Lightweight Multilevel Feature Fusion Network for Hyperspectral Image Classification
<p>Framework of the proposed LMFN for HSI classification. The upper line shows spectral correlation learning and the lower line concentrates on spatial dependence mapping. TFM blocks are the object-guided fusion mechanism used for spectral–spatial interactions.</p> "> Figure 2
<p>Schematic illustration of 2D and 3D convolution.</p> "> Figure 3
<p>Schematic illustration of lightweight 3D spectral–spatial feature learning with two parts: 3D-PW and DW convolution.</p> "> Figure 4
<p>Schematic illustration of the object-guided spectral–spatial fusion mechanism (TFM).</p> "> Figure 5
<p>(<b>a</b>) False-color image and (<b>b</b>) ground truth for the IN data set.</p> "> Figure 6
<p>(<b>a</b>) False-color image and (<b>b</b>) ground truth for the UP data set.</p> "> Figure 7
<p>(<b>a</b>) False-color image and (<b>b</b>) ground truth for the KSC data set.</p> "> Figure 8
<p>Classification maps for the IN data set obtained by (<b>a</b>) SVM, (<b>b</b>) CDCNN, (<b>c</b>) 3DCNN, (<b>d</b>) SSRN, (<b>e</b>) DFFN, (<b>f</b>) MFDN, (<b>g</b>) CBW, (<b>h</b>) FGSSCA, (<b>i</b>) LDN, (<b>j</b>) S2FEF, (<b>k</b>) S3EResBoF, (<b>l</b>) LMFN, and (<b>m</b>) Ground truth.</p> "> Figure 9
<p>Classification maps for the UP data set obtained by (<b>a</b>) SVM, (<b>b</b>) CDCNN, (<b>c</b>) 3DCNN, (<b>d</b>) SSRN, (<b>e</b>) DFFN, (<b>f</b>) MFDN, (<b>g</b>) CBW, (<b>h</b>) FGSSCA, (<b>i</b>) LDN, (<b>j</b>) S2FEF, (<b>k</b>) S3EResBoF, (<b>l</b>) LMFN, and (<b>m</b>) Ground truth.</p> "> Figure 10
<p>Classification maps for the KSC data set obtained by: (<b>a</b>) SVM, (<b>b</b>) CDCNN, (<b>c</b>) 3DCNN, (<b>d</b>) SSRN, (<b>e</b>) DFFN, (<b>f</b>) MFDN, (<b>g</b>) CBW, (<b>h</b>) FGSSCA, (<b>i</b>) LDN, (<b>j</b>) S2FEF, (<b>k</b>) S3EResBoF, (<b>l</b>) LMFN, and (<b>m</b>) Ground truth.</p> "> Figure 11
<p>OA results of all the compared methods with varying proportions of training samples (from 1 to 15%) on the (<b>a</b>) IN, (<b>b</b>) UP, and (<b>c</b>) KSC data sets.</p> ">
Abstract
:1. Introduction
2. Methodology
2.1. Outline of the 3D-CNN for HSI Feature Learning
2.2. Lightweight 3D Convolution for Spectral–Spatial Feature Learning
2.3. Target-Guided Fusion Mechanism
3. Experiments and Discussion
3.1. Data Description
3.2. Experimental Settings
3.3. Parameter Analysis
3.3.1. Influence of the Input Patch Size
3.3.2. Influence of the Kernel Size in the 3D-PW
3.3.3. Influence of the TFM Block Number
3.4. Comparison with State-of-the-Art Methods
3.4.1. Comparison of Parameter Numbers and Computation Efficiency
3.4.2. Classification Results
3.4.3. Effectiveness with Limited Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MDPI | Multidisciplinary Digital Publishing Institute |
DOAJ | Directory of open access journals |
TLA | Three letter acronym |
LD | Linear dichroism |
References
- Zhang, L.; Zhang, L.; Du, B. Deep learning for remote sensing data: A technical tutorial on the state of the art. IEEE Geosci. Remote Sens. Mag. 2016, 4, 22–40. [Google Scholar] [CrossRef]
- Tian, A.; Fu, C.; Yau, H.T.; Su, X.Y.; Xiong, H. A New Methodology of Soil Salinization Degree Classification by Probability Neural Network Model Based on Centroid of Fractional Lorenz Chaos Self-Synchronization Error Dynamics. IEEE Trans. Geosci. Remote Sens. 2019, 58, 799–810. [Google Scholar] [CrossRef]
