Evaluation and Assimilation of FY-3C/D MWHS-2 Radiances in the RMAPS-ST
<p>RMAPS-ST domains with topographic features.</p> "> Figure 2
<p>The spatial distribution of MWSH-2 channel 11 brightness temperatures before and after all quality control procedures at 0300 UTC 20 July 2019 for satellite FY-3C and at 0600 UTC 20 July 2019 for FY-3D, respectively.</p> "> Figure 3
<p>Histogram of the brightness temperature innovations distribution with (red) and without bias correction (blue) for MWHS-2 channels 11 and 14 from FY-3C and FY-3D, respectively.</p> "> Figure 4
<p>The statistics of observation number, background departure and analysis departure for each channel of MWHS-2 on satellite FY-3C (left) at 0300 UTC and FY-3D (right) at 0600 UTC 20 July 2019, respectively.</p> "> Figure 5
<p>The scatter plots of the calculated brightness temperatures with and without bias correction vs. observations for MWHS-2 channel 11 on satellite FY-3C and FY-3D. The first row is for MWHS-2 of FY-3C at 0300 UTC and the second row for that of FY-3D at 0600 UTC 20 July 2019.</p> "> Figure 6
<p>Varieties of the mean bias and the standard deviation over time from 0000 UTC on 1 July 2019 to 2300 UTC on 31 July 2019 for the background and the analysis departures in MWHS channle 11 on the satellite of FY-3C and FY-3D.</p> "> Figure 7
<p>RMSEs of the forecast humidity (first row) and temperature (second row) profiles for CTRL (blue line) and MWHS-2 (red line) experiments against observations at 00 h, 06 h, 12 h and 18 h of the forecasts.</p> "> Figure 8
<p>RMSEs of the forecasting zonal (UGRD: first row) wind and meridional (VGRD: second row) wind for CTRL (blue line) and MWHS-2 (red line) experiments against observations at 00 h, 06 h, 12 h, and 18 h of the forecasts.</p> "> Figure 9
<p>RMSEs of the temperature (TMP) at 2 m (<b>left</b>), the wind at 10 m (<b>middle</b>), and the humidity (Qv) at 2 m (<b>right</b>) over the forecast time of 0–24 h against observations for CTRL (blue) and MWHS-2 (red) experiments.</p> "> Figure 10
<p>The CSI, BIAS and FAR scores of 3-h accumulated precipitation from the CTRL and the MWHS-2 forecasts in the 9-km domain for the threshold of 1.0 mm, 5.0 mm and 10.0 mm.</p> "> Figure 11
<p>The CSI and BIAS scores of 6-h accumulated precipitation from the CTRL and the MWHS-2 forecasts in the nested 3-km domain for the threshold of 0.1 mm, 1.0 mm, 5.0 mm, and 10.0 mm.</p> "> Figure 12
<p>Mean bias (dash line in the first row) and RMSE (solid line in the second row) of humidity at 00 h, 06 h and 12 h of the forecasts starting at 03 UTC, 06 UTC, 12 UTC and 18 UTC against observations.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. RMAPS-ST System
2.2. MWHS-2
2.3. Assimilation Trials
2.3.1. Experiment Design
2.3.2. Handling of Radiance Data
2.4. Verification
3. Results
3.1. Departure Statistics
3.2. Verification against Observations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, M.; Rood, R.B.; Joiner, J. Assimilating TOVS Humidity into the GEOS-2 Data Assimilation System. J. Clim. 1999, 12, 2983–2995. [Google Scholar] [CrossRef]
- McNally, A.P.; Vesperini, M. Variational analysis of humidity information feom TOVS radiances. Q. J. R. Meteorol. Soc. 1996, 122, 1521–1544. [Google Scholar] [CrossRef]
