Mapping Crop Distribution Patterns and Changes in China from 2000 to 2015 by Fusing Remote-Sensing, Statistics, and Knowledge-Based Crop Phenology
<p>Distribution of the six agricultural regions with different cropping patterns in China.</p> "> Figure 2
<p>Workflow schematic for mapping crop distribution based on remote-sensing-derived cropping seasons and a regional crop calendar. Note: EVI, enhanced vegetation index; HANTS, harmonic analysis of time series.</p> "> Figure 3
<p>Time series profile curves of the vegetation index in regions where double cropping could potentially be applied, though it is not necessarily applied (<b>a</b>,<b>b</b>) and in regions where triple cropping could potentially be applied, though it is not necessarily applied (<b>c</b>–<b>f</b>). Curves with green dots are the major patterns considered in this study. The curves with yellow dots in (<b>a</b>,<b>c</b>) indicate the presence of a single cropping pattern, but these patterns were not the majority and so were not separated from the majority type presented by green dots. We named these patterns as follows: pattern 2-1 (<b>a</b>), pattern 2-2 (<b>b</b>), pattern 3-1 (<b>c</b>), pattern 3-2 (<b>d</b>), pattern 3-3 (<b>e</b>), and pattern 3-4 (<b>f</b>). Consistent with Zuo et al. (2013), we avoided false peaks by discarding data obtained after 320 Julian day, which was especially helpful when winter wheat was planted.</p> "> Figure 4
<p>Comparison of remote sensing results with statistical data. WCD: winter crops in potentially double cropped areas; WCT: winter crops in potentially triple cropped areas; MCT: main season crops in triple cropped areas. (<b>a</b>–<b>c</b>): comparison at the county level for the whole country; (<b>d</b>–<b>f</b>): plots of fitness, represented by R<sup>2</sup>, against the percent of harvest areas of the crops of concern at the province level; (<b>g</b>–<b>i</b>): comparisons at the county level for the first four provinces with the highest harvest areas of the crops of concern.</p> "> Figure 5
<p>Comparison of rice area from our results and paddy fields extracted from the NLCD-C.</p> "> Figure 6
<p>Comparison of the results from the allocation model based on cropping patterns (a) and the results from the average allocation model (b). Counties were randomly chosen from those with high harvest areas: wheat in Xintai County, the Huang-Huai-Hai region; soybean in Jincheng County, the Loess Plateau; rapeseed in Xuncheng County, the Yangtze River Middle and Lower Plain; potato in Ankang County, the southwest region; maize in Renshou County, the southwest region; rice in Fengcheng County, the Yangtze River Middle and Lower Plain; and sugarcane in Shule County, the Southern China region.</p> "> Figure 7
<p>Comparison of the variation in SHDI between the results from our model and those from the average allocation model for each crop.</p> "> Figure 8
<p>Spatial distribution of the 14 studied crops (including three varieties for rice and two for wheat) in 2015.</p> "> Figure 9
<p>Spatial patterns of area change for wheat, rice, soybean, and maize from 2000 to 2015.</p> ">
Abstract
:1. Introduction
2. Data and Processing
2.1. Land Use Data
2.2. Remote Sensing Data
2.3. Statistical Data
2.4. Regional Phenology Data
3. Methods
3.1. Cropping Seasons Detecting
3.2. Crop Harvest Area Allocation
- For winter crops, we allocated them onto the cropland with a spring peak, that is, croplands in patterns 2-2, 3-2, and 3-4. If the sum area of the winter crops was larger than croplands with a spring peak, we allocated the excess area of winter crops onto the croplands with one cropping cycle, i.e., the croplands in patterns 2-1 and 3-1. We did not allocate winter crops onto pattern 3-3 because there was no spring peak in this type of cropland, according to our detection.
- For spring or summer crops existing on single or double cropped lands, we allocated them onto the corresponding type of croplands, according to Table 1. For those counties with > 1 (k denotes patterns 2-2, 3-1, and 3-2), we firstly moved crops that could exist on two kinds of cropland patterns out from the croplands in pattern k, with > 1, to the croplands of pattern k′, with < 1, to make sure the HI of all the crops in each grid were less than or equal to 1.
