An Object-Based Markov Random Field with Partition-Global Alternately Updated for Semantic Segmentation of High Spatial Resolution Remote Sensing Image
<p>The flowchart of OMRF.</p> "> Figure 2
<p>The flowchart of the proposed OMRF-PGAU.</p> "> Figure 3
<p>Kappa and OA for different <math display="inline"><semantics> <mi>α</mi> </semantics></math> (length of the overlapping area) from 28 to 112 with step 2.</p> "> Figure 4
<p>Kappa and OA for different <math display="inline"><semantics> <mrow> <msub> <mi>s</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>s</mi> <mn>2</mn> </msub> </mrow> </semantics></math> (minimum region area) from 10 to 305 with step 5: (<b>a</b>) Kappa for different <math display="inline"><semantics> <mrow> <msub> <mi>s</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>s</mi> <mn>2</mn> </msub> </mrow> </semantics></math>; (<b>b</b>) OA for different <math display="inline"><semantics> <mrow> <msub> <mi>s</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>s</mi> <mn>2</mn> </msub> </mrow> </semantics></math>.</p> "> Figure 5
<p>Kappa and OA for different <math display="inline"><semantics> <mi>β</mi> </semantics></math> (potential energy parameter) from 0.1 to 5.4 with step 0.1: (<b>a</b>) Kappa for different <math display="inline"><semantics> <mi>β</mi> </semantics></math>; (<b>b</b>) OA for different <math display="inline"><semantics> <mi>β</mi> </semantics></math>.</p> "> Figure 6
<p>Semantic segmentation results for fiber cloth texture image.</p> "> Figure 7
<p>Semantic segmentation results for GeoEye texture image.</p> "> Figure 8
<p>Semantic segmentation results for wood texture image.</p> "> Figure 9
<p>Semantic segmentation results for small size SPOT5 image.</p> "> Figure 10
<p>Semantic segmentation results for medium size SPOT5 image.</p> "> Figure 11
<p>Semantic segmentation results for big size SPOT5 image.</p> "> Figure 12
<p>Semantic segmentation results for small size Gaofen-2 image.</p> "> Figure 13
<p>Semantic segmentation results for medium size Gaofen-2 image.</p> "> Figure 14
<p>Semantic segmentation results for big size Gaofen-2 image.</p> "> Figure 15
<p>Semantic segmentation results for small size areail image.</p> "> Figure 16
<p>Semantic segmentation results for medium size areail image.</p> "> Figure 17
<p>Semantic segmentation results for big size aerial image.</p> ">
Abstract
:1. Introduction
- The original image and the partition images are set so that the segmentation result can be updated alternately, locally and globally. For the original image, in the process of updating the segmentation results, the homogeneity of the region can be considered, and the entire image can be analyzed macroscopically to keep the segmentation results smooth; in the four partition images, the local information can be better explored and the details can be retained. The targets belonging to same category with sparse spatial distribution in the original image is relatively more concentrated in the partitioned image, which is easy to be divided into one class.
- Different granularity is set in the original image and the four partition images. Using different granularities to describe the same target, different area information and spatial information can be obtained, and the inaccuracy due to unreasonable settings of over-segmented regions can be avoided. It can also avoid the update segmentation result falling into the local optimum.
- Correlation assumption of the segmentation results of the original image and the four partition images. For the original image, the auxiliary segmentation label field with an indefinite number of classes obtained by merging the partitioned segmentation results is used; for the partition images, the segmentation result of the original image is projected to each partitioned image to form the auxiliary segmentation label field. Using the correlation assumption, these auxiliary segmentation label layers are combined with the priori segmentation of each image to form a hybrid label field to update the segmentation results for each image.
