Vegetation Mapping in the Permafrost Region: A Case Study on the Central Qinghai-Tibet Plateau
"> Figure 1
<p>Study area and the sample collection sites (<b>a</b>): the location of study area on the QTP, (<b>b</b>): the outline of study area and location of all samples, (<b>c</b>): color-coded samples for each vegetation type; ASM: alpine swamp meadow, AM: alpine meadow, AS: alpine steppe, AD: alpine desert.</p> "> Figure 2
<p>Comparison of the frequencies of six predicted variables between the study area and the samples (<b>a</b>): EVI_max, (<b>b</b>): EVI_mean, (<b>c</b>): EVI_median, (<b>d</b>): SR_Red, (<b>e</b>): ST_median, (<b>f</b>): BT_TIRS2.</p> "> Figure 3
<p>Variable importance contribution in terms of mean decrease accuracy (<b>a</b>) and mean decrease Gini (<b>b</b>) coefficients.</p> "> Figure 4
<p>The predicted vegetation type map of the study area (<b>a</b>) and two selected regions located in the central (<b>b</b>) R1 and southern boundary (<b>c</b>) R2.</p> "> Figure 5
<p>The uncertainties of the predicted vegetation type map in this study.</p> "> Figure 6
<p>Comparison between the vegetation type distribution in this study (<b>a</b>), resampling resolution to 1 km and the result of Wang et al. (2016) (<b>b</b>).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Processing
2.2.1. The Observational Data
2.2.2. Predictor Variables
2.2.3. Analysis of Sample Representativeness
2.3. Methods
3. Results
3.1. The Accuracy Assessment
3.2. Vegetation Map in the Study Area
3.3. Uncertainties of the Map
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Küchler, A.W. Vegetation Mapping; Ronald Press Co.: New York, NY, USA, 1967; pp. 853–855. [Google Scholar]
- Cannone, N.; Pignatti, S. Ecological responses of plant species and communities to climate warming: Upward shift or range filling processes? Clim. Chang. 2014, 123, 201–214. [Google Scholar] [CrossRef]
- Silapaswan, C.S.; Verbyla, D.L.; McGuire, A.D. Land Cover Change on the Seward Peninsula: The Use of Remote Sensing to Evaluate the Potential Influences of Climate Warming on Historical Vegetation Dynamics. Can. J. Remote Sens. 2014, 27, 542–554. [Google Scholar] [CrossRef]
- Ahlström, A.; Xia, J.; Arneth, A.; Luo, Y.; Smith, B. Importance of vegetation dynamics for future terrestrial carbon cycling. Environ. Res. Lett. 2015, 10, 54019. [Google Scholar] [CrossRef]
- Jiao, Y.; Lei, H.; Yang, D.; Huang, M.; Liu, D.; Yuan, X. Impact of vegetation dynamics on hydrological processes in a semi-arid basin by using a land surface-hydrology coupled model. J. Hydrol. 2017, 551, 116–131. [Google Scholar] [CrossRef]
- Hartley, A.J.; MacBean, N.; Georgievski, G.; Bontemps, S. Uncertainty in plant functional type distributions and its impact on land surface models. Remote Sens. Environ. 2017, 203, 71–89. [Google Scholar] [CrossRef]
- Harper, A.B.; Wiltshire, A.J.; Cox, P.M.; Friedlingstein, P.; Jones, C.D.; Mercado, L.M.; Sitch, S.; Williams, K.; Duran-Rojas, C. Vegetation distribution and terrestrial carbon cycle in a carbon cycle configuration of JULES4.6 with new plant functional types. Geosci. Model Dev. 2018, 11, 2857–2873. [Google Scholar] [CrossRef] [Green Version]
- Recknagel, F. Applications of machine learning to ecological modelling. Ecol. Modell. 2001, 146, 303–310. [Google Scholar] [CrossRef]
