Global Fisheries Responses to Culture, Policy and COVID-19 from 2017 to 2020
"> Figure 1
<p>Study areas: (<b>a</b>) global ocean area; (<b>b</b>) United States of America offshore; (<b>c</b>) Japan offshore; (<b>d</b>) Spain offshore; (<b>e</b>) China offshore. Locations on the maps are referred to in the main text.</p> "> Figure 2
<p>Global fishing effort from 2017 to 2020.</p> "> Figure 3
<p>Monthly chain growth of global fishing effort between 2020 and previous year (2017 to 2019).</p> "> Figure 4
<p>Spatial distribution of global AIS fishing effort from 2017 to 2020, color-coded according to the classes of fishing effort (hours).</p> "> Figure 5
<p>Spatial distribution of global fishing gear from 2017 to 2020.</p> "> Figure 6
<p>Yearly variation from 2017–2020 of the ratio of global grid counts by fishing gear type relative to 2017.</p> "> Figure 7
<p>Yearly change in the global grid counts of fishing gear type in the “Other” class of gears.</p> "> Figure 8
<p>Global monthly fishing effort (millions of hours) from 2017 to 2020. The pink area is the cultural month of New Year and Christmas, and the orange area is China’s fishing closed season.</p> "> Figure 9
<p>The impact of culture and policy on the percentage of fishing effort of China and other countries. (<b>a</b>) Impact of culture on fishing effort, (<b>b</b>) impact of policy on fishing effort.</p> "> Figure 10
<p>Comparative plots for 2017 to 2020 of the proportion of fishing gear under the influence of culture and policy on fishing effort in China and other countries for specific months (Feb and Dec for culture; May to Sep for policy).</p> "> Figure 11
<p>Fishing effort in 2020 (pink area represents the time for the first lockdown in most countries around the world).</p> "> Figure 12
<p>Lockdown and non-lockdown countries’ fishing effort (hours) spatial distribution from March to May 2020.</p> "> Figure 13
<p>Lockdown and non-lockdown countries’ fishing gear spatial distribution from March to May 2020.</p> "> Figure 14
<p>Monthly chain growth from 2017 to 2020 in some countries: (<b>a</b>) China; (<b>b</b>) Spain; (<b>c</b>) United States; and (<b>d</b>) Japan.</p> "> Figure 14 Cont.
<p>Monthly chain growth from 2017 to 2020 in some countries: (<b>a</b>) China; (<b>b</b>) Spain; (<b>c</b>) United States; and (<b>d</b>) Japan.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data
2.2. Monthly Chain Growth
3. Results
3.1. Global Fishing Effort
3.2. Impact of Policy and Culture on Fishing Effort 2017–2019
3.3. The Influence of COVID-19 Restrictions on Fishing Effort
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Valavanis, V.D. Geographic Information Systems in Oceanography and Fisheries; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar]
- Su, F.; Zhou, C.; Shao, Q.; Du, Y.; Zhang, T. Development, application and prospects of marine fishery geographic information system. J. Fish. 2002, 2, 169–174. [Google Scholar]
- Hall, G.B.; Close, C.H. Local knowledge assessment for a small-scale fishery using geographic information systems. Fish. Res. 2007, 83, 11–22. [Google Scholar] [CrossRef]
- Ou, Z.; Zhu, J. AIS database powered by GIS technology for maritime safety and security. J. Navig. 2008, 61, 655–665. [Google Scholar] [CrossRef]
- Shelmerdine, R.L. Teasing out the detail: How our understanding of marine AIS data can better inform industries, developments, and planning. Mar. Policy 2015, 54, 17–25. [Google Scholar] [CrossRef]
- Yang, D.; Wu, L.; Wang, S.; Jia, H.; Li, K.X. How big data enriches maritime research–a critical review of Automatic Identification System (AIS) data applications. Transp. Rev. 2019, 39, 755–773. [Google Scholar] [CrossRef]
- Chen, J.; Lu, F.; Li, M. Statistical Inference of Boundary of Maritime Main Track and Optimization Analysis of Warning Area Layout on Haixi Passage. Geo-Inf. Sci. 2015, 17, 1196–1206. [Google Scholar] [CrossRef]
- He, Z.; Yang, F.; Liu, L. Reference map for safe navigation water depth of ships based on AIS data. J. Traffic Transp. Eng. 2018, 18, 171–181. [Google Scholar] [CrossRef]
- Bye, R.J.; Aalberg, A. Maritime navigation accidents and risk indicators: An exploratory statistical analysis using AIS data and accident reports. Reliab. Eng. Syst. Saf. 2018, 176, 174–186. [Google Scholar] [CrossRef]
- Merico, E.; Dinoi, A.; Contini, D. Development of an integrated modelling-measurement system for near-real-time estimates of harbour activity impact to atmospheric pollution in coastal cities. Transp. Res. Part D: Transp. Environ. 2019, 73, 108–119. [Google Scholar] [CrossRef]
- Wang, J.; Huang, W.; Liu, Y.; Chen, Y.; Wu, Y.; He, Y.; Yang, X. Air pollutant emission inventory and pollution characteristics in Xiamen Ship Control Area. Environ. Sci. 2020, 41, 3572–3580. [Google Scholar] [CrossRef]