- For spring or summer crops existing on triple cropped lands, we allocated them onto croplands where triple peaks were detected, or double peaks were detected, after June. For those counties with > 1 (k denotes patterns 3-3 and 3-4), we moved the crops marked in green that were not exclusively located in cropland in patterns 3-3 and 3-4 out onto another pattern where they might be located, so as to make sure the HI of all the crops in each grid were less than or equal to 1.
3.3. Verification and Accuracy Check
4. Results
4.1. Accuracy Assessment
4.1.1. Comparison of Area of Crop Groups Obtained by Remote Sensing with Statistical Data
4.1.2. Comparison of Rice Distribution with Paddy Fields from the NLCD-C
4.1.3. Comparison with Average Allocation Results
4.2. Patterns of Crop Distribution
4.3. Change Patterns of Major Crops
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global Consequences of Land Use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kastner, T.; Rivas, M.J.I.; Koch, W.; Nonhebel, S. Global changes in diets and the consequences for land requirements for food. Proc. Natl. Acad. Sci. USA 2012, 109, 6868–6872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- West, P.C.; Gerber, J.S.; Engstrom, P.M.; Mueller, N.D.; Brauman, K.A.; Carlson, K.M.; Cassidy, E.S.; Johnston, M.; MacDonald, G.K.; Ray, D.K.; et al. Leverage points for improving global food security and the environment. Science 2014, 345, 325–328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zuo, L.; Zhang, Z.; Carlson, K.M.; MacDonald, G.K.; Brauman, K.A.; Liu, Y.; Zhang, W.; Zhang, H.; Wu, W.; Zhao, X.; et al. Progress towards sustainable intensification in China challenged by land-use change. Nat. Sustain. 2018, 1, 304–313. [Google Scholar] [CrossRef]
- Zhang, X.; Davidson, E.A.; Mauzerall, D.L.; Searchinger, T.D.; Dumas, P.; Shen, Y. Managing nitrogen for sustainable development. Nature 2015, 528, 51–59. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Azzari, G.; Lobell, D.B. Crop type mapping without field-level labels: Random forest transfer and unsupervised clustering techniques. Remote Sens. Environ. 2019, 222, 303–317. [Google Scholar] [CrossRef]
- United Nations, Department of Economic and Social Affairs, Population Division. World Population Prospects 2019. Online Edition. Rev. 1. 2019. Available online: https://population.un.org/wpp/ (accessed on 15 February 2022).
- FAOSTAT. FAOSTAT Online Statistical Service. Available online: http://www.fao.org/faostat/en/#data (accessed on 9 July 2020).
- Zhao, C.; Liu, B.; Piao, S.; Wang, X.; Lobell, D.B.; Huang, Y.; Huang, M.; Yao, Y.; Bassu, S.; Ciais, P.; et al. Temperature increase reduces global yields of major crops in four independent estimates. Proc. Natl. Acad. Sci. USA 2017, 114, 9326–9331. [Google Scholar] [CrossRef] [Green Version]
- Waldner, F.; De Abelleyra, D.; Verón, S.R.; Zhang, M.; Wu, B.; Plotnikov, D.; Bartalev, S.; Lavreniuk, M.; Skakun, S.; Kussul, N.; et al. Towards a set of agrosystem-specific cropland mapping methods to address the global cropland diversity. Int. J. Remote Sens. 2016, 37, 3196–3231. [Google Scholar] [CrossRef] [Green Version]
- FAO. Food and Agriculture Organization of the United Nations. Available online: http://www.fao.org/ (accessed on 15 February 2022).
- NBS. China National Statistical Yearbook. Available online: http://www.stats.gov.cn/english/ (accessed on 9 July 2020).