- Xie, Y.; Sha, Z.; Yu, M. Remote sensing imagery in vegetation mapping: A review. J. Plant Ecol. 2008, 1, 9–23. [Google Scholar] [CrossRef]
- Rocchini, D.; Hernández-Stefanoni, J.L.; He, K.S. Advancing species diversity estimate by remotely sensed proxies: A conceptual review. Ecol. Inform. 2015, 25, 22–28. [Google Scholar] [CrossRef]
- Gašparović, M.; Dobrinić, D. Comparative Assessment of Machine Learning Methods for Urban Vegetation Mapping Using Multitemporal Sentinel-1 Imagery. Remote Sens. 2020, 12, 1952. [Google Scholar] [CrossRef]
- Feng, Q.; Liu, J.; Gong, J. UAV Remote Sensing for Urban Vegetation Mapping Using Random Forest and Texture Analysis. Remote Sens. 2015, 7, 1074–1094. [Google Scholar] [CrossRef] [Green Version]
- van Everdingen, R.O. Multi-Language Glossary of Permafrost and Related Ground-Ice Terms; Arctic Institute of North America, University of Calgary: Calgary, AL, Canada, 1998; p. 78. [Google Scholar]
- Jorgenson, M.T.; Grosse, G. Remote Sensing of Landscape Change in Permafrost Regions. Permafr. Periglac. 2016, 27, 324–338. [Google Scholar] [CrossRef]
- Hu, G.; Zhao, L.; Li, R.; Wu, X.; Wu, T.; Xie, C.; Zhu, X.; Hao, J. Thermal properties of active layer in permafrost regions with different vegetation types on the Qinghai-Tibetan Plateau. Theor. Appl. Climatol. 2019, 139, 983–993. [Google Scholar] [CrossRef]
- Nicolsky, D.J.; Romanovsky, V.E.; Panda, S.K.; Marchenko, S.S.; Muskett, R.R. Applicability of the ecosystem type approach to model permafrost dynamics across the Alaska North Slope. J. Geophys. Res. Earth Surf. 2017, 122, 50–75. [Google Scholar] [CrossRef]
- Loranty, M.M.; Abbott, B.W.; Blok, D.; Douglas, T.A.; Epstein, H.E.; Forbes, B.C.; Jones, B.M.; Kholodov, A.L.; Kropp, H.; Malhotra, A.; et al. Reviews and syntheses: Changing ecosystem influences on soil thermal regimes in northern high-latitude permafrost regions. Biogeosciences 2018, 15, 5287–5313. [Google Scholar] [CrossRef] [Green Version]
- Chasmer, L.; Quinton, W.; Hopkinson, C.; Petrone, R.; Whittington, P. Vegetation Canopy and Radiation Controls on Permafrost Plateau Evolution within the Discontinuous Permafrost Zone, Northwest Territories, Canada. Permafr. Periglac. 2011, 22, 199–213. [Google Scholar] [CrossRef]
- Pomeroy, J.W.; Gray, D.M.; Hedstrom, N.R.; Janowicz, J.R. Prediction of seasonal snow accumulation in cold climate forests. Hydrol. Process. 2002, 16, 3543–3558. [Google Scholar] [CrossRef]
- Chang, X.; Jin, H.; Zhang, Y.; He, R.; Luo, D.; Wang, Y.; Lü, L.; Zhang, Q. Thermal Impacts of Boreal Forest Vegetation on Active Layer and Permafrost Soils in Northern da Xing’Anling (Hinggan) Mountains, Northeast China. Arct. Antarct. Alp. Res. 2018, 47, 267–279. [Google Scholar] [CrossRef] [Green Version]
- Walker, D.A.; Jia, G.J.; Epstein, H.E.; Raynolds, M.K.; Chapin Iii, F.S.; Copass, C.; Hinzman, L.D.; Knudson, J.A.; Maier, H.A.; Michaelson, G.J.; et al. Vegetation-soil-thaw-depth relationships along a low-arctic bioclimate gradient, Alaska: Synthesis of information from the ATLAS studies. Permafr. Periglac. 2003, 14, 103–123. [Google Scholar] [CrossRef]
- Kade, A.; Romanovsky, V.E.; Walker, D.A. The n-factor of nonsorted circles along a climate gradient in Arctic Alaska. Permafr. Periglac. 2006, 17, 279–289. [Google Scholar] [CrossRef]
