Hyperspectral Image Restoration via Spatial-Spectral Residual Total Variation Regularized Low-Rank Tensor Decomposition
<p>Examples of differences between 3DTV and SSTV with Band 115 of real Urban dataset. The 3DTV calculates the L<sub>1</sub> norm of spatial-spectral differences (blue line). SSRTV evaluates the L<sub>1</sub> norm of both direct spatial and spatial-spectral residual differences (red line). The <math display="inline"><semantics> <mrow> <msub> <mi>D</mi> <mi>h</mi> </msub> <mi mathvariant="script">X</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>D</mi> <mi>v</mi> </msub> <mi mathvariant="script">X</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>D</mi> <mi>p</mi> </msub> <mi mathvariant="script">X</mi> </mrow> </semantics></math> in (<b>a</b>–<b>c</b>) respectively represent differences of <math display="inline"><semantics> <mi mathvariant="script">X</mi> </semantics></math> along the horizontal, vertical, and spectral directions. The <math display="inline"><semantics> <mrow> <msub> <mi>D</mi> <mi>h</mi> </msub> <mfenced> <mrow> <msub> <mi>D</mi> <mi>p</mi> </msub> <mi mathvariant="script">X</mi> </mrow> </mfenced> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>D</mi> <mi>v</mi> </msub> <mfenced> <mrow> <msub> <mi>D</mi> <mi>p</mi> </msub> <mi mathvariant="script">X</mi> </mrow> </mfenced> </mrow> </semantics></math> in (<b>d</b>) and (<b>e</b>) represent differences of <math display="inline"><semantics> <mrow> <msub> <mi>D</mi> <mi>p</mi> </msub> <mi mathvariant="script">X</mi> </mrow> </semantics></math> along the horizontal and vertical directions.</p> "> Figure 2
<p>The histogram of (<b>a</b>) <math display="inline"><semantics> <mrow> <msub> <mi>D</mi> <mi>p</mi> </msub> <mi mathvariant="script">X</mi> <mo>,</mo> </mrow> </semantics></math> (<b>b</b>) <math display="inline"><semantics> <mrow> <msub> <mi>D</mi> <mi>h</mi> </msub> <mfenced> <mrow> <msub> <mi>D</mi> <mi>p</mi> </msub> <mi mathvariant="script">X</mi> </mrow> </mfenced> <mo>,</mo> <mrow> <mo> </mo> <mi>and</mi> </mrow> </mrow> </semantics></math> (<b>c</b>) <math display="inline"><semantics> <mrow> <msub> <mi>D</mi> <mi>v</mi> </msub> <mfenced> <mrow> <msub> <mi>D</mi> <mi>p</mi> </msub> <mi mathvariant="script">X</mi> </mrow> </mfenced> </mrow> </semantics></math>.</p> "> Figure 3
<p>Illustration of deadlines and stripes in Urban data. (<b>a</b>) Band 204. (<b>b</b>) Band 206.</p> "> Figure 4
<p>The flowchart of the LRTDSSRTV model.</p> "> Figure 5
<p>Denoised results of all the methods: (<b>a</b>) Original band 46. (<b>b</b>) Noisy band under case 1. (<b>c</b>) LRMR. (<b>d</b>) LRTV. (<b>e</b>) SSTV. (<b>f</b>) LRTDTV. (<b>g</b>) LRTDGS. (<b>h</b>) LRTDSSRTV.</p> "> Figure 6
<p>Denoised results of all the methods: (<b>a</b>) Original band 168. (<b>b</b>) Noisy band in case 5. (<b>c</b>) LRMR. (<b>d</b>) LRTV. (<b>e</b>) SSTV. (<b>f</b>) LRTDTV. (<b>g</b>) LRTDGS. (<b>h</b>) LRTDSSRTV.</p> "> Figure 7
<p>Denoised results of all the methods: (<b>a</b>) Original band 162. (<b>b</b>) Noisy band in case 6. (<b>c</b>) LRMR. (<b>d</b>) LRTV. (<b>e</b>) SSTV. (<b>f</b>) LRTDTV. (<b>g</b>) LRTDGS. (<b>h</b>) LRTDSSRTV.</p> "> Figure 8
<p>Detailed PSNR/SSIM evaluation of all the methods for each band: (<b>a</b>,<b>b</b>) Case 1, (<b>c</b>,<b>d</b>) Case 2, (<b>e</b>,<b>f</b>) Case 3, (<b>g</b>,<b>h</b>) Case 4, (<b>i</b>,<b>j</b>) Case 5, (<b>k</b>,<b>l</b>) Case 6.</p> "> Figure 8 Cont.
