Can Multi-Mission Altimeter Datasets Accurately Measure Long-Term Trends in Wave Height?
<p>Altimeter missions used in the analysis. The duration of data available from each mission is shown [<a href="#B47-remotesensing-14-00974" class="html-bibr">47</a>,<a href="#B50-remotesensing-14-00974" class="html-bibr">50</a>].</p> "> Figure 2
<p>NDBC buoy locations (blue dots) used for the “altimeter–buoy” calibration.</p> "> Figure 3
<p>Matchup locations used for the “altimeter–altimeter” calibrations of (<b>a</b>) ENVISAT against JASON1, (<b>b</b>) ERS1 against TOPEX, and (<b>c</b>) SARAL against JASON2.</p> "> Figure 4
<p>Trends in values of mean monthly significant wave height, <math display="inline"><semantics> <mrow> <msub> <mi>H</mi> <mi>s</mi> </msub> </mrow> </semantics></math> (units–cm/year) from altimeter data over the period 1985 to 2018. Multi-mission altimeter dataset calibrated using (<b>a</b>) “altimeter–buoy” calibration and (<b>b</b>) “altimeter–altimeter” calibration. Values which are statistically significant at the 95th percent level are shown by small dots.</p> "> Figure 5
<p>Differences between mean significant wave height averaged over each altimeter mission for different calibration approaches <math display="inline"><semantics> <mrow> <mo>Δ</mo> <msub> <mover accent="true"> <mi>H</mi> <mo>¯</mo> </mover> <mi>s</mi> </msub> <mo>=</mo> <msubsup> <mover accent="true"> <mi>H</mi> <mo>¯</mo> </mover> <mi>s</mi> <mrow> <mi>a</mi> <mi>l</mi> <mi>t</mi> <mo>−</mo> <mi>b</mi> <mi>u</mi> <mi>o</mi> <mi>y</mi> </mrow> </msubsup> <mo>−</mo> <msubsup> <mover accent="true"> <mi>H</mi> <mo>¯</mo> </mover> <mi>s</mi> <mrow> <mi>a</mi> <mi>l</mi> <mi>t</mi> <mo>−</mo> <mi>a</mi> <mi>l</mi> <mi>t</mi> </mrow> </msubsup> </mrow> </semantics></math>, where <math display="inline"><semantics> <mrow> <msubsup> <mover accent="true"> <mi>H</mi> <mo>¯</mo> </mover> <mi>s</mi> <mrow> <mi>a</mi> <mi>l</mi> <mi>t</mi> <mo>−</mo> <mi>b</mi> <mi>u</mi> <mi>o</mi> <mi>y</mi> </mrow> </msubsup> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msubsup> <mover accent="true"> <mi>H</mi> <mo>¯</mo> </mover> <mi>s</mi> <mrow> <mi>a</mi> <mi>l</mi> <mi>t</mi> <mo>−</mo> <mi>a</mi> <mi>l</mi> <mi>t</mi> </mrow> </msubsup> </mrow> </semantics></math> are values of <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>H</mi> <mo>¯</mo> </mover> <mi>s</mi> </msub> </mrow> </semantics></math> for the “altimeter–buoy” and “altimeter–altimeter” calibrations, respectively. Units shown in color bar (m). Order of altimeter mission launch dates is from the bottom to top and left to right: ERS1, TOPEX, ERS2, GFO, etc.</p> "> Figure 6
<p>Global (−60° to 60°) average values of significant wave height, <math display="inline"><semantics> <mrow> <msub> <mi>H</mi> <mi>s</mi> </msub> </mrow> </semantics></math> as a function of time. (<b>a</b>) Monthly mean values for the “altimeter–buoy” calibration, (<b>b</b>) Annual mean values for the “altimeter–buoy” calibration, (<b>c</b>) Annual mean values for the “altimeter–altimeter” calibration. Note: for plotting convenience, a different scale exits in panels (<b>b</b>,<b>c</b>) compared to (<b>a</b>).</p> "> Figure 7