2. Methodology
2.1. MRF for Image Segmentation
2.2. The OMRF-PGAU Model
2.2.1. The Probabilistic Modeling of the Feature Field
2.2.2. The Probabilistic Modeling of the Label Field
2.3. Rules for Partitioning and Merging
Algorithm 1: Merging algorithm for segmentation results of partitioned images. |
2.4. Update Path of the OMRF-PGAU
Algorithm 2: Framework of the OMRF-PGAU model. |
3. Experiments
3.1. Datasets and Evaluation
3.1.1. Datasets
3.1.2. Evaluation Indicator
3.2. Robustness of Parameter in OMRF-PGAU
3.3. Comparison Methods
- ICM [27]: the classic pixel-level Markov random field model, which uses pixels as nodes to model and update the segmentation results;
- pMRMRF [43]: introduces wavelet transform, constructs multi-resolution layers, constructs pMRF model in each layer, and updates and transfer the segmentation results from top to bottom. The upper layer’s segmentation is directly projected to the lower layer as the initial segmentation;
- OMRF [46]: the over-segmentation algorithm first obtains a series of homogeneous regional objects and uses them as nodes to construct an MRF model;
- MRR-MRF [28]: on the basis of pMRMRF, each layer is modeled by OMRF to form an MRF model of multi-regional granularity and multi-resolution layers;
- MRMRF-bi [44]: on the basis of pMRMRF, the original image is modeled by OMRF, and the area objects are projected to all layers. Each layer is updated from the top to bottom, and the impact of the adjacent upper and lower layer segmentation results on this layer is also considered when updating;
- OMRF-A [29]: on the basis of OMRF, an auxiliary mark field is introduced to construct a hybrid segmentation mark, and the low semantic layer and the high semantic layer are used to assist in the update of the segmentation results of the original semantic layer;
- MGMCL-MRF [32]: it develops a framework that builds a hybrid probability graph on both pixel and object granularities and defines a multiclass-layer label field with hierarchical semantic over the hybrid probability graph.
3.4. Segmentation Experiments
3.4.1. Segmentation for Texture Images
3.4.2. Segmentation for SPOT Images
3.4.3. Segmentation for Gaofen-2 Images
3.4.4. Segmentation for Aerial Images
3.5. Computational Time
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Khare, S.; Latifi, H.; Khare, S. Vegetation Growth Analysis of UNESCO World Heritage Hyrcanian Forests Using Multi-Sensor Optical Remote Sensing Data. Remote Sens. 2021, 13, 3965. [Google Scholar] [CrossRef]
- Xia, J.; Luan, G.; Zhao, F.; Peng, Z.; Song, L.; Tan, S.; Zhao, Z. Exploring the Spatial–Temporal Analysis of Coastline Changes Using Place Name Information on Hainan Island, China. ISPRS Int. J.-Geo-Inf. 2021, 10, 609. [Google Scholar] [CrossRef]
- Phiri, D.; Morgenroth, J. Developments in Landsat Land Cover Classification Methods: A Review. Remote Sens. 2017, 9, 967. [Google Scholar] [CrossRef] [Green Version]
- Lyu, H.M.; Shen, J.S.; Arulrajah, A. Assessment of Geohazards and Preventative Countermeasures Using AHP Incorporated with GIS in Lanzhou, China. Sustainability 2018, 10, 304. [Google Scholar] [CrossRef] [Green Version]