- Liu, Z.; Yang, P.; Wu, W.; Li, Z.; You, L. Spatio-temporal changes in Chinese crop patterns over the past three decades. Acta Geogr. Sin. 2016, 71, 840–851. [Google Scholar]
- Monfreda, C.; Ramankutty, N.; Foley, J.A. Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Glob. Biogeochem. Cycles 2008, 2, 1–19. [Google Scholar] [CrossRef]
- Guo, Y.; Xia, H.; Pan, L.; Zhao, X.; Li, R. Mapping the Northern Limit of Double Cropping Using a Phenology-Based Algorithm and Google Earth Engine. Remote Sens. 2022, 14, 1004. [Google Scholar] [CrossRef]
- Wardlow, B.D.; Egbert, S.L.; Kastens, J.H. Analysis of time-series MODIS 250 m vegetation index data for crop classification in the U.S. Central Great Plains. Remote Sens. Environ. 2007, 108, 290–310. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.; Radeloff, V.C.; Ives, A.R. Improving the mapping of crop types in the Midwestern U.S. by fusing Landsat and MODIS satellite data. Int. J. Appl. Earth Obs. Geoinf. 2017, 58, 1–11. [Google Scholar] [CrossRef]
- Wang, C.; Fan, Q.; Li, Q.; SooHoo, W.M.; Lu, L. Energy crop mapping with enhanced TM/MODIS time series in the BCAP agricultural lands. ISPRS J. Photogramm. Remote Sens. 2017, 124, 133–143. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Wang, C.; Zhang, B.; Lu, L. Object-Based Crop Classification with Landsat-MODIS Enhanced Time-Series Data. Remote Sens. 2015, 7, 16091–16107. [Google Scholar] [CrossRef] [Green Version]
- Griffiths, P.; Nendel, C.; Hostert, P. Intra-annual reflectance composites from Sentinel-2 and Landsat for national-scale crop and land cover mapping. Remote Sens. Environ. 2019, 220, 135–151. [Google Scholar] [CrossRef]
- Dong, J.; Xiao, X.; Menarguez, M.A.; Zhang, G.; Qin, Y.; Thau, D.; Biradar, C.; Moore, B., III. Mapping paddy rice planting area in northeastern Asia with Landsat 8 images, phenology-based algorithm and Google Earth Engine. Remote Sens. Environ. 2016, 185, 142–154. [Google Scholar] [CrossRef] [Green Version]
- Kussul, N.; Lemoine, G.; Gallego, F.J.; Skakun, S.V.; Lavreniuk, M.; Shelestov, A.Y. Parcel-Based Crop Classification in Ukraine Using Landsat-8 Data and Sentinel-1A Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 2500–2508. [Google Scholar] [CrossRef]
- Skakun, S.; Vermote, E.; Roger, J.-C.; Franch, B. Combined use of Landsat-8 and Sentinel-2A images for winter crop mapping and winter wheat yield assessment at regional scale. AIMS Geosci. 2017, 3, 163. [Google Scholar] [CrossRef]
- Kpienbaareh, D.; Sun, X.; Wang, J.; Luginaah, I.; Bezner Kerr, R.; Lupafya, E.; Dakishoni, L. Crop type and land cover mapping in northern Malawi using the integration of sentinel-1, sentinel-2, and planetscope satellite data. Remote Sens. 2021, 13, 700. [Google Scholar] [CrossRef]
- Xiao, X.; Boles, S.; Frolking, S.; Li, C.; Babu, J.Y.; Salas, W.; Moore, B. Mapping paddy rice agriculture in South and Southeast Asia using multi-temporal MODIS images. Remote Sens. Environ. 2006, 100, 95–113. [Google Scholar] [CrossRef]
- Gumma, M.K.; Thenkabail, P.S.; Maunahan, A.; Islam, S.; Nelson, A. Mapping seasonal rice cropland extent and area in the high cropping intensity environment of Bangladesh using MODIS 500 m data for the year 2010. ISPRS J. Photogramm. Remote Sens. 2014, 91, 98–113. [Google Scholar] [CrossRef]
- Onojeghuo, A.O.; Blackburn, G.A.; Wang, Q.; Atkinson, P.M.; Kindred, D.; Miao, Y. Rice crop phenology mapping at high spatial and temporal resolution using downscaled MODIS time-series. GIS Sci. 2018, 55, 659–677. [Google Scholar] [CrossRef] [Green Version]