<p>Average significant wave height, <math display="inline"><semantics> <mrow> <msub> <mi>H</mi> <mi>s</mi> </msub> </mrow> </semantics></math> as a function of time, as in <a href="#remotesensing-14-00974-f006" class="html-fig">Figure 6</a>c, but averaged over latitudes −40°S to −60°S. Note: to aid comparison, the range of values on the <math display="inline"><semantics> <mrow> <msub> <mi>H</mi> <mi>s</mi> </msub> </mrow> </semantics></math> axis is the same as in <a href="#remotesensing-14-00974-f006" class="html-fig">Figure 6</a>c.</p> "> Figure 8
<p>Impacts of altimeter sampling density on trend for the 90th percentile significant wave height. (<b>a</b>) All altimeter data used, (<b>b</b>) Data decimated by a factor of five, (<b>c</b>) More recent altimeter missions removed to yield approximately constant data density as a function of time. Values which are statistically significant at the 95th percent level are shown by small dots.</p> "> Figure 9
<p>As for <a href="#remotesensing-14-00974-f008" class="html-fig">Figure 8</a> but trend for 99th percentile significant wave height. (<b>a</b>) All altimeter data used, (<b>b</b>) Data decimated by a factor of five, (<b>c</b>) More recent altimeter missions removed to yield approximately constant data density as a function of time. Values which are statistically significant at the 95th percent level are shown by small dots.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Altimeter Data
2.2. Altimeter–Buoy Calibration
2.3. Altimeter–Altimeter Calibration
3. Results
3.1. Global Trend in Mean Significant Wave Height
3.2. Homogeneity of Calibrated Multi-Mission Altimeter Data
3.3. Altimeter Sampling Patterns
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Altimeter | Calibration Relation | 95% Limit Slope | 95% Limit Offset | N | Outliers (%) |
---|---|---|---|---|---|
ERS1 | 1.140 to 1.147 | 0.080 to 0.099 | 3290 | 0.52 | |
TOPEX | Before 25/4/97 | 1.021 to 1.029 | −0.082 to −0.056 | 1809 | 0.66 |
25/4/97 to 30/1/99 | - | - | - | ||
After 30/1/99 | 1.011 to 1.016 | −0.055 to −0.038 | 4562 | 0.64 | |
ERS2 | 1.054 to 1061 | −0.017 to 0.003 | 2262 | 1.15 | |
GFO | 1.043 to 1.047 | 0.081 to 0.091 | 5470 | 0.68 | |
JASON1 | 1.030 to 1.031 | −0.056 to −0.053 | 49,264 | 0.34 | |
ENVISAT | 1.002 to 1.005 | 0.011 to 0.018 | 9992 | 0.77 | |
JASON2 | 1.028 to 1.035 | −0.078 to −0.062 | 7750 | 1.66 | |
CRYOSAT | 1.010 to 1.014 | −0.172 to −0.159 | 3724 | 0.48 | |
SARAL | 1.005 to 1.009 | −0.061 to −0.050 | 3250 | 0.95 | |
JASON3 | 1.026 to 1.027 | −0.053 to −0.050 | 35,402 | 0.20 | |
SENTINEL3 | 0.986 to 0.992 | −0.002 to 0.020 | 1631 | 0.37 |
References
- Mundaca, G.; Strand, J.; Young, I.R. Carbon pricing of international transport fuels: Impacts on carbon emissions and trade activity. J. Environ. Econ. Manag. 2021, 110, 102517. [Google Scholar] [CrossRef]
- Harley, M.D.; Turner, I.L.; Kinsela, M.; Middleton, J.H.; Mumford, P.J.; Splinter, K.D.; Phillips, M.S.; Simmons, J.A.; Hanslow, D.J.; Short, A.D. Extreme coastal erosion enhanced by anomalous extratropical storm wave direction. Sci. Rep. 2017, 7, 6033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serafin, K.A.; Ruggiero, P.; Stockdon, H.F. The relative contribution of waves, tides, and nontidal residuals to extreme total water levels on U.S. West Coast sandy beaches. Geophys. Res. Lett. 2017, 44, 1839–1847. [Google Scholar] [CrossRef]