- Yue, Y.; Liu, H.; Xue, J.; Li, Y.; Guo, W. Ecological indicators of near-surface permafrost habitat at the southern margin of the boreal forest in China. Ecol. Indic. 2020, 108, 105714. [Google Scholar] [CrossRef]
- Westermann, S.; Østby, T.; Gisnås, K.; Schuler, T.; Etzelmüller, B.J.T.C. A ground temperature map of the North Atlantic permafrost region based on remote sensing and reanalysis data. Cryosphere 2015, 9, 1303–1319. [Google Scholar] [CrossRef] [Green Version]
- Anderson, J.E.; Douglas, T.A.; Barbato, R.A.; Saari, S.; Edwards, J.D.; Jones, R.M. Linking vegetation cover and seasonal thaw depths in interior Alaska permafrost terrains using remote sensing. Remote Sens. Environ. 2019, 233, 111363. [Google Scholar] [CrossRef]
- Fisher, J.P.; Estop-Aragones, C.; Thierry, A.; Charman, D.J.; Wolfe, S.A.; Hartley, I.P.; Murton, J.B.; Williams, M.; Phoenix, G.K. The influence of vegetation and soil characteristics on active-layer thickness of permafrost soils in boreal forest. Glob. Chang. Biol. 2016, 22, 3127–3140. [Google Scholar] [CrossRef]
- Raynolds, M.K.; Walker, D.A. Circumpolar relationships between permafrost characteristics, NDVI, and arctic vegetation types. In Ninth International Conference on Permafrost; Institute of Northern Engineering, University of Alaska Fairbanks: Fairbanks, AK, USA, 2008; pp. 1469–1474. [Google Scholar]
- Zou, D.; Zhao, L.; Sheng, Y.; Chen, J.; Hu, G.; Wu, T.; Wu, J.; Xie, C.; Wu, X.; Pang, Q.; et al. A new map of permafrost distribution on the Tibetan Plateau. Cryosphere 2017, 11, 2527–2542. [Google Scholar] [CrossRef] [Green Version]
- Editorial Board of Vegetation Map of China. 1:1,000,000 Vegetation Atlas of China; Science Press: Beijing, China, 2001. [Google Scholar]
- Su, Y.; Guo, Q.; Hu, T.; Guan, H.; Jin, S.; An, S.; Chen, X.; Guo, K.; Hao, Z.; Hu, Y.; et al. An updated Vegetation Map of China (1:1,000,000). Sci. Bull. 2020, 65, 1125–1136. [Google Scholar] [CrossRef]
- Ren, J.; Hu, Z.; Zhao, J.; Zhang, D.; Hou, F.; Lin, H.; Mu, X.D. A grassland classification system and its application in China. Rangel. J. 2008, 30, 199–209. [Google Scholar] [CrossRef]
- Niu, F.; Gao, Z.; Lin, Z.; Luo, J.; Fan, X. Vegetation influence on the soil hydrological regime in permafrost regions of the Qinghai-Tibet Plateau, China. Geoderma 2019, 354, 113892. [Google Scholar] [CrossRef]
- Shang, W.; Wu, X.; Zhao, L.; Yue, G.; Zhao, Y.; Qiao, Y.; Li, Y. Seasonal variations in labile soil organic matter fractions in permafrost soils with different vegetation types in the central Qinghai–Tibet Plateau. Catena 2016, 137, 670–678. [Google Scholar] [CrossRef]
- Wu, X.; Zhao, L.; Chen, M.; Fang, H.; Yue, G.; Chen, J.; Pang, Q.; Wang, Z.; Ding, Y. Soil Organic Carbon and Its Relationship to Vegetation Communities and Soil Properties in Permafrost Areas of the Central Western Qinghai-Tibet Plateau, China. Permafr. Periglac. 2012, 23, 162–169. [Google Scholar] [CrossRef]
- Yuan, Z.Q.; Jin, H.J.; Wang, Q.F.; Wu, Q.B.; Li, G.Y.; Jin, X.Y.; Ma, Q. Profile distributions of soil organic carbon fractions in a permafrost region of the Qinghai–Tibet Plateau. Permafr. Periglac. 2020, 31, 538–547. [Google Scholar] [CrossRef]
- Mu, C.; Abbott, B.W.; Norris, A.J.; Mu, M.; Fan, C.; Chen, X.; Jia, L.; Yang, R.; Zhang, T.; Wang, K.J.E.-S.R. The status and stability of permafrost carbon on the Tibetan Plateau. Earth Sci. Rev. 2020, 211, 103433. [Google Scholar] [CrossRef]