- Yang, X.; Yu, Y. Estimating soil salinity under various moisture conditions: An experimental study. IEEE Trans. Geosci. Remote Sens. 2017, 55, 2525–2533. [Google Scholar] [CrossRef]
- Zhong, Y.; Wang, X.; Xu, Y.; Wang, S.; Jia, T.; Hu, X.; Zhao, J.; Wei, L.; Zhang, L. Mini-UAV-borne hyperspectral remote sensing: From observation and processing to applications. IEEE Geosci. Remote Sens. Mag. 2018, 6, 46–62. [Google Scholar] [CrossRef]
- Liu, Q.; Xiang, X.; Yang, Z.; Hu, Y.; Hong, Y. Arbitrary Direction Ship Detection in Remote-Sensing Images Based on Multitask Learning and Multiregion Feature Fusion. IEEE Trans. Geosci. Remote Sens. 2020, 59, 1553–1564. [Google Scholar] [CrossRef]
- Bioucas-Dias, J.M.; Plaza, A.; Camps-Valls, G.; Scheunders, P.; Nasrabadi, N.; Chanussot, J. Hyperspectral remote sensing data analysis and future challenges. IEEE Geosci. Remote Sens. Mag. 2013, 1, 6–36. [Google Scholar] [CrossRef] [Green Version]
- Bandos, T.V.; Bruzzone, L.; Camps-Valls, G. Classification of hyperspectral images with regularized linear discriminant analysis. IEEE Trans. Geosci. Remote Sens. 2009, 47, 862–873. [Google Scholar] [CrossRef]
- Xia, J.; Chanussot, J.; Du, P.; He, X. Rotation-Based Support Vector Machine Ensemble in Classification of Hyperspectral Data With Limited Training Samples. IEEE Trans. Geosci. Remote Sens. 2015, 54, 1519–1531. [Google Scholar] [CrossRef]
- Li, J.; Bioucas-Dias, J.M.; Plaza, A. Semisupervised Hyperspectral Image Segmentation Using Multinomial Logistic Regression With Active Learning. IEEE Trans. Geosci. Remote Sens. 2010, 48, 4085–4098. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Kuo, B.; Yu, P.; Chuang, C. A Dynamic Subspace Method for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2010, 48, 2840–2853. [Google Scholar] [CrossRef]
- Du, B.; Zhang, L. Random-Selection-Based Anomaly Detector for Hyperspectral Imagery. IEEE Trans. Geosci. Remote Sens. 2011, 49, 1578–1589. [Google Scholar] [CrossRef]
- Li, S.; Song, W.; Fang, L.; Chen, Y.; Ghamisi, P.; Benediktsson, J.A. Deep Learning for Hyperspectral Image Classification: An Overview. IEEE Trans. Geosci. Remote Sens. 2019, 57, 6690–6709. [Google Scholar] [CrossRef] [Green Version]
- Tao, C.; Pan, H.; Li, Y.; Zou, Z. Unsupervised Spectral–Spatial Feature Learning With Stacked Sparse Autoencoder for Hyperspectral Imagery Classification. IEEE Geosci. Remote Sens. Lett. 2015, 12, 2438–2442. [Google Scholar] [CrossRef]
- Chen, Y.; Lin, Z.; Zhao, X.; Wang, G.; Gu, Y. Deep Learning-Based Classification of Hyperspectral Data. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2014, 7, 2094–2107. [Google Scholar] [CrossRef]
- Zhou, P.; Han, J.; Cheng, G.; Zhang, B. Learning Compact and Discriminative Stacked Autoencoder for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2019, 57, 4823–4833. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, X.; Jia, X. Spectral–spatial classification of hyperspectral data based on deep belief network. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2015, 8, 2381–2392. [Google Scholar] [CrossRef]
- Chen, Y.; Jiang, H.; Li, C.; Jia, X.; Ghamisi, P. Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6232–6251. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Zhao, Y.Q.; Chan, C.W. Learning and Transferring Deep Joint Spectral-Spatial Features for Hyperspectral Classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 4729–4742. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708. [Google Scholar]