- Kirezci, E.; Young, I.R.; Ranasinghe, R.; Muis, S.; Nicholls, R.J.; Lincke, D.; Hinkel, J. Projections of global-scale extreme sea levels and resulting episodic coastal flooding over the 21st Century. Sci. Rep. 2020, 10, 11629. [Google Scholar] [CrossRef] [PubMed]
- Massom, R.A.; Scambos, T.A.; Bennetts, L.; Reid, P.; Squire, V.; Stammerjohn, S.E. Antarctic ice shelf disintegration triggered by sea ice loss and ocean swell. Nature 2018, 558, 383–389. [Google Scholar] [CrossRef] [PubMed]
- Rattray, A.; Ierodiaconou, D.; Womersley, T. Wave exposure as a predictor of benthic habitat distribution on high energu temperate reefs. Front. Mar. Sci. 2015, 2, 8. [Google Scholar] [CrossRef] [Green Version]
- Bouws, E.; Jannink, D.; Komen, G.J. The Increasing Wave Height in the North Atlantic Ocean. Bull. Am. Meteorol. Soc. 1996, 77, 2275–2277. [Google Scholar] [CrossRef] [2.0.CO;2" target='_blank'>Green Version]
- Ruggiero, P.; Komar, P.D.; Allan, J.C. Increasing wave heights and extreme value projections: The wave climare of the U.S. Pacifc Northwest. Coast. Eng. 2010, 57, 539–552. [Google Scholar] [CrossRef]
- Gower, J.F.R. Temperature, wind and wave climatologies, and trend from marine meteorological buoys in the Northeast Pacific. J. Clim. 2002, 15, 3709–3718. [Google Scholar] [CrossRef]
- Hemer, M.A. Historical trends in Southern Ocean storminess: Long-term variability of extreme wave heights at Cape Sorell, Tasmania. Geophys. Res. Lett. 2010, 37, L18601. [Google Scholar] [CrossRef]
- Durrant, T.H.; Greenslade, D.J.M.; Simmonds, I. Validation of Jason-1 and Envisat Remotely Sensed Wave Heights. J. Atmos. Ocean. Technol. 2009, 26, 123–134. [Google Scholar] [CrossRef]
- Jensen, R.E.; Swail, V.; Bouchard, R.H. Quantifying wave measurement differences in historical and present wave buoy systems. Ocean Dyn. 2021, 71, 731–755. [Google Scholar] [CrossRef]
- Gemmrich, J.R.; Thomas, B.; Bouchard, R. Observational changes and trends in northeast Pacific wave records. Geophys. Res. Lett. 2011, 38, L22601. [Google Scholar] [CrossRef]
- Gulev, S.K.; Hasse, L. Notth Atlantic wind waves and wind stress fields from Voluntary Observing Ship data. J. Phys. Oceangr. 1998, 28, 1107–1130. [Google Scholar] [CrossRef] [Green Version]
- Gulev, S.K.; Grigorieva, V. Last century changes in ocean wind wave height from global visual wave data. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef]
- Gulev, S.K.; Grigorieva, V.; Sterl, A.; Woolf, D. Assessment of the reliability of wave observations from voluntary observing ships: Insights from the validation of a global wind wave climatology based on voluntary observing ship data. J. Geophys. Res. Earth Surf. 2003, 108, 3236. [Google Scholar] [CrossRef] [Green Version]
- Longuet-Higgins, M.S. A theory of the origin of microseisms. Philos. Trans. R. Soc. Lond. Ser. A 1950, 245, 1–35. [Google Scholar]
- Hasselmann, K. A statistical analysis of the generation of microseisms. Rev. Geophys. 1963, 1, 177–210. [Google Scholar] [CrossRef]
- Ardhuin, F.; Stutzmann, E.; Schimmel, M.; Mangeney, A. Ocean wave sources of seismic noise. J. Geophys. Res. Earth Surf. 2011, 116, C09004. [Google Scholar] [CrossRef]