<p>Detailed PSNR/SSIM evaluation of all the methods for each band: (<b>a</b>,<b>b</b>) Case 1, (<b>c</b>,<b>d</b>) Case 2, (<b>e</b>,<b>f</b>) Case 3, (<b>g</b>,<b>h</b>) Case 4, (<b>i</b>,<b>j</b>) Case 5, (<b>k</b>,<b>l</b>) Case 6.</p> "> Figure 9
<p>From top to bottom are the differences between the original spectrum and the restoration results of locations (86, 75), (55, 90), and (115, 102) in the spatial domain on the Indian Pines’ dataset in cases 1, 5, and 6, respectively. (<b>a</b>) Noisy. (<b>b</b>) LRMR. (<b>c</b>) LRTV. (<b>d</b>) SSTV (<b>e</b>) LRTDTV. (<b>f</b>) LRTDGS. (<b>g</b>) LRTDSSRTV.</p> "> Figure 9 Cont.
<p>From top to bottom are the differences between the original spectrum and the restoration results of locations (86, 75), (55, 90), and (115, 102) in the spatial domain on the Indian Pines’ dataset in cases 1, 5, and 6, respectively. (<b>a</b>) Noisy. (<b>b</b>) LRMR. (<b>c</b>) LRTV. (<b>d</b>) SSTV (<b>e</b>) LRTDTV. (<b>f</b>) LRTDGS. (<b>g</b>) LRTDSSRTV.</p> "> Figure 10
<p>Restoration results of all comparison methods for band 104 of the real Indian Pines’ dataset. (<b>a</b>) Original. (<b>b</b>) LRMR. (<b>c</b>) LRTV. (<b>d</b>) SSTV. (<b>e</b>) LRTDTV. (<b>f</b>) LRTDGS. (<b>g</b>) LRTDSSRTV.</p> "> Figure 11
<p>Restoration results of all comparison methods for band 150 of the real Indian Pines’ dataset. (<b>a</b>) Original. (<b>b</b>) LRMR. (<b>c</b>) LRTV. (<b>d</b>) SSTV. (<b>e</b>) LRTDTV. (<b>f</b>) LRTDGS. (<b>g</b>) LRTDSSRTV.</p> "> Figure 12
<p>Restoration results of all comparison methods for band 108 of the real Urban dataset. (<b>a</b>) Original. (<b>b</b>) LRMR. (<b>c</b>) LRTV. (<b>d</b>) SSTV. (<b>e</b>) LRTDTV. (<b>f</b>) LRTDGS. (<b>g</b>) LRTDSSRTV.</p> "> Figure 13
<p>Spectral signatures’ curve of band 108 for the real Urban dataset estimated by different methods: (<b>a</b>) Original. (<b>b</b>) LRMR. (<b>c</b>) LRTV. (<b>d</b>) SSTV. (<b>e</b>) LRTDTV. (<b>f</b>) LRTDGS. (<b>g</b>) Proposed.</p> "> Figure 14
<p>Restoration results of all comparison methods for band 208 of the real Urban dataset. (<b>a</b>) Original. (<b>b</b>) LRMR. (<b>c</b>) LRTV. (<b>d</b>) SSTV. (<b>e</b>) LRTDTV. (<b>f</b>) LRTDGS. (<b>g</b>) LRTDSSRTV.</p> "> Figure 15
<p>Spectral signatures’ curve of band 208 for the real Urban dataset estimated by different methods: (<b>a</b>) Original. (<b>b</b>) LRMR. (<b>c</b>) LRTV. (<b>d</b>) SSTV. (<b>e</b>) LRTDTV. (<b>f</b>) LRTDGS. (<b>g</b>) LRTDSSRTV.</p> "> Figure 16
<p>Classification map on Indian pines’ dataset, (<b>a</b>) true values, (<b>b</b>) before denoising, (<b>c</b>) LRMR, (<b>d</b>) LRTV, (<b>e</b>) SSTV, (<b>f</b>) LRTDTV, (<b>g</b>) LRTDGS, (<b>h</b>) SSRTV.</p> "> Figure 17
<p>Sensitivity analysis between parameters <span class="html-italic">ρ</span> and <span class="html-italic">τ</span> using the simulated Indian Pines’ dataset. (<b>a</b>) Case 1. (<b>b</b>) Case 5. (<b>c</b>) Cases 6.</p> "> Figure 18
<p>Performance with weight parameter <span class="html-italic">w</span><sub>3</sub>. (<b>a</b>) MPSNR value vs. <span class="html-italic">w</span><sub>3,</sub> (<b>b</b>) MSSIM value vs. <span class="html-italic">w</span><sub>3</sub>.</p> "> Figure 19