- Ghamisi, P.; Maggiori, E.; Li, S.; Souza, R.; Tarablaka, Y.; Moser, G.; De Giorgi, A.; Fang, L.; Chen, Y.; Chi, M.; et al. New Frontiers in Spectral-Spatial Hyperspectral Image Classification: The Latest Advances Based on Mathematical Morphology, Markov Random Fields, Segmentation, Sparse Representation, and Deep Learning. IEEE Geosci. Remote Sens. Mag. 2018, 6, 10–43. [Google Scholar] [CrossRef]
- Zhong, Y.; Lin, X.; Zhang, L. A Support Vector Conditional Random Fields Classifier With a Mahalanobis Distance Boundary Constraint for High Spatial Resolution Remote Sensing Imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 1314–1330. [Google Scholar] [CrossRef]
- Zagajewski, B.; Kluczek, M.; Raczko, E.; Njegovec, A.; Dabija, A.; Kycko, M. Comparison of Random Forest, Support Vector Machines, and Neural Networks for Post-Disaster Forest Species Mapping of the Krkonoše/Karkonosze Transboundary Biosphere Reserve. Remote Sens. 2021, 13, 2581. [Google Scholar] [CrossRef]
- Lantzanakis, G.; Mitraka, Z.; Chrysoulakis, N. X-SVM: An Extension of C-SVM Algorithm for Classification of High-Resolution Satellite Imagery. IEEE Trans. Geosci. Remote Sens. 2021, 59, 3805–3815. [Google Scholar] [CrossRef]
- Peng, C.; Li, Y.; Jiao, L.; Chen, Y.; Shang, R. Densely Based Multi-Scale and Multi-Modal Fully Convolutional Networks for High-Resolution Remote-Sensing Image Semantic Segmentation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 2612–2626. [Google Scholar] [CrossRef]
- Pan, S.; Tao, Y.; Nie, C.; Chong, Y. PEGNet: Progressive Edge Guidance Network for Semantic Segmentation of Remote Sensing Images. IEEE Geosci. Remote Sens. Lett. 2021, 18, 637–641. [Google Scholar] [CrossRef]
- Tao, Y.; Xu, M.; Zhang, F.; Du, B.; Zhang, L. Unsupervised-Restricted Deconvolutional Neural Network for Very High Resolution Remote-Sensing Image Classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 6805–6823. [Google Scholar] [CrossRef]
- Hua, W.; Xie, W.; Jin, X. Three-Channel Convolutional Neural Network for Polarimetric SAR Images Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 4895–4907. [Google Scholar] [CrossRef]
- Wu, J.; Pan, Z.; Lei, B.; Hu, Y. LR-TSDet: Towards Tiny Ship Detection in Low-Resolution Remote Sensing Images. Remote Sens. 2021, 13, 3890. [Google Scholar] [CrossRef]
- Gray, P.C.; Chamorro, D.F.; Ridge, J.T.; Kerner, H.R.; Ury, E.A.; Johnston, D.W. Temporally Generalizable Land Cover Classification: A Recurrent Convolutional Neural Network Unveils Major Coastal Change through Time. Remote Sens. 2021, 13, 3953. [Google Scholar] [CrossRef]
- Dechesne, C.; Lassalle, P.; Lefèvre, S. Bayesian U-Net: Estimating Uncertainty in Semantic Segmentation of Earth Observation Images. Remote Sens. 2021, 13, 3836. [Google Scholar] [CrossRef]
- Wang, H.; Wang, Y.; Zhang, Q.; Xiang, S.; Pan, C. Gated Convolutional Neural Network for Semantic Segmentation in High-Resolution Images. Remote Sens. 2017, 9, 446. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Xie, Z.; Feng, Y.; Chen, Z. Road Extraction from High-Resolution Remote Sensing Imagery Using Deep Learning. Remote Sens. 2018, 10, 1461. [Google Scholar] [CrossRef] [Green Version]
