dubovik, O.; Pelon, J.; Pont, V.; Thouron, O. Impact of dust aerosols on the radiative budget, surface heat fluxes, heating rate profiles and convective activity over West Africa during March 2006. Atmos. Chem. Phys. 2009, 9, 7143–7160. [Google Scholar] [CrossRef] [Green Version]
- Yue, X.; Wang, H.; Liao, H.; Fan, K. Simulation of dust aerosol radiative feedback using the GMOD: 2. Dust-climate interactions. J. Geophys. Res. Earth Surf. 2010, 115. [Google Scholar] [CrossRef]
- Sokolik, I.N.; Winker, D.M.; Bergametti, G.; Gillette, D.A.; Carmichael, G.; Kaufman, Y.J.; Gomes, L.; Schuetz, L.; Penner, J.E. Introduction to special section: Outstanding problems in quantifying the radiative impacts of mineral dust. J. Geophys. Res. Earth Surf. 2001, 106, 18015–18027. [Google Scholar] [CrossRef]
- Heald, C.L.; Ridley, D.A.; Kroll, J.H.; Barrett, S.R.H.; Cady-Pereira, K.E.; Alvarado, M.J.; Holmes, C.D. Contrasting the direct radiative effect and direct radiative forcing of aerosols. Atmos. Chem. Phys. 2014, 14, 5513–5527. [Google Scholar] [CrossRef] [Green Version]
- Kantha, L.H.; Clayson, C.A. Chapter 4 surface exchange processes. Int. Geophys. 2000, 67, 417–509. [Google Scholar] [CrossRef]
- Parker, D.J. Local weather. In Meteorology of Tropical West Africa; Parker, D.J., Diop-Kane, M., Eds.; Wiley: Hoboken, NJ, USA, 2017; pp. 130–174. [Google Scholar]
- Hartmann, D.L. Chapter 4 the energy balance of the surface. Int. Geophys. 1994, 56, 81–114. [Google Scholar]
- Chen, S.; Yuan, T.; Zhang, X.; Zhang, G.; Feng, T.; Zhao, D.; Zang, Z.; Liao, S.; Ma, X.; Jiang, N.; et al. Dust modeling over East Asia during the summer of 2010 using the WRF-Chem model. J. Quant. Spectrosc. Radiat. Transf. 2018, 213, 1–12. [Google Scholar] [CrossRef]
SWDN 1 | SWUP 2 | LWDN 3 | LWUP 4 | SW 5 | LW 6 | Net 7 | |
---|---|---|---|---|---|---|---|
CERES_TOA | 704 | 171 | 0 | 262 | 533 | 262 | 271 |
CTL_TOA | 691 | 226 | 0 | 255 | 465 | 255 | 210 |
CERES_SFC | 550 | 135 | 230 | 382 | 415 | 152 | 263 |
CTL_SFC | 556 | 206 | 232 | 369 | 350 | 137 | 213 |
TOA | ATM | SFC | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
CTL | DoubleDust | HalfDust | CTL | DoubleDust | HalfDust | CTL | DoubleDust | HalfDust | ||
DSR | SW(W/m2) | –1.83 | –3.04 | –1.09 | 6.92 | 11.28 | 4.00 | –8.75 | –14.32 | –5.09 |
LW(W/m2) | 0.61 | 0.99 | 0.35 | –3.13 | –5.07 | –1.84 | 3.74 | 6.06 | 2.19 | |
Net(W/m2) | –1.22 | –2.05 | –0.74 | 3.79 | 6.21 | 2.16 | –5.01 | –8.26 | –2.90 | |
DAR | SW(W/m2) | –0.36 | –0.58 | –0.21 | 1.76 | 3.24 | 0.93 | –2.12 | –3.82 | –1.14 |
LW(W/m2) | 0.18 | 0.33 | 0.10 | –0.87 | –1.57 | –0.47 | 1.05 | 1.90 | 0.57 | |
Net(W/m2) | –0.18 | –0.25 | –0.11 | 0.89 | 1.67 | 0.46 | –1.07 | –1.92 | –0.57 | |
NorthwestChina | SW(W/m2) | –1.23 | –2.02 | –0.74 | 5.58 | 9.01 | 3.28 | –6.81 | –11.03 | –4.02 |