- Pan, Y.; Li, L.; Zhang, J.; Liang, S.; Zhu, X.; Sulla-Menashe, D. Winter wheat area estimation from MODIS-EVI time series data using the Crop Proportion Phenology Index. Remote Sens. Environ. 2012, 119, 232–242. [Google Scholar] [CrossRef]
- Chen, Y.; Hou, J.; Huang, C.; Zhang, Y.; Li, X. Mapping Maize Area in Heterogeneous Agricultural Landscape with Multi-Temporal Sentinel-1 and Sentinel-2 Images Based on Random Forest. Remote Sens. 2021, 13, 2988. [Google Scholar] [CrossRef]
- Song, X.-P.; Potapov, P.V.; Krylov, A.; King, L.; Di Bella, C.M.; Hudson, A.; Khan, A.; Adusei, B.; Stehman, S.V.; Hansen, M.C. National-scale soybean mapping and area estimation in the United States using medium resolution satellite imagery and field survey. Remote Sens. Environ. 2017, 190, 383–395. [Google Scholar] [CrossRef]
- Wang, J.; Xiao, X.; Liu, L.; Wu, X.; Qin, Y.; Steiner, J.L.; Dong, J. Mapping sugarcane plantation dynamics in Guangxi, China, by time series Sentinel-1, Sentinel-2 and Landsat images. Remote Sens. Environ. 2020, 247, 111951. [Google Scholar] [CrossRef]
- Skakun, S.; Franch, B.; Vermote, E.; Roger, J.-C.; Becker-Reshef, I.; Justice, C.; Kussul, N. Early season large-area winter crop mapping using MODIS NDVI data, growing degree days information and a Gaussian mixture model. Remote Sens. Environ. 2017, 195, 244–258. [Google Scholar] [CrossRef]
- Arvor, D.; Jonathan, M.; Meirelles, M.S.P.; Dubreuil, V.; Durieux, L. Classification of MODIS EVI time series for crop mapping in the state of Mato Grosso, Brazil. Int. J. Remote Sens. 2011, 32, 7847–7871. [Google Scholar] [CrossRef]
- Zhong, L.; Hu, L.; Yu, L.; Gong, P.; Biging, G.S. Automated mapping of soybean and corn using phenology. ISPRS J. Photogramm. Remote Sens. 2016, 119, 151–164. [Google Scholar] [CrossRef] [Green Version]
- Ofori-Ampofo, S.; Pelletier, C.; Lang, S. Crop Type Mapping from Optical and Radar Time Series Using Attention-Based Deep Learning. Remote Sens. 2021, 13, 4668. [Google Scholar] [CrossRef]
- Jackson, N.D.; Konar, M.; Debaere, P.; Estes, L. Probabilistic global maps of crop-specific areas from 1961 to 2014. Environ. Res. Lett. 2019, 14, 094023. [Google Scholar] [CrossRef]
- You, L.; Wood, S.; Wood-Sichra, U.; Wu, W. Generating global crop distribution maps: From census to grid. Agric. Syst. 2014, 127, 53–60. [Google Scholar] [CrossRef] [Green Version]
- Tan, J.; Li, Z.; Yang, P.; Yu, Q.; Zhang, L.; Wu, W.; Tang, P.; Liu, Z.; You, L. Spatial evaluation of crop maps by the spatial production allocation model in China. J. Appl. Remote Sens. 2014, 8, 085197. [Google Scholar] [CrossRef]
- Khan, M.R.; De Bie, C.A.; Van Keulen, H.; Smaling, E.M.A.; Real, R. Disaggregating and mapping crop statistics using hypertemporal remote sensing. Int. J. Appl. Earth Obs. 2010, 12, 36–46. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, X.; Zhao, X.; Liu, B.; Yi, L.; Zuo, L.; Wen, Q.; Liu, F.; Xu, J.; Hu, S. A 2010 update of National Land Use/Cover Database of China at 1:100,000 scale using medium spatial resolution satellite images. Remote Sens. Environ. 2014, 149, 142–154. [Google Scholar] [CrossRef]
- Hu, Q.; Yin, H.; Friedl, M.A.; You, L.; Li, Z.; Tang, H.; Wu, W. Integrating coarse-resolution images and agricultural statistics to generate sub-pixel crop type maps and reconciled area estimates. Remote Sens. Environ. 2021, 258, 112365. [Google Scholar] [CrossRef]
- CAAS. AgriData, (Chinese Academy of Agricultural Sciences, CAAS, 2014). Available online: http://www.agridata.cn/default.aspx (accessed on 7 March 2018).
- NBSC. National Data: Online Statistical Service, (National Bureau of Statistics of the People’s Republic of China 2017). Available online: http://data.stats.gov.cn/index.htm (accessed on 12 July 2018).