- Bi, H.; Sun, J.; Xu, Z. A Graph-Based Semisupervised Deep Learning Model for PolSAR Image Classification. IEEE Trans. Geosci. Remote Sens. 2019, 57, 2116–2132. [Google Scholar] [CrossRef]
- Ding, L.; Zhang, J.; Bruzzone, L. Semantic Segmentation of Large-Size VHR Remote Sensing Images Using a Two-Stage Multiscale Training Architecture. IEEE Trans. Geosci. Remote Sens. 2020, 58, 5367–5376. [Google Scholar] [CrossRef]
- Zhan, T.; Gong, M.; Jiang, X.; Zhang, M. Unsupervised Scale-Driven Change Detection With Deep Spatial–Spectral Features for VHR Images. IEEE Trans. Geosci. Remote Sens. 2020, 58, 5653–5665. [Google Scholar] [CrossRef]
- Mboga, N.; D’Aronco, S.; Grippa, T.; Pelletier, C.; Georganos, S.; Vanhuysse, S.; Wolff, E.; Smets, B.; Dewitte, O.; Lennert, M.; et al. Domain Adaptation for Semantic Segmentation of Historical Panchromatic Orthomosaics in Central Africa. ISPRS Int. J.-Geo-Inf. 2021, 10, 523. [Google Scholar] [CrossRef]
- Daranagama, S.; Witayangkurn, A. Automatic Building Detection with Polygonizing and Attribute Extraction from High-Resolution Images. ISPRS Int. J.-Geo-Inf. 2021, 10, 606. [Google Scholar] [CrossRef]
- Feng, W.; Li, X.; Gao, G.; Chen, X.; Liu, Q. Multi-Scale Global Contrast CNN for Salient Object Detection. Sensors 2020, 20, 2656. [Google Scholar] [CrossRef]
- Zhu, L.; Gao, D.; Jia, T.; Zhang, J. Using Eco-Geographical Zoning Data and Crowdsourcing to Improve the Detection of Spurious Land Cover Changes. Remote Sens. 2021, 13, 3244. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Y. Hyperspectral Anomaly Detection via Image Super-Resolution Processing and Spatial Correlation. IEEE Trans. Geosci. Remote Sens. 2021, 59, 2307–2320. [Google Scholar] [CrossRef]
- Wei, Y.; Ji, S. Scribble-Based Weakly Supervised Deep Learning for Road Surface Extraction From Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 816–820. [Google Scholar] [CrossRef]
- Besag, J. On the Statistical-Analysis of Dirty Pictures. J. R. Stat. Soc. 1986, B-48, 259–302. [Google Scholar] [CrossRef] [Green Version]
- Zheng, C.; Wang, L.; Chen, R.; Chen, X. Image Segmentation Using Multiregion-Resolution MRF Model. IEEE Geosci. Remote Sens. Lett. 2013, 10, 816–820. [Google Scholar] [CrossRef]
- Zheng, C.; Zhang, Y.; Wang, L. Semantic Segmentation of Remote Sensing Imagery Using an Object-Based Markov Random Field Model With Auxiliary Label Fields. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3015–3028. [Google Scholar] [CrossRef]
- Zheng, C.; Wang, L.; Chen, X. A Hybrid Markov Random Field Model With Multi-Granularity Information for Semantic Segmentation of Remote Sensing Imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 2728–2740. [Google Scholar] [CrossRef]
- Zheng, C.; Yao, H. Segmentation for remote-sensing imagery using the object-based Gaussian-Markov random field model with region coefficients. Int. J. Remote Sens. 2019, 40, 4441–4472. [Google Scholar] [CrossRef]
- Zheng, C.; Zhang, Y.; Wang, L. Multigranularity Multiclass-Layer Markov Random Field Model for Semantic Segmentation of Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2020, 59, 10555–10574. [Google Scholar] [CrossRef]