<p>MPSNR and relative change values versus the iteration number of LRTDSSRTV: (<b>a</b>,<b>b</b>) for case 1; (<b>c</b>,<b>d</b>) for case 5; (<b>e</b>,<b>f</b>) for case 6.</p> ">
Abstract
:1. Introduction
- (1)
- We designed a Spatial-Spectral Residual Total Variation (SSRTV) to better capture both the direct spatial and spatial-spectral piecewise smoothness of HSI. This can overcome disadvantages of previous TV methods, that is, the low-rank regularization fails to remove the structured sparse noise.
- (2)
- The SSRTV was incorporated into the LRTD model to separate the underlying clean HSI from its degraded version with mixed noise. LRTD was adopted to preserve the global spatial and spectral correlation of HSI and restore the clean low-rank HSI.
- (3)
- The classical higher-order orthogonal iteration (HOOI) algorithm [30] was adopted to achieve the Tucker decomposition efficiently, without bringing an extra computational burden. By using alternating direction method of multipliers (ADMM), our method was split into several simpler sub-problems. Compared with the methods based on low-rank matrix/tensor decomposition, the experimental results with the simulations and real data validated the proposed method.
2. Notations and Preliminaries
3. Proposed Model
3.1. Observation Model with Mixed Noise
3.2. Directional Structure Sparse Priori of S
3.3. Low-Rank Priori of HSI
3.4. SSRTV Regularization
3.5. Model Proposal and Optimization
Algorithm 1: Optimization Process for LRTDSSRTV Solver |
Input: Noisy image , regularization parameters ρ and τ, the weights wi s, estimated rank (r1, r2, r3) for Tucker decomposition, the stopping criteria ε, the maximum iteration kmax, μmax = 106, and η = 1.5. |
1: Initialize: Let = , Di = 0 (i = 1, 2, 3, 4, 5), Λj = 0 (j = 1, 2, 3, 4, 5, 6, 7), current iteration k = 0, and μmax = 106 |
2: while not converged do |
3: Update and via (13) and then . |
4: Compute via (14). |
5: Update D1, D2, D4, D5 via (16)–(19). |
6: Compute D3 via 3D FFT (22). |
7: Update via 3D FFT (25) |
8: Compute the Lagrange multipliers Λj by (26)–(32). |
9: Update the penalty parameter μ = min{ημ, μmax}. |
10: Check the convergence condition k < kmax and . |
11: end while |
Output: The restoration result . |
4. Experimental Results and Analysis
4.1. Experiment with Simulated Data
4.2. Real-World Data Experiments
4.2.1. AVIRIS Indian Pines’ Dataset
4.2.2. HYDICE Urban Dataset
4.3. Classification Performance Comparison
5. Discussion
- (1)
- Parameters’ selection
- (2)
- Convergence Analysis
- (3)
- Operation time analysis
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bioucas-Dias, J.M.; Plaza, A.; Camps-Valls, G.; Scheunders, P.; Nasrabadi, N.; Chanussot, J. Hyperspectral remote sensing data analysis and future challenges. IEEE Geosci. Remote Sens. Mag. 2013, 1, 6–36. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; He, W.; Zhang, L.; Shen, H.; Yuan, Q. Hyperspectral Image Restoration Using Low-Rank Matrix Recovery. IEEE Trans. Geosci. Remote Sens. 2014, 52, 4729–4743. [Google Scholar] [CrossRef]