- English, S.J.; Renshaw, R.J.; Dibben, P.C.; Smith, A.J.; Rayer, P.J. A comparison of the impact of TOVS arid ATOVS satellite sounding data on the accuracy of numerical weather forecasts. Quart. J. Roy. Meteorol. Soc. 2000, 126, 2911–2931. [Google Scholar] [CrossRef]
- Derber, J.C.; Wu, W.S. The use of TOVS cloud-cleared radiances in the NCEP SSI analysis system. Mon. Wea. Rev. 1998, 126, 2287–2299. [Google Scholar] [CrossRef]
- Bauer, P.; Lopez, P.; Benedetti, A.; Salmond, D.; Moreau, E. Implementation of 1D+4D-Var assimilation of precipitation-affected microwave radiances at ECMWF. I: 1D-Var. Q. J. R. Meteorol. Soc. 2006, 132, 2277–2306. [Google Scholar] [CrossRef]
- Masahiro, K. Operational use of satellite radiance in JMA mesoscale analysis. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; pp. 2442–2445. [Google Scholar] [CrossRef]
- Joo, S.; Eyre, J.; Marriott, R. The impact of MetOp and other satellite data within the Met Office global NWP system using an adjoint-based sensitivity method. Mon. Weather Rev. 2013, 141, 3331–3342. [Google Scholar] [CrossRef]
- Zhu, G.; Xue, J.; Zhang, H.; Liu, Z.; Zhuang, S.; Huang, L.; Dong, P. Direct assimilation of satellite radiance data in GRAPES variational assimilation system. Chin. Sci. Bull. 2008, 53, 3465–3469. [Google Scholar] [CrossRef]
- Bormann, N.; Fouilloux, A.; Bell, W. Evaluation and assimilation of ATMS data in the ECMWF system. J. Geophys. Res. Atmos. 2013, 118, 12970–12980. [Google Scholar] [CrossRef]
- Lawrence, H.; Bormann, N.; Geer, A.; Lu, Q.; English, S.J. Evaluation and Assimilation of the Microwave Sounder MWHS-2 Onboard FY-3C in the ECMWF Numerical Weather Prediction System. IEEE Trans. Geosci. Remote Sens. 2018, 56, 3333–3349. [Google Scholar] [CrossRef]
- Qi, L.; Sun, J. Application of ATOVS Microwave Radiance Assimilation to Rainfall Prediction in Summer 2004. Adv. Atmos. Sci. 2006, 23, 815–830. [Google Scholar] [CrossRef]
- Sagita, N.; Hidayati, R.; Hidayat, R.; Gustari, I. Satellite radiance data assimilation for rainfall prediction in Java Region. IOP Conf. Ser. Earth Environ. Sci. 2017, 54, 012037. [Google Scholar] [CrossRef]
- Xie, Y.H.; Shi, J.C.; Fan, S.Y.; Chen, M.; Dou, Y.J.; Ji, D.B. Impact of radiance data assimilation on the prediction of heavy rainfall in RMAPS: A case study. Remote Sens. 2018, 10, 1380. [Google Scholar] [CrossRef] [Green Version]
- Mcnally, T.; Bonavita, M.; Thépaut, J.N. The role of satellite data in the forecasting of Hurricane Sandy. Mon. Wea. Rev. 2014, 142, 634–646. [Google Scholar] [CrossRef]
- Geer, A.J.; Baordo, F.; Bormann, N.; English, S.J. All-sky Assimilation of Microwave Humidity Sounders; ECMWF: Reading, UK, 2014; p. 741. [Google Scholar] [CrossRef]
- Radnoti, G.; Bauer, P.; McNally, A.; Cardinali, C.; Healy, S.; Rosnay, P.d. ECMWF Study on the Impact of Future Developments of the Space-Based Observing System on Numerical Weather Prediction; ECMWF: Reading, UK, 2010; p. 638. [Google Scholar] [CrossRef]
- Guan, L.; Zou, X.; Weng, F.; Li, G. Assessments of FY-3A Microwave Humidity Sounder measurements using NOAA-18 Microwave Humidity Sounder. J. Geophys. Res. 2011, 116. [Google Scholar] [CrossRef] [Green Version]