- Zheng, C.; Chen, Y.; Shao, J.; Wang, L. An MRF-Based Multigranularity Edge-Preservation Optimization for Semantic Segmentation of Remote Sensing Images. IEEE Geosci. Remote Sens. Lett. 2021, 1–5. [Google Scholar] [CrossRef]
- Li, X.; Chen, J.; Zhao, L.; Guo, S.; Sun, L.; Zhao, X. Adaptive Distance-Weighted Voronoi Tessellation for Remote Sensing Image Segmentation. Remote Sens. 2020, 12, 4115. [Google Scholar] [CrossRef]
- Skurikhin, A.N. Hidden Conditional Random Fields for land-use classification. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 4376–4379. [Google Scholar] [CrossRef]
- Wang, F.; Wu, Y.; Li, M.; Zhang, P.; Zhang, Q. Adaptive Hybrid Conditional Random Field Model for SAR Image Segmentation. IEEE Trans. Geosci. Remote Sens. 2017, 55, 537–550. [Google Scholar] [CrossRef]
- Feng, W.; Sui, H.; Huang, W.; Xu, C.; An, K. Water Body Extraction From Very High-Resolution Remote Sensing Imagery Using Deep U-Net and a Superpixel-Based Conditional Random Field Model. IEEE Geosci. Remote Sens. Lett. 2019, 16, 618–622. [Google Scholar] [CrossRef]
- Nagi, A.S.; Kumar, D.; Sola, D.; Scott, K.A. RUF: Effective Sea Ice Floe Segmentation Using End-to-End RES-UNET-CRF with Dual Loss. Remote Sens. 2021, 13, 2460. [Google Scholar] [CrossRef]
- Cheng, J.; Zhang, F.; Xiang, D.; Yin, Q.; Zhou, Y.; Wang, W. PolSAR Image Land Cover Classification Based on Hierarchical Capsule Network. Remote Sens. 2021, 13, 3132. [Google Scholar] [CrossRef]
- Osher, S.; Sethian, J.A. Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 1988, 79, 12–49. [Google Scholar] [CrossRef] [Green Version]
- Ball, J.E.; Bruce, L.M. Level Set Hyperspectral Image Classification Using Best Band Analysis. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3022–3027. [Google Scholar] [CrossRef]
- Li, Z.; Shi, W.; Myint, S.W.; Lu, P.; Wang, Q. Semi-automated landslide inventory mapping from bitemporal aerial photographs using change detection and level set method. Remote Sens. Environ. 2016, 175, 215–230. [Google Scholar] [CrossRef]
- Noda, H.; Shirazi, M.N.; Kawaguchi, E. MRF-based texture segmentation using wavelet decomposed images. Pattern Recognit. 2002, 35, 771–782. [Google Scholar] [CrossRef] [Green Version]
- Yao, H.; Zhang, M.; Wang, B. A Top-Down Application of Multi-Resolution Markov Random Fields with Bilateral Information in Semantic Segmentation of Remote Sensing Images. In Proceedings of the 2018 26th International Conference on Geoinformatics, Kunming, China, 28–30 June 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Hossain, M.D.; Chen, D. Segmentation for Object-Based Image Analysis (OBIA): A review of algorithms and challenges from remote sensing perspective. ISPRS J. Photogramm. Remote Sens. 2019, 150, 115–134. [Google Scholar] [CrossRef]
- Xia, G.s.; He, C.; Sun, H. An Unsupervised Segmentation Method Using Markov Random Field on Region Adjacency Graph for SAR Images. In Proceedings of the 2006 CIE International Conference on Radar, Shanghai, China, 16–19 October 2006; pp. 1–4. [Google Scholar] [CrossRef]