- Tóth, G.; Kozlowski, B.; Prieler, S.; Wiberg, D. Global Agro-ecological Zones. Available online: https://www.gaez.iiasa.ac.at/docs/GAEZ_User_Guide.pdf (accessed on 15 November 2019).
- Muhammad, S.; Zhan, Y.; Wang, L.; Hao, P.; Niu, Z. Major crops classification using time series MODIS EVI with adjacent years of ground reference data in the US state of Kansas. Optik 2016, 127, 1071–1077. [Google Scholar] [CrossRef]
- Zhang, J.; Feng, L.; Yao, F. Improved maize cultivated area estimation over a large scale combining MODIS-EVI time series data and crop phenological information. Isprs J. Photogramm. Remote Sens. 2014, 94, 102–113. [Google Scholar] [CrossRef]
- Zuo, L.-J.; Wang, X.; Liu, F.; Yi, L. Spatial Exploration of Multiple Cropping Efficiency in China Based on Time Series Remote Sensing Data and Econometric Model. J. Integr. Agric. 2013, 12, 903–913. [Google Scholar] [CrossRef]
- Guo, Y.; Xia, H.; Pan, L.; Zhao, X.; Li, R.; Bian, X.; Wang, R.; Yu, C. Development of a New Phenology Algorithm for Fine Mapping of Cropping Intensity in Complex Planting Areas Using Sentinel-2 and Google Earth Engine. ISPRS Int. J. Geo-Inf. 2021, 10, 587. [Google Scholar] [CrossRef]
- Liu, X. Farming System; China Agriculture Press: Beijing, China, 1982. (In Chinese) [Google Scholar]
- Liu, L.; Xiao, X.M.; Qin, Y.W.; Wang, J.; Xu, X.L.; Hu, Y.M.; Qiao, Z. Mapping cropping intensity in China using time series Landsat and Sentinel-2 images and Google Earth Engine. Remote Sens. Environ. 2020, 239, 13. [Google Scholar] [CrossRef]
- Chen, Y.L.; Lu, D.S.; Moran, E.; Batistella, M.; Dutra, L.V.; Sanches, I.D.; da Silva, R.F.B.; Huang, J.F.; Luiz, A.J.B.; de Oliveira, M.A.F. Mapping croplands, cropping patterns, and crop types using MODIS time-series data. Int. J. Appl. Earth Obs. Geoinf. 2018, 69, 133–147. [Google Scholar] [CrossRef]
- Feyisa, G.L.; Palao, L.K.; Nelson, A.; Gumma, M.K.; Paliwal, A.; Win, K.T.; Nge, K.H.; Johnson, D.E. Characterizing and mapping cropping patterns in a complex agro-ecosystem: An iterative participatory mapping procedure using machine learning algorithms and MODIS vegetation indices. Comput. Electron. Agric. 2020, 175, 105595. [Google Scholar] [CrossRef]
- Teluguntla, P.; Thenkabail, P.S.; Xiong, J.; Gumma, M.K.; Congalton, R.G.; Oliphant, A.; Poehnelt, J.; Yadav, K.; Rao, M.; Massey, R. Spectral matching techniques (SMTs) and automated cropland classification algorithms (ACCAs) for mapping croplands of Australia using MODIS 250-m time-series (2000–2015) data. Int. J. Digit. Earth 2017, 10, 944–977. [Google Scholar] [CrossRef] [Green Version]
- Brown, J.C.; Kastens, J.H.; Coutinho, A.C.; Victoria, D.D.; Bishop, C.R. Classifying multiyear agricultural land use data from Mato Grosso using time-series MODIS vegetation index data. Remote Sens. Environ. 2013, 130, 39–50. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Song, X.; Wang, S.; Huang, J.; Mansaray, L.R. Impacts of spatial heterogeneity on crop area mapping in Canada using MODIS data. ISPRS J. Photogramm. Remote Sens. 2016, 119, 451–461. [Google Scholar] [CrossRef]
- Ozdogan, M. The spatial distribution of crop types from MODIS data: Temporal unmixing using Independent Component Analysis. Remote Sens. Environ. 2010, 114, 1190–1204. [Google Scholar] [CrossRef]