- Timmermans, B.W.; Gommenginger, C.P.; Dodet, G.; Bidlot, J. Global Wave Height Trends and Variability from New Multimission Satellite Altimeter Products, Reanalyses, and Wave Buoys. Geophys. Res. Lett. 2020, 47, e2019GL086880. [Google Scholar] [CrossRef]
- The Wamdi Group. The WAM model—A third generation ocean wave prediction model. J. Phys. Oceanogr. 1988, 18, 1775–1810. [Google Scholar] [CrossRef] [2.0.CO;2" target='_blank'>Green Version]
- WW3DG. User manual and system documentation of WAVEWATCH III® version 6.07. NOAA/NWS/NCEP/MMAB Tech. Note 2019, 333, 465. [Google Scholar]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horanyi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Liu, Q.; Babanin, A.V.; Rogers, W.E.; Zieger, S.; Young, I.R.; Bidlot, J.; Durrant, T.; Ewans, K.; Guan, C.; Kirezci, C.; et al. Global Wave Hindcasts Using the Observation-Based Source Terms: Description and Validation. J. Adv. Model. Earth Syst. 2021, 13, e2021MS002493. [Google Scholar] [CrossRef]
- Sterl, A.; Komen, G.J.; Cotton, P.D. Fifteen years of global wave hindcasts using winds from the ECMWF forecasts reananalysis: Validating the reanalyzed winds and assessing the wave climate. J. Geophys. Res. 1998, 103, 5477–5492. [Google Scholar] [CrossRef]
- Kushnir, Y.; Cardone, V.J.; Greenwood, J.G.; Cane, M.A. The Recent Increase in North Atlantic Wave Heights. J. Clim. 1997, 10, 2107–2113. [Google Scholar] [CrossRef] [Green Version]
- Cox, A.T.; Swail, V.R. A global wave hindcast over the period 1958-1997: Validation and climate assessment. J. Geophys. Res. Earth Surf. 2001, 106, 2313–2329. [Google Scholar] [CrossRef]
- Vikebø, F.; Furevik, T.; Furnes, G.; Kvamstø, N.G.; Reistad, M. Wave height variations in the North Sea and on the Norwegian Continental Shelf, 1881–1999. Cont. Shelf Res. 2003, 23, 251–263. [Google Scholar] [CrossRef]
- Semedo, A.; Suselj, K.; Rutgersson, A.; Sterl, A. A Global View on the Wind Sea and Swell Climate and Variability from ERA-40. J. Clim. 2011, 24, 1461–1479. [Google Scholar] [CrossRef]
- Wolf, J.; Woolf, D.K. Waves and climate change in the north-east Atlantic. Geophys. Res. Lett. 2006, 33, L06604. [Google Scholar] [CrossRef] [Green Version]
- Bertin, X.; Prouteau, E.; Letetrel, C. A significant increase in wave height in the North Atlantic Ocean over the 20th century. Glob. Planet. Chang. 2013, 106, 77–83. [Google Scholar] [CrossRef]
- Bromirski, P.D.; Cayan, D.R.; Helly, J.; Wittmann, P. Wave power variability and trends across the North Pacific. J. Geophys. Res. Oceans 2013, 118, 6329–6348. [Google Scholar] [CrossRef] [Green Version]
- Reguero, B.G.; Losada, I.J.; Mendez, F.J. A global wave power resource and its seasonal, interannual and long-term variability. Appl. Energy 2015, 148, 366–380. [Google Scholar] [CrossRef]
- Takbash, A.; Young, I.R. Long-Term and Seasonal Trends in Global Wave Height Extremes Derived from ERA-5 Reanalysis Data. J. Mar. Sci. Eng. 2020, 8, 1015. [Google Scholar] [CrossRef]
- Kaur, S.; Kumar, P.; Weller, E.; Young, I.R. Positive relationship between seasonal Indo-Pacific Ocean wave power and SST. Sci. Rep. 2021, 11, 17419. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Dong, C.; Young, I.R.; Yang, J. Global Wave Height Slowdown Trend during a Recent Global Warming Slowdown. Remote Sens. 2021, 13, 4096. [Google Scholar] [CrossRef]