- Besag, J. Spatial Interaction and the Statistical Analysis of Lattice Systems. J. R. Stat. Soc. Ser. (Methodol.) 1974, 36, 192–225. [Google Scholar] [CrossRef]
- Comaniciu, D.; Meer, P. Mean shift: A robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 603–619. [Google Scholar] [CrossRef] [Green Version]
- Mikes, S.; Haindl, M. Texture Segmentation Benchmark. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 1. [Google Scholar] [CrossRef]
- Tong, X.Y.; Xia, G.S.; Lu, Q.; Shen, H.; Li, S.; You, S.; Zhang, L. Land-cover classification with high-resolution remote sensing images using transferable deep models. Remote Sens. Environ. 2020, 237, 111322. [Google Scholar] [CrossRef] [Green Version]
- Unnikrishnan, R.; Hebert, M. Measures of Similarity. In Proceedings of the 2005 Seventh IEEE Workshops on Applications of Computer Vision (WACV/MOTION’05)—Volume 1, Breckenridge, CO, USA, 5–7 January 2005; Volume 1, p. 394. [Google Scholar] [CrossRef]
Methods | ICM | pMRMRF | OMRF | MRR-MRF | MRMRF-bi | OMRF-A | MGMCL-MRF | OMRF-PGAU | |
---|---|---|---|---|---|---|---|---|---|
Figure 6 | Kappa | 0.6218 | 0.6658 | 0.7742 | 0.7991 | 0.8348 | 0.8521 | 0.8779 | 0.9527 |
OA | 0.6596 | 0.7039 | 0.8053 | 0.8274 | 0.8590 | 0.8742 | 0.8974 | 0.9607 | |
Figure 7 | Kappa | 0.5350 | 0.8086 | 0.9192 | 0.9327 | 0.9193 | 0.9289 | 0.9582 | 0.9916 |
OA | 0.5706 | 0.8344 | 0.9320 | 0.9437 | 0.9321 | 0.9405 | 0.9654 | 0.9931 | |
Figure 8 | Kappa | 0.5046 | 0.7978 | 0.8331 | 0.9277 | 0.9317 | 0.9355 | 0.9499 | 0.9761 |
OA | 0.5467 | 0.8298 | 0.8633 | 0.9440 | 0.9459 | 0.9490 | 0.9608 | 0.9816 |
Methods | ICM | pMRMRF | OMRF | MRR-MRF | MRMRF-bi | OMRF-A | MGMCL-MRF | OMRF-PGAU | |
---|---|---|---|---|---|---|---|---|---|
Figure 9 | Kappa | 0.5656 | 0.7656 | 0.8343 | 0.8618 | 0.8650 | 0.8733 | 0.8685 | 0.8836 |
OA | 0.6451 | 0.8232 | 0.8838 | 0.9051 | 0.9076 | 0.9142 | 0.9091 | 0.9213 | |
Figure 10 | Kappa | 0.6033 | 0.6416 | 0.6728 | 0.6806 | 0.6809 | 0.6846 | 0.6909 | 0.7436 |
OA | 0.8095 | 0.8248 | 0.8459 | 0.8510 | 0.8512 | 0.8541 | 0.8597 | 0.9033 | |
Figure 11 | Kappa | 0.4191 | 0.6241 | 0.6581 | 0.7398 | 0.7715 | 0.7509 | 0.8440 | 0.8985 |
OA | 0.5008 | 0.6997 | 0.7306 | 0.8139 | 0.8378 | 0.8192 | 0.8986 | 0.9356 |
Methods | ICM | pMRMRF | OMRF | MRR-MRF | MRMRF-bi | OMRF-A | MGMCL-MRF | OMRF-PGAU | |
---|---|---|---|---|---|---|---|---|---|
Figure 12 | Kappa | 0.4687 | 0.5588 | 0.7429 | 0.8050 | 0.7966 | 0.8849 | 0.9105 | 0.9733 |
OA | 0.5249 | 0.6274 | 0.8216 | 0.8760 | 0.8729 | 0.9293 | 0.9422 | 0.9843 | |
Figure 13 | Kappa | 0.7552 | 0.7568 | 0.7711 | 0.7853 | 0.7888 | 0.7942 | 0.8021 | 0.8411 |
OA | 0.8895 | 0.8906 | 0.9004 | 0.9178 | 0.9120 | 0.9175 | 0.9222 | 0.9390 | |
Figure 14 | Kappa | 0.5316 | 0.6152 | 0.6638 | 0.7758 | 0.7973 | 0.8480 | 0.8868 | 0.9018 |
OA | 0.6795 | 0.7466 | 0.7815 | 0.8740 | 0.9013 | 0.9266 | 0.9467 | 0.9607 |
Methods | ICM | pMRMRF | OMRF | MRR-MRF | MRMRF-bi | OMRF-A | MGMCL-MRF | OMRF-PGAU | |
---|---|---|---|---|---|---|---|---|---|
Figure 15 | Kappa | 0.6802 | 0.8123 | 0.8582 | 0.8489 | 0.8695 | 0.8811 | 0.9415 | 0.9490 |
OA | 0.7582 | 0.8656 | 0.9009 | 0.8939 | 0.9099 | 0.9190 | 0.9617 | 0.9670 | |
Figure 16 | Kappa | 0.4230 | 0.5562 | 0.6239 | 0.7115 | 0.6976 | 0.7773 | 0.8124 | 0.8524 |