- Dong, T.F.; Liu, J.G.; Qian, B.D.; Zhao, T.; Jing, Q.; Geng, X.Y.; Wang, J.F.; Huffman, T.; Shang, J.L. Estimating winter wheat biomass by assimilating leaf area index derived from fusion of Landsat-8 and MODIS data. Int. J. Appl. Earth Obs. Geoinf. 2016, 49, 63–74. [Google Scholar] [CrossRef]
- Gao, F.; Anderson, M.C.; Zhang, X.; Yang, Z.; Alfieri, J.G.; Kustas, W.P.; Mueller, R.; Johnson, D.M.; Prueger, J.H. Toward mapping crop progress at field scales through fusion of Landsat and MODIS imagery. Remote Sens. Environ. 2017, 188, 9–25. [Google Scholar] [CrossRef] [Green Version]
- Zuo, L.; Dong, T.; Wang, X.; Zhao, X.; Yi, L. Multiple cropping index of Northern China based on MODIS/EVI. Trans. Chin. Soc. Agric. Eng. 2009, 25, 141–146. [Google Scholar]
- Hao, P.Y.; Tang, H.J.; Chen, Z.X.; Meng, Q.Y.; Kang, Y.P. Early-season crop type mapping using 30-m reference time series. J. Integr. Agric. 2020, 19, 1897–1911. [Google Scholar] [CrossRef]
Regions | Cropping Patterns | |||
---|---|---|---|---|
Winter Crops | Crops in Main Season | |||
Single Cropped Types | Double Cropped Types | Triple Cropped Types | ||
Single cropping area | — | All crops | — | — |
North double cropping area 1 | Winter wheat | Spring wheat, Cotton, Barley, Millet, Sorghum, Sugarbeet, Soybean, Potato, Groundnut, Maize, Sunflower | Middle rice, Maize, Sunflower | — |
North double cropping area 2 | Winter wheat, Rapeseed | Spring wheat, Barley, Millet, Sugarbeet, Middle rice, Potato, Sorghum, Maize, Soybean, Sunflower | Cotton, Groundnut, Maize, Soybean, Sunflower | — |
South double cropping area | Winter wheat, Rapeseed | Sugarcane, Groundnut, Maize, Potato | Soybean, Sunflower, Sorghum, Cotton, Middle rice, Early rice, Late rice, Groundnut, Maize, Potato | — |
South triple cropping area 1 | Winter wheat, Rapeseed, Barley | Sugarcane | Sunflower, Sorghum, Soybean, Middle rice, Potato | Maize, Early rice, Late rice, Groundnut, Soybean, Middle rice, Potato |
South triple cropping area 2 | Winter wheat, Rapeseed, Potato, Soybean | Sugarcane | Cotton, Sunflower, Sorghum | Maize, Groundnut, Early rice, Late rice, Middle rice, Soybean |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Zhang, Z.; Zuo, L.; Wang, X.; Zhao, X.; Sun, F. Mapping Crop Distribution Patterns and Changes in China from 2000 to 2015 by Fusing Remote-Sensing, Statistics, and Knowledge-Based Crop Phenology. Remote Sens. 2022, 14, 1800. https://doi.org/10.3390/rs14081800
Wang Y, Zhang Z, Zuo L, Wang X, Zhao X, Sun F. Mapping Crop Distribution Patterns and Changes in China from 2000 to 2015 by Fusing Remote-Sensing, Statistics, and Knowledge-Based Crop Phenology. Remote Sensing. 2022; 14(8):1800. https://doi.org/10.3390/rs14081800
Chicago/Turabian StyleWang, Yue, Zengxiang Zhang, Lijun Zuo, Xiao Wang, Xiaoli Zhao, and Feifei Sun. 2022. "Mapping Crop Distribution Patterns and Changes in China from 2000 to 2015 by Fusing Remote-Sensing, Statistics, and Knowledge-Based Crop Phenology" Remote Sensing 14, no. 8: 1800. https://doi.org/10.3390/rs14081800
APA StyleWang, Y., Zhang, Z., Zuo, L., Wang, X., Zhao, X., & Sun, F. (2022). Mapping Crop Distribution Patterns and Changes in China from 2000 to 2015 by Fusing Remote-Sensing, Statistics, and Knowledge-Based Crop Phenology. Remote Sensing, 14(8), 1800. https://doi.org/10.3390/rs14081800