- Bonsignori, R. The microwave humidity sounder (MHS): In-orbit performance assessment. In Proceedings of the Sensors, Systems, and Next-Generation Satellites XI, Florence, Italy, 17–20 September 2007; p. 67440A. [Google Scholar] [CrossRef]
- Klaes, K.D.; Cohen, M.; Buhler, Y.; Schlüssel, P.; Munro, R.; Luntama, J.P.; von Engeln, A.; Clérigh, E.Ó.; Bonekamp, H.; Ackermann, J.; et al. An introduction to the EUMETSAT Polar system. Bull. Amer. Meteor. Soc. 2007, 88, 1085–1096. [Google Scholar] [CrossRef]
- Ma, Y.; Zou, X. Striping noise mitigation in ATMS brightness temperatures and its impact on cloud LWP retrievals. J. Geophys. Res. Atmos. 2015, 120, 6634–6653. [Google Scholar] [CrossRef]
- Zhang, P.; Lu, Q.; Hu, X.; Gu, S.; Yang, L.; Min, M.; Chen, L.; Xu, N.; Sun, L.; Bai, W.; et al. Latest progress of the chinese meteorological satellite program and core data processing technologies. Adv. Atmos. Sci. 2019, 36, 1027–1045. [Google Scholar] [CrossRef]
- He, J.Y.; Zhang, S.W.; Wang, Z.Z. Advanced Microwave Atmospheric Sounder (AMAS) Channel Specifications and T/V Calibration Results on FY-3C Satellite. IEEE Trans Geosci Remote Sens. 2015, 53, 481–493. [Google Scholar]
- Lu, Q.; Lawrence, H.; Bormann, N.; English, S.; Lean, K.; Atkinson, N.; Bell, W.; Carminati, F. An evaluation of FY-3C satellite data quality at ECMWF and the Met Office; ECMWF: Reading, UK, 2015; p. 767. [Google Scholar] [CrossRef]
- Carminati, F.; Migliorini, S. All-sky data assimilation of MWTS-2 and MWHS-2 in the Met Office global NWP system. Adv. Atmos. Sci. 2021, 38, 1682–1694. [Google Scholar] [CrossRef]
- Lindskog, M.; Dybbroe, A.; Randriamampianina, R. Use of microwave radiances from Metop-C and Fengyun-3 C/D satellites for a northern European limited-area data assimilation system. Adv. Atmos. Sci. 2021, 38, 1415–1428. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Duda, M.G.; Huang, X.Y.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF Version 3; NCAR Technical Note; University Corporation for Atmospheric Research: Boulder, CO, USA, 2008. [Google Scholar]
- Barker, D.; Huang, X.Y.; Liu, Z.; Auligné, T.; Zhang, X.; Rugg, S.; Ajjaji, R.; Bourgeois, A.; Bray, J.; Chen, Y.; et al. The weather research and forecasting model's community variational/ensemble data assimilation system: WRFDA. Bull. Amer. Meteor. Soc. 2012, 93, 831–843. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.; Fan, S.; Chen, M.; Shi, J.; Zhong, J.; Zhang, X. An assessment of satellite radiance data assimilation in RMAPS. Remote Sens. 2019, 11, 54. [Google Scholar] [CrossRef] [Green Version]
- Zhong, J.; Lu, B.; Wang, W.; Huang, C.; Yang, Y. Impact of Soil Moisture on Winter 2-m Temperature Forecasts in Northern China. J. Hydrometeorol. 2020, 21, 597–614. [Google Scholar] [CrossRef]
- Lu, B.; Zhong, J.; Wang, W.; Tang, S.; Zheng, Z. Influence of Near Real-Time Green Vegetation Fraction Data on Numerical Weather Prediction by WRF over North China. J. Meteor. Res. 2021, 35, 505–520. [Google Scholar] [CrossRef]