- Hochet, A.; Dodet, G.; Ardhuin, F.; Hemer, M.; Young, I. Sea State Decadal Variability in the North Atlantic: A Review. Climate 2021, 9, 173. [Google Scholar] [CrossRef]
- Wang, X.L.; Zwiers, F.W.; Swail, V.R. North Atlantic Ocean Wave Climate Change Scenarios for the Twenty-First Century. J. Clim. 2004, 17, 2368–2383. [Google Scholar] [CrossRef]
- Wang, X.L.; Feng, Y.; Swail, V.R. Changes in global ocean wave heights as projected using multimodel CMIP5 simulations. Geophys. Res. Lett. 2014, 41, 1026–1034. [Google Scholar] [CrossRef]
- Hemer, M.; Fan, Y.; Mori, N.; Semedo, A.; Wang, X.L. Projected changes in wave climate from a multi-model ensemble. Nat. Clim. Chang. 2013, 3, 471–476. [Google Scholar] [CrossRef]
- Fan, Y.; Lin, S.-J.; Griffies, S.; Hemer, M. Simulated Global Swell and Wind-Sea Climate and Their Responses to Anthropogenic Climate Change at the End of the Twenty-First Century. J. Clim. 2014, 27, 3516–3536. [Google Scholar] [CrossRef]
- Morim, J.; Hemer, M.; Wang, X.L.; Cartwright, N.; Trenham, C.; Semedo, A.; Young, I.; Bricheno, L.; Camus, P.; Casas-Prat, M.; et al. Robustness and uncertainties in global multivariate wind-wave climate projections. Nat. Clim. Chang. 2019, 9, 711–718. [Google Scholar] [CrossRef] [Green Version]
- Meucci, A.; Young, I.R.; Hemer, M.; Kirezci, E.; Ranasinghe, R. Projected 21st century changes in extreme wind-wave events. Sci. Adv. 2020, 6, eaaz7295. [Google Scholar] [CrossRef] [PubMed]
- Rascle, N.; Ardhuin, F. A global wave parameter database for geophysical applications. Part 2: Model validation with improved source term parameterization. Ocean Model. 2013, 70, 174–188. [Google Scholar] [CrossRef] [Green Version]
- Meucci, A.; Young, I.; Aarnes, O.J.; Breivik, Ø. Comparison of Wind Speed and Wave Height Trends from Twentieth-Century Models and Satellite Altimeters. J. Clim. 2020, 33, 611–624. [Google Scholar] [CrossRef]
- Ribal, A.; Young, I.R. 33 years of globally calibrated wave height and wind speed data based on altimeter observations. Sci. Data 2019, 6, 77. [Google Scholar] [CrossRef] [Green Version]
- Zieger, S.; Vinoth, J.; Young, I.R. Joint calibration of multi-platform altimeter measurements of wind speed and wave height over the past 20 years. J. Atmos. Ocean. Tech. 2009, 26, 2549–2564. [Google Scholar] [CrossRef]
- Young, I.R.; Zieger, S.; Babanin, A.V. Global Trends in Wind Speed and Wave Height. Science 2011, 332, 451–455. [Google Scholar] [CrossRef]
- Young, I.R.; Ribal, A. Multi-platform evaluation of global trends in wind speed and wave height. Science 2019, 364, 548–552. [Google Scholar] [CrossRef]
- Dodet, G.; Piolle, J.-F.; Quilfen, Y.; Abdalla, S.; Accensi, M.; Ardhuin, F.; Ash, E.; Bidlot, J.-R.; Gommenginger, C.; Marechal, G.; et al. The Sea State CCI dataset v1: Towards a sea state climate data record based on satellite observations. Earth Syst. Sci. Data 2020, 12, 1929–1951. [Google Scholar] [CrossRef]
- GlobWaveTeam. Deliverable D30. GlobWave Final Report. 2013. Available online: http://due.esrin.esa.int/page_project102.php (accessed on 10 April 2021).