OA | 0.4786 | 0.6181 | 0.6859 | 0.7723 | 0.7598 | 0.8372 | 0.8621 | 0.8969 | |
Figure 17 | Kappa | 0.4839 | 0.5450 | 0.6742 | 0.7305 | 0.7146 | 0.7803 | 0.7806 | 0.8359 |
OA | 0.5790 | 0.6415 | 0.7625 | 0.8135 | 0.8018 | 0.8661 | 0.8666 | 0.9067 |
Time/s | ICM | pMRMRF | OMRF | MRR-MRF | MRMRF-bi | OMRF-A | MGMCL-MRF | OMRF-PGAU |
---|---|---|---|---|---|---|---|---|
Figure 6a | 1.23 | 27.38 | 14.74 + 0.89 | 24.64 + 7.71 | 25.01 + 7.13 | 13.94 + 1.53 | 20.44 + 1.82 | 21.74 + 0.93 |
Figure 7a | 2.31 | 27.94 | 15.11 + 0.91 | 24.69 + 7.44 | 25.33 + 6.32 | 14.21 + 1.90 | 20.53 + 1.79 | 20.38 + 0.99 |
Figure 8a | 2.47 | 28.51 | 15.73 + 0.91 | 24.21 + 6.89 | 25.19 + 6.77 | 14.29 + 1.82 | 21.01 + 1.92 | 21.43 + 0.95 |
Figure 9a | 0.98 | 14.64 | 10.86 + 0.45 | 20.98 + 5.65 | 21.27 + 5.82 | 11.30 + 1.14 | 19.48 + 0.99 | 19.93 + 1.12 |
Figure 10a | 8.77 | 129.85 | 118.23 + 4.98 | 150.27 + 35.47 | 159.92 + 34.19 | 119.64 + 8.37 | 142.49 + 7.66 | 143.06 + 5.95 |
Figure 11a | 13.64 | 195.05 | 121.34 + 5.16 | 148.33 + 38.62 | 151.63 + 39.14 | 120.03 + 8.26 | 138.41 + 8.33 | 137.05 + 6.02 |
Figure 12a | 18.22 | 239.21 | 143.95 + 6.83 | 170.49 + 45.73 | 172.31 + 47.11 | 144.06 + 9.13 | 156.63 + 10.02 | 155.71 + 9.21 |
Figure 13a | 22.47 | 362.07 | 180.34 + 8.24 | 217.87 + 61.46 | 219.19 + 59.30 | 178.54 + 11.54 | 204.05 + 11.95 | 200.12 + 10.52 |
Figure 14a | 33.93 | 436.18 | 233.78 + 15.83 | 260.49 + 113.26 | 258.44 + 116.92 | 231.81 + 19.05 | 244.14 + 20.01 | 239.74 + 18.06 |
Figure 15a | 10.84 | 138.27 | 101.32 + 4.16 | 132.93 + 31.59 | 129.04 + 32.93 | 100.74 + 6.28 | 120.58 + 7.26 | 117.50 + 6.34 |
Figure 16a | 28.14 | 397.28 | 280.54 + 10.37 | 300.67 + 74.29 | 298.43 + 76.04 | 276.97 + 13.54 | 283.45 + 12.49 | 285.85 + 12.86 |
Figure 17a | 43.92 | 430.41 | 430.69 + 25.47 | 450.43 + 150.03 | 423.51 + 137.31 | 403.93 + 37.51 | 585.18 + 30.48 | 614.82 + 29.31 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, H.; Wang, X.; Zhao, L.; Tian, M.; Jian, Z.; Gong, L.; Li, B. An Object-Based Markov Random Field with Partition-Global Alternately Updated for Semantic Segmentation of High Spatial Resolution Remote Sensing Image. Remote Sens. 2022, 14, 127. https://doi.org/10.3390/rs14010127
Yao H, Wang X, Zhao L, Tian M, Jian Z, Gong L, Li B. An Object-Based Markov Random Field with Partition-Global Alternately Updated for Semantic Segmentation of High Spatial Resolution Remote Sensing Image. Remote Sensing. 2022; 14(1):127. https://doi.org/10.3390/rs14010127
Chicago/Turabian StyleYao, Hongtai, Xianpei Wang, Le Zhao, Meng Tian, Zini Jian, Li Gong, and Bowen Li. 2022. "An Object-Based Markov Random Field with Partition-Global Alternately Updated for Semantic Segmentation of High Spatial Resolution Remote Sensing Image" Remote Sensing 14, no. 1: 127. https://doi.org/10.3390/rs14010127
APA StyleYao, H., Wang, X., Zhao, L., Tian, M., Jian, Z., Gong, L., & Li, B. (2022). An Object-Based Markov Random Field with Partition-Global Alternately Updated for Semantic Segmentation of High Spatial Resolution Remote Sensing Image. Remote Sensing, 14(1), 127. https://doi.org/10.3390/rs14010127