- Zhao, L.; Wu, X.; Wang, Z.; Sheng, Y.; Fang, H.; Zhao, Y.; Hu, G.; Li, W.; Pang, Q.; Shi, J.; et al. Soil organic carbon and total nitrogen pools in permafrost zones of the Qinghai-Tibetan Plateau. Sci. Rep. 2018, 8, 3656. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, S.; Li, C.; Zhao, L.; Feng, H.; Yue, G.; Ren, Z.; Cheng, G. The soil carbon/nitrogen ratio and moisture affect microbial community structures in alkaline permafrost-affected soils with different vegetation types on the Tibetan plateau. Res. Microbiol. 2014, 165, 128–139. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Q.; Zhao, L.; Wu, X.; Yue, G.; Zou, D.; Nan, Z.; Liu, G.; Pang, Q.; Fang, H.; et al. Mapping the vegetation distribution of the permafrost zone on the Qinghai-Tibet Plateau. J. Mt. Sci. 2016, 13, 1035–1046. [Google Scholar] [CrossRef]
- Zhang, X.M.; Yu, S.; Nan, Z.T.; Zhao, L.; Zhou, G.Y.; Yue, G.Y. Vegetation classification of alpine grassland based on decision tree approach in the Wenquan area of the Qinghai-Tibet Plateau. Pratacultural Sci. 2011, 12, 2074–2083. [Google Scholar]
- Wang, Z.W.; Shi, J.Z.; Yue, G.Y.; Zhao, L.; Nan, Z.T.; Wu, X.D.; Qiao, Y.P.; Wu, T.H.; Zou, D.F. Assessment of vegetation by object-oriented classification and integration of decision tree classifier in Yushu. Acta Prataculturae Sin. 2013, 22, 62–71. [Google Scholar]
- Zhang, F.; Shi, X.; Zeng, C.; Wang, L.; Xiao, X.; Wang, G.; Chen, Y.; Zhang, H.; Lu, X.; Immerzeel, W. Recent stepwise sediment flux increases with climate change in the Tuotuo River in the central Tibetan Plateau. Sci. Bull. 2020, 65, 410–418. [Google Scholar] [CrossRef] [Green Version]
- Liaw, A.; Wiener, M. Classification and Regression by Random Forest. R News 2002, 2, 18–22. [Google Scholar]
- Pal, M. Random Forest classifier for remote sensing classification. Int. J. Remote Sens. 2005, 26, 217–222. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Galiano, V.F.; Ghimire, B.; Rogan, J.; Chica-Olmo, M.; Rigol-Sanchez, J.P. An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS J. Photogramm. 2012, 67, 93–104. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random Forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Gislason, P.O.; Benediktsson, J.A.; Sveinsson, J.R. Random forests for land cover classification. Pattern Recognit. Lett. 2006, 27, 294–300. [Google Scholar] [CrossRef]
- Zhang, G.; Yao, T.; Chen, W.; Zheng, G.; Shum, C.K.; Yang, K.; Piao, S.; Sheng, Y.; Yi, S.; Li, J.; et al. Regional differences of lake evolution across China during 1960s–2015 and its natural and anthropogenic causes. Remote Sens. Environ. 2019, 221, 386–404. [Google Scholar] [CrossRef]
- Li, H.; Song, K.; Zhang, W.; Li, L.; Jiang, H. Temporal and Spatial Variations of Hydrological Factors in the Source Area of the Yangtze River and Its Responses to Climate Change. Mt. Res. 2017, 35, 129–141. [Google Scholar]