- Wentz, F.; Ricciardulli, L.; Hilburn, K.; Mears, C. How much more rain will global warming bring? Science 2007, 317, 233–235. [Google Scholar] [CrossRef]
- Bidlot, J.-R.; Lemos, G.; Semedo, A. ERA5 Reanalysis and ERA5-Based ocean Wave Hindcast. 2019. Available online: http://www.waveworkshop.org/16thWaves/Presentations/R1%20Wave_Workshop_2019_Bidlot_et_al.pdf (accessed on 12 April 2021).
- Jiang, H. Evaluation of altimeter undersampling in estimating global wind and wave climate using virtual observation. Remote Sens. Environ. 2020, 245, 111840. [Google Scholar] [CrossRef]
- Smith, R.J. Use and misuse of the reduced major axis for line-fitting. Am. J. Phys. Anthr. 2009, 140, 476–486. [Google Scholar] [CrossRef] [PubMed]
- Holland, P.W.; Welsch, R.E. Robust regression using iteratively reweighted least-squares. Commun. Stat. Theory Methods 1977, 6, 813–827. [Google Scholar] [CrossRef]
- Young, I.R.; Sanina, E.; Babanin, A.V. Calibration and cross-validation of a global wind and wave database of Altimeter, Radiometer and Scatterometer measurements. J. Atmos. Ocean. Tech. 2017, 34, 1285–1306. [Google Scholar] [CrossRef]
- Hirsch, R.M.; Slack, J.R.; Smith, R.A. Techniques of trend analysis for monthly water quality data. Water Resour. Res. 1982, 18, 107–121. [Google Scholar] [CrossRef] [Green Version]
- Hirsch, R.M.; Slack, J.R. A Nonparametric Trend Test for Seasonal Data with Serial Dependence. Water Resour. Res. 1984, 20, 727–732. [Google Scholar] [CrossRef] [Green Version]
- Sen, P.K. Estimates of the regression coefficient based on Kendals TAU. Amer. Stats. Assoc. J. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Bonnefond, P.; Laurain, O.; Exertier, P.; Boy, F.; Guinle, T.; Picot, N.; Labroue, S.; Raynal, M.; Donlon, C.; Féménias, P.; et al. Calibrating the SAR SSH of Sentinel-3A and CryoSat-2 over the Corsica Facilities. Remote Sens. 2018, 10, 92. [Google Scholar] [CrossRef] [Green Version]
- Young, I.R. Seasonal variability of the global ocean wind and wave climate. Int. J. Clim. 1999, 19, 931–950. [Google Scholar] [CrossRef]
- Young, I.; Donelan, M. On the determination of global ocean wind and wave climate from satellite observations. Remote Sens. Environ. 2018, 215, 228–241. [Google Scholar] [CrossRef]
- Young, I.R.; Fontaine, E.; Liu, Q.; Babanin, A.V. The Wave Climate of the Southern Ocean. J. Phys. Oceanogr. 2020, 50, 1417–1433. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Young, I.R.; Ribal, A. Can Multi-Mission Altimeter Datasets Accurately Measure Long-Term Trends in Wave Height? Remote Sens. 2022, 14, 974. https://doi.org/10.3390/rs14040974
Young IR, Ribal A. Can Multi-Mission Altimeter Datasets Accurately Measure Long-Term Trends in Wave Height? Remote Sensing. 2022; 14(4):974. https://doi.org/10.3390/rs14040974
Chicago/Turabian StyleYoung, Ian R., and Agustinus Ribal. 2022. "Can Multi-Mission Altimeter Datasets Accurately Measure Long-Term Trends in Wave Height?" Remote Sensing 14, no. 4: 974. https://doi.org/10.3390/rs14040974