- Greff, K.; Srivastava, R.K.; Koutník, J.; Steunebrink, B.R.; Schmidhuber, J. LSTM: A search space odyssey. IEEE Trans. Neural Netw. Learn. Syst. 2016, 28, 2222–2232. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.; Kwon, H. Going Deeper With Contextual CNN for Hyperspectral Image Classification. IEEE Trans. Image Process. 2017, 26, 4843–4855. [Google Scholar] [CrossRef] [Green Version]
- Paoletti, M.E.; Haut, J.M.; Fernandez-Beltran, R.; Plaza, J.; Plaza, A.J.; Pla, F. Deep Pyramidal Residual Networks for Spectral–Spatial Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2019, 57, 740–754. [Google Scholar] [CrossRef]
- Song, W.; Li, S.; Fang, L.; Lu, T. Hyperspectral image classification with deep feature fusion network. IEEE Trans. Geosci. Remote Sens. 2018, 56, 3173–3184. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, H.; Shen, Q. Spectral–spatial classification of hyperspectral imagery with 3D convolutional neural network. Remote Sens. 2017, 9, 67. [Google Scholar] [CrossRef] [Green Version]
- Zhong, Z.; Li, J.; Luo, Z.; Chapman, M. Spectral–spatial residual network for hyperspectral image classification: A 3-D deep learning framework. IEEE Trans. Geosci. Remote Sens. 2018, 56, 847–858. [Google Scholar] [CrossRef]
- Li, Z.; Wang, T.; Li, W.; Du, Q.; Wang, C.; Liu, C.; Shi, X. Deep multilayer fusion dense network for hyperspectral image classification. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2020, 13, 1258–1270. [Google Scholar] [CrossRef]
- Ghaderizadeh, S.; Abbasi-Moghadam, D.; Sharifi, A.; Zhao, N.; Tariq, A. Hyperspectral image classification using a hybrid 3D-2D convolutional neural networks. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 7570–7588. [Google Scholar] [CrossRef]
- Chen, L.; Wei, Z.; Xu, Y. A Lightweight Spectral–Spatial Feature Extraction and Fusion Network for Hyperspectral Image Classification. Remote Sens. 2020, 12, 1395. [Google Scholar] [CrossRef]
- Roy, S.K.; Chatterjee, S.; Bhattacharyya, S.; Chaudhuri, B.B.; Platoš, J. Lightweight Spectral–Spatial Squeeze-and- Excitation Residual Bag-of-Features Learning for Hyperspectral Classification. IEEE Trans. Geosci. Remote Sens. 2020, 58, 5277–5290. [Google Scholar] [CrossRef]
- Cui, B.; Dong, X.M.; Zhan, Q.; Peng, J.; Sun, W. LiteDepthwiseNet: A Lightweight Network for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5502915. [Google Scholar] [CrossRef]
- Chao, P.; Kao, C.Y.; Ruan, Y.S.; Huang, C.H.; Lin, Y.L. HarDNet: A Low Memory Traffic Network. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea, 27 October–2 November 2019. [Google Scholar]
- Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 1251–1258. [Google Scholar]
- Ben Hamida, A.; Benoit, A.; Lambert, P.; Ben Amar, C. 3-D Deep Learning Approach for Remote Sensing Image Classification. IEEE Trans. Geosci. Remote Sens. 2018, 56, 4420–4434. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Yi, J.; Li, X.; Hu, W.; Wu, J.; Zhang, G. Compact Band Weighting Module Based on Attention-Driven for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2021, 59, 9540–9552. [Google Scholar] [CrossRef]
- Guo, W.; Ye, H.; Cao, F. Feature-Grouped Network With Spectral-Spatial Connected Attention for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5500413. [Google Scholar] [CrossRef]
Layer Name | Kernel Size | Group | Stride | Input Size | Output Size | |
---|---|---|---|---|---|---|
Input | − | − | − | − | ||
Spectral Module | Conv3D,BN | 1 | ||||
Conv3D,BN | 1 | |||||
Conv3D,BN | 1 | |||||
Conv3D,BN | 1 | |||||
Conv3D,BN | 1 | |||||