- Matsushita, B.; Yang, W.; Chen, J.; Onda, Y.; Qiu, G. Sensitivity of the enhanced vegetation index (EVI) and normalized difference vegetation index (NDVI) to topographic effects: A case study in high-density cypress forest. Sensors 2007, 7, 2636–2651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bendini, H.N.; Fonseca, L.M.G.; Schwieder, M.; Rufin, P.; Korting, T.S.; Koumrouyan, A.; Hostert, P. Combining Environmental and Landsat Analysis Ready Data for Vegetation Mapping: A Case Study in the Brazilian Savanna Biome. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 43, 953–960. [Google Scholar] [CrossRef]
Predictor | Description | Units | Data Source | Resolution (m) |
---|---|---|---|---|
SR_Blue | median SR at Blue band | % | Landsat 8 OLI | 30 |
SR_Green | median SR at Green band | % | Landsat 8 OLI | 30 |
SR_Red | median SR at Red band | % | Landsat 8 OLI | 30 |
SR_NIR | median SR at NIR band | % | Landsat 8 OLI | 30 |
SR_SWIR1 | median SR at SWIR 1 band | % | Landsat 8 OLI | 30 |
SR_SWIR2 | median SR at SWIR 2 band | % | Landsat 8 OLI | 30 |
BT_TIRS1 | median BT at TIRS 1 band | Kelvin | Landsat 8 TIRS | 30 |
BT_TIRS2 | median BT at TIRS 2 band | Kelvin | Landsat 8 TIRS | 30 |
EVI_max | maximum EVI value | / | Landsat 8 OLI | 30 |
EVI_mean | mean EVI value | / | Landsat 8 OLI | 30 |
EVI_median | median EVI value | / | Landsat 8 OLI | 30 |
NDVI_max | maximum NDVI value | / | Landsat 8 OLI | 30 |
NDVI_mean | mean NDVI value | / | Landsat 8 OLI | 30 |
NDVI_median | median NDVI value | / | Landsat 8 OLI | 30 |
ST_mean | mean ST from TIRS 1 | Kelvin | Landsat 8 OLI/TIRS | 30 |
ST_median | median ST from TIRS 1 | Kelvin | Landsat 8 OLI/TIRS | 30 |
Predictors | Euclidean Distance (%) | Correlation Coefficient (r) |
---|---|---|
SR_Blue | 9.6 | 0.92 |
SR_Green | 9.3 | 0.89 |
SR_Red | 8.4 | 0.87 |
SR_NIR | 7.8 | 0.92 |
SR_SWIR1 | 5.9 | 0.87 |
SR_SWIR2 | 6.0 | 0.80 |
BT_TIRS1 | 6.4 | 0.90 |
BT_TIRS2 | 6.7 | 0.88 |
EVI_max | 7.7 | 0.66 |
EVI_mean | 7.8 | 0.56 |
EVI_median | 7.3 | 0.71 |
NDVI_max | 7.1 | 0.45 |
NDVI_mean | 6.6 | 0.58 |
NDVI_media | 6.7 | 0.71 |
ST_mean | 5.8 | 0.90 |
ST_median | 6.4 | 0.89 |
ASM | AM | AS | AD | Total Sample | User Accuracy (%) | |
---|---|---|---|---|---|---|
ASM | 19 | 1 | 0 | 0 | 20 | 95.0 |
AM | 1 | 20 | 3 | 0 | 24 | 83.3 |
AS | 0 | 2 | 28 | 4 | 34 | 82.4 |
AD | 0 | 0 | 2 | 13 | 15 | 86.7 |
Total sample | 20 | 23 | 33 | 17 | ||
Producer accuracy (%) | 95.0 | 87.0 | 84.8 | 76.5 | ||
Overall accuracy | 0.848 (0.844~0.852, 95% CI) | |||||
Kappa | 0.790 (0.785~0.796, 95% CI) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, D.; Zhao, L.; Liu, G.; Du, E.; Hu, G.; Li, Z.; Wu, T.; Wu, X.; Chen, J. Vegetation Mapping in the Permafrost Region: A Case Study on the Central Qinghai-Tibet Plateau. Remote Sens. 2022, 14, 232. https://doi.org/10.3390/rs14010232
Zou D, Zhao L, Liu G, Du E, Hu G, Li Z, Wu T, Wu X, Chen J. Vegetation Mapping in the Permafrost Region: A Case Study on the Central Qinghai-Tibet Plateau. Remote Sensing. 2022; 14(1):232. https://doi.org/10.3390/rs14010232
Chicago/Turabian StyleZou, Defu, Lin Zhao, Guangyue Liu, Erji Du, Guojie Hu, Zhibin Li, Tonghua Wu, Xiaodong Wu, and Jie Chen. 2022. "Vegetation Mapping in the Permafrost Region: A Case Study on the Central Qinghai-Tibet Plateau" Remote Sensing 14, no. 1: 232. https://doi.org/10.3390/rs14010232
APA StyleZou, D., Zhao, L., Liu, G., Du, E., Hu, G., Li, Z., Wu, T., Wu, X., & Chen, J. (2022). Vegetation Mapping in the Permafrost Region: A Case Study on the Central Qinghai-Tibet Plateau. Remote Sensing, 14(1), 232. https://doi.org/10.3390/rs14010232