- Sun, L.; Wu, Z.; Xiao, L.; Liu, J.; Wei, Z.; Dang, F. A novel l 1/2 sparse regression method for hyperspectral unmixing. Int. J. Remote Sens. 2013, 34, 6983–7001. [Google Scholar] [CrossRef]
- Sun, L.; Wang, S.; Wang, J.; Zheng, Y.; Jeon, B. Hyperspectral classification employing spatial–spectral low rank representation in hidden fields. J. Ambient. Intell. Humaniz. Comput. 2017, 1–12. [Google Scholar] [CrossRef]
- Wu, Z.; Shi, L.; Li, J.; Wang, Q.; Sun, L.; Wei, Z.; Plaza, J.; Plaza, A. GPU Parallel Implementation of Spatially Adaptive Hyperspectral Image Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 11, 1131–1143. [Google Scholar] [CrossRef]
- Xu, Y.; Wu, Z.; Li, J.; Plaza, A.; Wei, Z. Anomaly Detection in Hyperspectral Images Based on Low-Rank and Sparse Representation. IEEE Trans. Geosci. Remote Sens. 2016, 54, 1990–2000. [Google Scholar] [CrossRef]
- Bollenbeck, F.; Backhaus, A.; Seiffert, U. A multivariate wavelet-PCA denoising-filter for hyperspectral images. In Proceedings of the 2011 3rd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Lisbon, Portugal, 6–9 June 2011; pp. 1–4. [Google Scholar]
- Heo, A.; Lee, J.-H.; Choi, E.-J.; Choi, W.-C.; Kim, S.H.; Park, D.-J. Noise reduction of hyperspectral images using a joint bilateral filter with fused images. In Proceedings of the SPIE—The International Society for Optical Engineering, Orlando, FL, USA, 20 May 2011; p. 80481R. [Google Scholar]
- Liu, X.; Bourennane, S.; Fossati, C. Denoising of Hyperspectral Images Using the PARAFAC Model and Statistical Performance Analysis. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3717–3724. [Google Scholar] [CrossRef]
- Green, A.; Berman, M.; Switzer, P.; Craig, M. A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Trans. Geosci. Remote Sens. 1988, 26, 65–74. [Google Scholar] [CrossRef] [Green Version]
- Elad, M.; Aharon, M. Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Processing 2006, 15, 3736–3745. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Peng, J.; Zhao, Q.; Leung, Y.; Zhao, X.-L.; Meng, D. Hyperspectral Image Restoration Via Total Variation Regularized Low-Rank Tensor Decomposition. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 1227–1243. [Google Scholar] [CrossRef] [Green Version]
- Karami, A.; Yazdi, M.; Asli, A.Z. Noise Reduction of Hyperspectral Images Using Kernel Non-Negative Tucker Decomposition. IEEE J. Sel. Top. Signal Processing 2011, 5, 487–493. [Google Scholar] [CrossRef]
- Peng, Y.; Meng, D.; Xu, Z.; Gao, C.; Yang, Y.; Zhang, B. Decomposable Nonlocal Tensor Dictionary Learning for Multispectral Image Denoising. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 24–27 June 2014; pp. 2949–2956. [Google Scholar]
- Othman, H.; Qian, S.-E. Noise reduction of hyperspectral imagery using hybrid spatial-spectral derivative-domain wavelet shrinkage. IEEE Trans. Geosci. Remote Sens. 2006, 44, 397–408. [Google Scholar] [CrossRef]