LW(W/m2) | 0.47 | 0.77 | 0.27 | –2.58 | –4.15 | –1.55 | 3.05 | 4.92 | 1.82 | |
Net(W/m2) | –0.76 | –1.25 | –0.47 | 3.00 | 4.86 | 1.73 | –3.76 | –6.11 | –2.20 |
TOA | ATM | SFC | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
CTL | DoubleDust | HalfDust | CTL | DoubleDust | HalfDust | CTL | DoubleDust | HalfDust | ||
DSR | SW(W/m2) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
LW(W/m2) | –0.48 | –0.66 | –0.33 | –3.21 | –5.12 | –1.93 | 2.73 | 4.46 | 1.60 | |
Net(W/m2) | –0.48 | –0.66 | –0.33 | –3.21 | –5.12 | –1.93 | 2.73 | 4.46 | 1.60 | |
DAR | SW(W/m2) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
LW(W/m2) | –0.05 | –0.12 | –0.02 | –0.44 | –0.82 | –0.23 | 0.39 | 0.70 | 0.21 | |
Net(W/m2) | –0.05 | –0.12 | –0.02 | –0.44 | –0.82 | –0.23 | 0.39 | 0.70 | 0.21 | |
NorthwestChina | SW(W/m2) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
LW(W/m2) | –0.45 | –0.61 | –0.31 | –2.65 | –4.18 | –1.61 | 2.20 | 3.57 | 1.30 | |
Net(W/m2) | –0.45 | –0.61 | –0.31 | –2.65 | –4.18 | –1.61 | 2.20 | 3.57 | 1.30 |
Daytime | Nighttime | ||||||
---|---|---|---|---|---|---|---|
CTL | DoubleDust | HalfDust | CTL | DoubleDust | HalfDust | ||
DSR | T(°C) | –0.035 | –0.059 | –0.021 | 0.100 | 0.164 | 0.060 |
Q(W/m2) | –2.95 | –4.86 | –1.75 | 4.07 | 6.64 | 2.42 | |
DAR | T(°C) | –0.0065 | –0.008 | –0.005 | 0.0062 | 0.022 | 0.001 |
Q(W/m2) | –0.35 | –0.67 | –0.18 | 0.46 | 0.83 | 0.24 | |
NorthwestChina | T(°C) | –0.023 | –0.035 | –0.015 | 0.093 | 0.154 | 0.056 |
Q(W/m2) | –2.17 | –3.49 | –1.29 | 3.28 | 5.33 | 1.96 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Su, S.; Yin, Z.; Sun, C.; Xie, X.; Wang, T.; Yasheng, D.; Chen, J.; Zhang, X.; Yang, Y. Quantitatively Assessing the Contributions of Dust Aerosols to Direct Radiative Forcing Based on Remote Sensing and Numerical Simulation. Remote Sens. 2022, 14, 660. https://doi.org/10.3390/rs14030660
Wang J, Su S, Yin Z, Sun C, Xie X, Wang T, Yasheng D, Chen J, Zhang X, Yang Y. Quantitatively Assessing the Contributions of Dust Aerosols to Direct Radiative Forcing Based on Remote Sensing and Numerical Simulation. Remote Sensing. 2022; 14(3):660. https://doi.org/10.3390/rs14030660
Chicago/Turabian StyleWang, Jinyan, Shixiang Su, Zelun Yin, Caixia Sun, Xiangshan Xie, Tianyu Wang, Dilinuer Yasheng, Jinche Chen, Xin Zhang, and Yi Yang. 2022. "Quantitatively Assessing the Contributions of Dust Aerosols to Direct Radiative Forcing Based on Remote Sensing and Numerical Simulation" Remote Sensing 14, no. 3: 660. https://doi.org/10.3390/rs14030660
APA StyleWang, J., Su, S., Yin, Z., Sun, C., Xie, X., Wang, T., Yasheng, D., Chen, J., Zhang, X., & Yang, Y. (2022). Quantitatively Assessing the Contributions of Dust Aerosols to Direct Radiative Forcing Based on Remote Sensing and Numerical Simulation. Remote Sensing, 14(3), 660. https://doi.org/10.3390/rs14030660