Spatial Module | Conv2D,BN,TFM | 100 | ||||
Conv2D,BN,TFM | 100 | |||||
Conv2D,BN,TFM | 100 | |||||
Mutltiscale Module | Conv2D,GELU | 100 | ||||
Conv2D,GELU | 100 | |||||
Conv2D,GELU | 100 | |||||
Global | ||||||
Average | − | − | − | |||
Pooling | ||||||
Fully Connected | − | − | − |
Patch Size | IN | UP | KSC |
---|---|---|---|
Kernel Size | IN | UP | KSC |
---|---|---|---|
TFM Number | 0 | 1 | 2 | 3 |
---|---|---|---|---|
IN | ||||
UP | ||||
KSC | ||||
NoT-FM Number | 0 | 1 | 2 | 3 |
IN | ||||
UP | ||||
KSC |
Model | CDCNN | 3DCNN | SSRN | DFFN | MFDN | CBW | FG-SSCA | LDN | S2FEF | S3EResBoF | LMFN | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
IN | Training Time (m) | |||||||||||
Test Time (s) | 11 | 5 | 3 | 12 | 43 | 527 | 9 | 3 | 12 | |||
Parameters (M) | ||||||||||||
FLOPs (M) | ||||||||||||
CIO (M) | ||||||||||||
OA (%) | ||||||||||||
UP | Training Time (m) | |||||||||||
Test Time (s) | 73 | 34 | 33 | 88 | 6 | 193 | 2724 | 31 | 22 | 17 | ||
Parameters (M) | ||||||||||||
FLOPs (M) | ||||||||||||
CIO (M) | ||||||||||||
OA (%) | ||||||||||||
KSC | Training Time (m) | |||||||||||
Test Time (s) | 160 | 64 | 46 | 171 | 12 | 489 | 6871 | 123 | 55 | 30 | ||
Parameters (M) | ||||||||||||
FLOPs (M) | ||||||||||||
CIO (M) | ||||||||||||
OA (%) |
Class | SVM | CDCNN | 3DCNN | SSRN | DFFN | MFDN | CBW | FGSSCA | LDN | S2FEF | S3EResBoF | LMFN |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | ||||||||||||
2 | ||||||||||||
3 | ||||||||||||
4 | ||||||||||||
5 | ||||||||||||
6 | ||||||||||||
7 | ||||||||||||
8 | ||||||||||||
9 | ||||||||||||
10 | ||||||||||||
11 | ||||||||||||
12 | ||||||||||||
13 | ||||||||||||
14 | ||||||||||||
15 | ||||||||||||
16 | ||||||||||||
OA (%) | ||||||||||||
AA (%) | ||||||||||||
Kappa (%) |
Class | SVM | CDCNN | 3DCNN | SSRN | DFFN | MFDN | CBW | FGSSCA | LDN | S2FEF | S3EResBoF | LMFN |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | ||||||||||||
2 | ||||||||||||
3 | ||||||||||||
4 | ||||||||||||
5 | ||||||||||||
6 | ||||||||||||
7 | ||||||||||||
8 | ||||||||||||
9 | ||||||||||||
OA (%) | ||||||||||||
AA (%) | ||||||||||||
Kappa (%) |
Class | SVM | CDCNN | 3DCNN | SSRN | DFFN | MFDN | CBW | FGSSCA | LDN | S2FEF | S3EResBoF | LMFN |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | ||||||||||||
2 | ||||||||||||
3 | ||||||||||||
4 | ||||||||||||
5 | ||||||||||||
6 | ||||||||||||
7 | ||||||||||||
8 | ||||||||||||
9 | ||||||||||||
10 | ||||||||||||
11 | ||||||||||||
12 | ||||||||||||
13 | ||||||||||||
OA (%) | ||||||||||||
AA (%) | ||||||||||||
Kappa (%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, M.; Wang, H.; Yu, X.; Meng, Z.; Yi, J.; Jiao, L. Lightweight Multilevel Feature Fusion Network for Hyperspectral Image Classification. Remote Sens. 2022, 14, 79. https://doi.org/10.3390/rs14010079
Liang M, Wang H, Yu X, Meng Z, Yi J, Jiao L. Lightweight Multilevel Feature Fusion Network for Hyperspectral Image Classification. Remote Sensing. 2022; 14(1):79. https://doi.org/10.3390/rs14010079
Chicago/Turabian StyleLiang, Miaomiao, Huai Wang, Xiangchun Yu, Zhe Meng, Jianbing Yi, and Licheng Jiao. 2022. "Lightweight Multilevel Feature Fusion Network for Hyperspectral Image Classification" Remote Sensing 14, no. 1: 79. https://doi.org/10.3390/rs14010079
APA StyleLiang, M., Wang, H., Yu, X., Meng, Z., Yi, J., & Jiao, L. (2022). Lightweight Multilevel Feature Fusion Network for Hyperspectral Image Classification. Remote Sensing, 14(1), 79. https://doi.org/10.3390/rs14010079