- Zhao, Y.-Q.; Yang, J. Hyperspectral Image Denoising via Sparse Representation and Low-Rank Constraint. IEEE Trans. Geosci. Remote Sens. 2015, 53, 296–308. [Google Scholar] [CrossRef]
- Yuan, Q.; Zhang, L.; Shen, H. Hyperspectral Image Denoising Employing a Spectral–Spatial Adaptive Total Variation Model. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3660–3677. [Google Scholar] [CrossRef]
- Chen, Y.; Guo, Y.; Wang, Y.; Wang, D.; Peng, C.; He, G. Denoising of Hyperspectral Images Using Nonconvex Low Rank Matrix Approximation. IEEE Trans. Geosci. Remote Sens. 2017, 55, 5366–5380. [Google Scholar] [CrossRef]
- Xie, Y.; Qu, Y.; Tao, D.; Wu, W.; Yuan, Q.; Zhang, W. Hyperspectral image restoration via iteratively regularized weighted Schatten p-norm minimization. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4642–4659. [Google Scholar] [CrossRef]
- Xie, Y.; Gu, S.; Liu, Y.; Zuo, W.; Zhang, W.; Zhang, L. Weighted Schatten p-norm minimization for image denoising and background subtraction. IEEE Trans. Image Processing 2016, 25, 4842–4857. [Google Scholar] [CrossRef] [Green Version]
- He, W.; Zhang, H.; Zhang, L.; Shen, H. Total-Variation-Regularized Low-Rank Matrix Factorization for Hyperspectral Image Restoration. IEEE Trans. Geosci. Remote Sens. 2016, 54, 178–188. [Google Scholar] [CrossRef]
- Zheng, X.; Yuan, Y.; Lu, X. Hyperspectral Image Denoising by Fusing the Selected Related Bands. IEEE Trans. Geosci. Remote Sens. 2018, 57, 2596–2609. [Google Scholar] [CrossRef]
- Aggarwal, H.K.; Majumdar, A. Hyperspectral Image Denoising Using Spatio-Spectral Total Variation. IEEE Geosci. Remote Sens. Lett. 2016, 13, 442–446. [Google Scholar] [CrossRef]
- He, W.; Zhang, H.; Shen, H.; Zhang, L. Hyperspectral Image Denoising Using Local Low-Rank Matrix Recovery and Global Spatial–Spectral Total Variation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 713–729. [Google Scholar] [CrossRef]
- Sun, L.; Jeon, B.; Zheng, Y.; Wu, Z. A Novel Weighted Cross Total Variation Method for Hyperspectral Image Mixed Denoising. IEEE Access 2017, 5, 27172–27188. [Google Scholar] [CrossRef]
- Fan, H.; Li, C.; Guo, Y.; Kuang, G.; Ma, J. Spatial–Spectral Total Variation Regularized Low-Rank Tensor Decomposition for Hyperspectral Image Denoising. IEEE Trans. Geosci. Remote Sens. 2018, 56, 6196–6213. [Google Scholar] [CrossRef]
- Huang, Z.; Li, S.; Fang, L.; Li, H.; Benediktsson, J.A. Hyperspectral Image Denoising With Group Sparse and Low-Rank Tensor Decomposition. IEEE Access 2017, 6, 1380–1390. [Google Scholar] [CrossRef]
- Takeyama, S.; Ono, S.; Kumazawa, I. Mixed Noise Removal for Hyperspectral Images Using Hybrid Spatio-Spectral Total Variation. In Proceedings of the 2019 IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, 22–25 September 2019; pp. 3128–3132. [Google Scholar]
- Yuan, Y.; Zheng, X.; Lu, X. Spectral–Spatial Kernel Regularized for Hyperspectral Image Denoising. IEEE Trans. Geosci. Remote Sens. 2015, 53, 3815–3832. [Google Scholar] [CrossRef]
- Kolda, T.; Bader, B.W. Tensor Decompositions and Applications. SIAM Rev. 2009, 51, 455–500. [Google Scholar] [CrossRef]