- Collard, A.; Hilton, F.; Forsythe, M.; Candy, B. From Observations to Forecasts—Part 8: The use of satellite observations in numerical weather prediction. Weather 2011, 66, 31–36. [Google Scholar] [CrossRef] [Green Version]
- Harris, B.A.; Kelly, G.A. A satellite radiance bias correction scheme for data assimilation. Q. J. R. Meteorol. Soc. 2001, 127, 1453–1468. [Google Scholar] [CrossRef]
- Dee, D.P. Bias and data assimilation. Q. J. R. Meteorol. Soc. 2005, 131, 3323–3343. [Google Scholar] [CrossRef] [Green Version]
- Dee, D.P.; Uppala, S. Variational bias correction of satellite radiance data in the ERA-Interim reanalysis. Q. J. R. Meteorol. Soc. 2009, 135, 1830–1841. [Google Scholar] [CrossRef]
- Wang, H.; Yang, Z.; Yang, D.; Gong, X. The method and application of automatic quali ty control for real time data from Automatic Weather Stations. Meteorol. Mon. 2007, 33, 102–109. [Google Scholar]
- Ren, Z.; Zhang, Z.; Sun, C.; Liu, Y.; Li, J. Development of three-step quality control system of real-time observation data from AWS in China. Meteorol. Mon. 2015, 41, 1265–1277. [Google Scholar]
- Schaffer, J.T. The critical success index as an indicator of warning skill. Wea. Forecast. 1990, 5, 570–575. [Google Scholar] [CrossRef] [2.0.CO;2" target='_blank'>Green Version]
- Casati, B.; Wilson, L.J.; Stephenson, D.B.; Nurmi, P.; Ghelli, A.; Pocernich, M.; Damrath, U.; Ebert, E.E.; Brown, B.G.; Mason, S. Forecast verification: Current status and future directions. Meteorol. Appl. 2008, 15, 3–18. [Google Scholar] [CrossRef]
- Bennartz, R.; Thoss, A.; Dybbroe, A.; Michelson, D.B. Precipitation analysis using the Advanced Microwave Sounding Unit in support of nowcasting applications. Meteor. Appl. 2002, 9, 177–189. [Google Scholar] [CrossRef]
Channel | Frequency (GHz) | Peak WF 1 (hPa) | Horizontal Resolution (km) |
---|---|---|---|
1 | 89.0 (QH) 2 | Surface | 29 |
2 | 118.75 ± 0.08 (QV) 3 | - | 29 |
3 | 118.75 ± 0.2 (QV) | - | 29 |
4 | 118.75 ± 0.3 (QV) | - | 29 |
5 | 118.75 ± 0.8 (QV) | - | 29 |
6 | 118.75 ± 1.1 (QV) | - | 29 |
7 | 118.75 ± 2.5 (QV) | - | 29 |
8 | 118.75 ± 3.0 (QV) | - | 29 |
9 | 118.75 ± 5.0 (QV) | - | 29 |
10 | 150.0 (QH) | Surface | 16 |
11 | 183.31 ± 1.0 (QV) | 400 hPa | 16 |
12 | 183.31 ± 1.8 (QV) | 500 hPa | 16 |
13 | 183.31 ± 3.0 (QV) | 600 hPa | 16 |
14 | 183.31 ± 4.5 (QV) | 700 hPa | 16 |
15 | 183.31 ± 7.0 (QV) | 800 hPa | 16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, Y.; Mao, L.; Chen, M.; Shi, J.; Fan, S.; Liu, R. Evaluation and Assimilation of FY-3C/D MWHS-2 Radiances in the RMAPS-ST. Remote Sens. 2022, 14, 275. https://doi.org/10.3390/rs14020275
Xie Y, Mao L, Chen M, Shi J, Fan S, Liu R. Evaluation and Assimilation of FY-3C/D MWHS-2 Radiances in the RMAPS-ST. Remote Sensing. 2022; 14(2):275. https://doi.org/10.3390/rs14020275
Chicago/Turabian StyleXie, Yanhui, Lu Mao, Min Chen, Jiancheng Shi, Shuiyong Fan, and Ruixia Liu. 2022. "Evaluation and Assimilation of FY-3C/D MWHS-2 Radiances in the RMAPS-ST" Remote Sensing 14, no. 2: 275. https://doi.org/10.3390/rs14020275
APA StyleXie, Y., Mao, L., Chen, M., Shi, J., Fan, S., & Liu, R. (2022). Evaluation and Assimilation of FY-3C/D MWHS-2 Radiances in the RMAPS-ST. Remote Sensing, 14(2), 275. https://doi.org/10.3390/rs14020275