- Huang, Y.-M.; Yan, H.-Y.; Zeng, T. Multiplicative Noise Removal Based on Unbiased Box-Cox Transformation. Commun. Comput. Phys. 2017, 22, 803–828. [Google Scholar] [CrossRef]
- Chen, Y.; He, W.; Yokoya, N.; Huang, T.-Z. Hyperspectral Image Restoration Using Weighted Group Sparsity-Regularized Low-Rank Tensor Decomposition. IEEE Trans. Cybern. 2019, 50, 3556–3570. [Google Scholar] [CrossRef] [PubMed]
- Zhu, R.; Dong, M.; Xue, J.-H. Spectral Nonlocal Restoration of Hyperspectral Images With Low-Rank Property. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 3062–3067. [Google Scholar] [CrossRef]
- He, W.; Zhang, H.; Zhang, L.; Shen, H. Hyperspectral Image Denoising via Noise-Adjusted Iterative Low-Rank Matrix Approximation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 3050–3061. [Google Scholar] [CrossRef]
- Xu, H.; Caramanis, C.; Sanghavi, S. Robust PCA via Outlier Pursuit. IEEE Trans. Inf. Theory 2012, 58, 3047–3064. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.; Lin, Z.; Yan, S.; Sun, J.; Yu, Y.; Ma, Y. Robust Recovery of Subspace Structures by Low-Rank Representation. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 171–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bioucas-Dias, J.M.; Plaza, A.; Dobigeon, N.; Parente, M.; Du, Q.; Gader, P.; Chanussot, J. Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 354–379. [Google Scholar] [CrossRef] [Green Version]
- Boyd, S.; Parikh, N.; Chu, E. Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers. Found. Trends Mach. Learn. 2010, 3, 1–122. [Google Scholar] [CrossRef]
- Feng, P.; Ling, B.W.; Lei, R.; Chen, J. Singular spectral analysis-based denoising without computing singular values via augmented Lagrange multiplier algorithm. IET Signal Processing 2019, 13, 149–156. [Google Scholar] [CrossRef]
- Wang, Q.; Wu, Z.; Jin, J.; Wang, T.; Shen, Y. Low rank constraint and spatial spectral total variation for hyperspectral image mixed denoising. Signal Processing 2018, 142, 11–26. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, H.C.; Sheikh, H.R.; Simoncelli, E.P. Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE Trans. Image Processing 2004, 13, 600–612. [Google Scholar] [CrossRef] [Green Version]
- Kong, X.; Zhao, Y.; Xue, J.; Chan, J.C.-W.; Kong, S.G. Global and Local Tensor Sparse Approximation Models for Hyperspectral Image Destriping. Remote Sens. 2020, 12, 704. [Google Scholar] [CrossRef] [Green Version]
- Toksoz, M.A.; Ulusoy, I. Hyperspectral Image Classification via Basic Thresholding Classifier. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4039–4051. [Google Scholar] [CrossRef]
- Bioucas-Dias, J.; Nascimento, J. Hyperspectral Subspace Identification. IEEE Trans. Geosci. Remote Sens. 2008, 46, 2435–2445. [Google Scholar] [CrossRef] [Green Version]
Noise Case | Evaluation Index | Noise | LRMR | LRTV | SSTV | LRTDTV | LRTDGS | LRTDSSRTV |
---|---|---|---|---|---|---|---|---|
CASE 1 | MPSNR (dB) | 20.373 | 33.265 | 37.053 | 32.117 | 39.957 | 40.216 | 41.895 |
MSSIM | 0.3896 | 0.8978 | 0.9834 | 0.8587 | 0.9912 | 0.9939 | 0.9963 | |
ERGAS | 380.198 | 48.91 | 47.303 | 60.23 | 24.371 | 24.306 | 23.561 | |
SAM | 0.3201 | 0.0366 | 0.0403 | 0.0445 | 0.0149 | 0.0149 | 0.0136 | |
CASE 2 | MPSNR (dB) | 18.972 | 33.294 | 36.268 | 31.616 | 38.582 | 39.456 | 40.818 |
MSSIM | 0.3953 | 0.9073 | 0.9838 | 0.8649 | 0.9888 | 0.9933 | 0.9958 | |
ERGAS | 346.025 | 47.540 | 46.265 | 60.061 | 30.873 | 25.216 | 23.529 | |
SAM | 0.2906 | 0.0364 | 0.0369 | 0.0449 | 0.0217 | 0.0174 | 0.0157 | |
CASE 3 | MPSNR (dB) | 12.782 | 32.603 | 36.103 | 31.002 | 37.702 | 39.141 | 39.891 |
MSSIM | 0.2183 | 0.8928 | 0.9816 | 0.8472 | 0.9866 | 0.9936 | 0.9921 | |
ERGAS | 500.499 | 50.092 | 56.685 | 63.562 | 30.005 | 25.254 | 24.130 | |
SAM | 0.4001 | 0.0376 | 0.0435 | 0.0473 | 0.0185 | 0.0165 | 0.0173 | |
CASE 4 | MPSNR (dB) | 12.725 | 32.423 | 36.033 | 30.886 | 37.3536 | 38.897 | 39.963 |
MSSIM | 0.2167 | 0.8902 | 0.9814 | 0.8432 | 0.9859 | 0.9928 | 0.9934 | |
ERGAS | 502.705 | 3.227 | 3.597 | 4.069 | 2.094 | 1.612 | 1.539 | |
SAM | 0.4014 | 0.0387 | 0.0460 | 0.0482 | 0.0217 | 0.0171 | 0.0166 | |
CASE 5 | MPSNR (dB) | 11.296 | 36.425 | 37.382 | 37.157 | 39.465 | 41.419 | 44.403 |
MSSIM | 0.1946 | 0.9481 | 0.9804 | 0.9587 | 0.9886 | 0.9938 | 0.9949 | |
ERGAS | 624.857 | 39.753 | 89.326 | 40.931 | 40.974 | 28.466 | 25.653 | |
SAM | 0.4908 | 0.0301 | 0.0638 | 0.0252 | 0.0264 | 0.0120 | 0.0108 | |
CASE 6 | MPSNR (dB) | 12.589 | 32.124 | 34.739 | 30.768 | 37.427 | 38.102 | 38.963 |
MSSIM | 0.2140 | 0.8889 | 0.9748 | 0.8420 | 0.9855 | 0.9903 | 0.9926 | |
ERGAS | 509.281 | 54.096 | 72.748 | 66.103 | 35.117 | 30.921 | 27.102 | |
SAM | 0.4079 | 0.0414 | 0.0584 | 0.0495 | 0.0246 | 0.0221 | 0.0193 |
Index | Original | LRMR | LRTV | SSTV | LRTDTV | LRTDGS | LRTDSSRTV |
---|---|---|---|---|---|---|---|
OA | 79.24 | 81.39 | 81.99 | 86.99 | 86.64 | 87.08 | 91.11 |
AA | 78.37 | 80.97 | 81.14 | 86.95 | 85.58 | 87.01 | 90.34 |
Ka | 0.7621 | 0.7712 | 0.7731 | 0.8336 | 0.7884 | 0.7944 | 0.8982 |
Dataset | LRMR | LRTV | SSTV | LRTDTV | LRTDGS | LRTDSSRTV |
---|---|---|---|---|---|---|
Indian pines | 49 | 93 | 648 | 358 | 263 | 380 |
Urban | 343 | 593 | 2016 | 768 | 516 | 797 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kong, X.; Zhao, Y.; Chan, J.C.-W.; Xue, J. Hyperspectral Image Restoration via Spatial-Spectral Residual Total Variation Regularized Low-Rank Tensor Decomposition. Remote Sens. 2022, 14, 511. https://doi.org/10.3390/rs14030511
Kong X, Zhao Y, Chan JC-W, Xue J. Hyperspectral Image Restoration via Spatial-Spectral Residual Total Variation Regularized Low-Rank Tensor Decomposition. Remote Sensing. 2022; 14(3):511. https://doi.org/10.3390/rs14030511
Chicago/Turabian StyleKong, Xiangyang, Yongqiang Zhao, Jonathan Cheung-Wai Chan, and Jize Xue. 2022. "Hyperspectral Image Restoration via Spatial-Spectral Residual Total Variation Regularized Low-Rank Tensor Decomposition" Remote Sensing 14, no. 3: 511. https://doi.org/10.3390/rs14030511
APA StyleKong, X., Zhao, Y., Chan, J. C. -W., & Xue, J. (2022). Hyperspectral Image Restoration via Spatial-Spectral Residual Total Variation Regularized Low-Rank Tensor Decomposition. Remote Sensing, 14(3), 511. https://doi.org/10.3390/rs14030511