- Huang, L.; Wen, Y.; Zhang, Y.; Zhou, C.; Zhang, F.; Yang, T. Dynamic calculation of ship exhaust emissions based on real-time AIS data. Transp. Res. Part D Transp. Environ. 2020, 80, 102277. [Google Scholar] [CrossRef]
- Mei, Q.; Wu, L.; Peng, P.; Zhou, P.; Chen, J. Study on the typical spatial distribution and trade flow of merchant ships in the South China Sea. J. Geo-Info. Sci. 2018, 20, 632–639. [Google Scholar] [CrossRef]
- Kontopoulos, I.; Varlamis, I.; Tserpes, K. A distributed framework for extracting maritime traffic patterns. Int. J. Geogr. Inf. Sci. 2020, 34, 1–26. [Google Scholar] [CrossRef]
- Gao, M.; Shi, G.Y. Ship-handling behavior pattern recognition using AIS sub-trajectory clustering analysis based on the T-SNE and spectral clustering algorithms. Ocean. Eng. 2020, 205, 106919. [Google Scholar] [CrossRef]
- Coomber, F.; D’Incà, M.; Rosso, M.; Tepsich, P.; Sciara, G.; Moulins, A. Description of the vessel traffic within the north Pelagos Sanctuary: Inputs for Marine Spatial Planning and management implications within an existing international Marine Protected Area. Mar. Policy 2016, 69, 102–113. [Google Scholar] [CrossRef]
- Vespe, M.; Gibin, M.; Alessandrini, A.; Natale, F.; Mazzarella, F.; Osio, G.C. Mapping EU fishing activities using ship tracking data. J. Maps 2016, 12 (Suppl. 1), 520–525. [Google Scholar] [CrossRef]
- Longépé, N.; Hajduch, G.; Ardianto, R.; Joux, R.; Nhunfat, B.; Marzuki, M.; Fablet, R.; Hermawan, I.; Germain, O.; Subki, B.; et al. Completing fishing monitoring with spaceborne Vessel Detection System (VDS) and Automatic Identification System (AIS) to assess illegal fishing in Indonesia. Mar. Pollut. Bull. 2018, 131, 33–39. [Google Scholar] [CrossRef]
- Ferrà, C.; Tassetti, A.N.; Grati, F.; Pellini, G.; Polidori, P.; Scarcella, G.; Fabi, G. Mapping change in bottom trawling activity in the Mediterranean Sea through AIS data. Mar. Policy 2018, 94, 275–281. [Google Scholar] [CrossRef]
- Liu, A.; Cheng, X. Analysis of human activities in the Antarctic Peninsula based on spaceborne AIS data. Polar Res. 2019, 31, 456–463. [Google Scholar] [CrossRef]
- Russo, E.; Monti, M.A.; Mangano, M.C.; Raffaeta, A.; Sara, G.; Silvestri, C.; Pranovi, F. Temporal and spatial patterns of trawl fishing activities in the Adriatic Sea (Central Mediterranean Sea, GSA17). Ocean. Coast. Manag. 2020, 192, 105231. [Google Scholar] [CrossRef]
- Kroodsma, D.A.; Mayorga, J.; Hochberg, T.; Miller, N.A.; Boerder, K.; Ferretti, F.; Wilson, A.; Bergman, B.; White, T.; Block, B.; et al. Tracking the global footprint of fisheries. Science 2018, 359, 904–908. [Google Scholar] [CrossRef] [Green Version]
- Usher, K.; Durkin, J.; Bhullar, N. The COVID-19 pandemic and mental health impacts. Int. J. Ment. Health Nurs. 2020, 29, 315. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Li, Z.; Jiang, Y.; Li, X.; Porter, D. Twitter reveals human mobility dynamics during the COVID-19 pandemic. PLoS ONE 2020, 15, e0241957. [Google Scholar] [CrossRef]
- Verma, A.; Prakash, S. Impact of covid-19 on environment and society. J. Glob. Biosci. 2020, 9, 7352–7363. [Google Scholar]
- Sarkis, J.; Cohen, M.J.; Dewick, P.; Schröder, P. A brave new world: Lessons from the COVID-19 pandemic for transitioning to sustainable supply and production. Resour. Conserv. Recycl. 2020, 159, 104894. [Google Scholar] [CrossRef]
- Dev, S.M.; Sengupta, R. Covid-19: Impact on the Indian Economy; Indira Gandhi Institute of Development Research: Mumbai, India, 2020. [Google Scholar]
- McKibbin, W.; Fernando, R. The economic impact of COVID-19. In Economics in the Time of COVID-19; CEPR Press: Washington, DC, USA, 2020; p. 45. [Google Scholar]
- Collivignarelli, M.C.; Abbà, A.; Bertanza, G.; Pedrazzani, R.; Ricciardi, P.; Carnevale Miino, M. Lockdown for CoViD-2019 in Milan: What are the effects on air quality? Sci. Total Environ. 2020, 732, 139280. [Google Scholar] [CrossRef]
- Yunus, A.P.; Masago, Y.; Hijioka, Y. COVID-19 and surface water quality: Improved lake water quality during the lockdown. Sci. Total Environ. 2020, 731, 139012. [Google Scholar] [CrossRef]
- Wang, Q.; Su, M. A preliminary assessment of the impact of COVID-19 on environment–A case study of China. Sci. Total Environ. 2020, 728, 138915. [Google Scholar] [CrossRef]
- Ting, D.S.W.; Carin, L.; Dzau, V.; Wong, T.Y. Digital technology and COVID-19. Nat. Med. 2020, 26, 459–461. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.; Su, F.; Pei, T.; Zhang, A.; Du, Y.; Luo, B.; Cao, Z.; Wang, J.; Yuan, W.; Zhu, Y.; et al. COVID-19: Challenges to GIS with big data. Geogr. Sustain. 2020, 1, 77–87. [Google Scholar] [CrossRef]
- Fiorella, K.J.; Bageant, E.R.; Mojica, L.; Obuya, J.A.; Ochieng, J.; Olela, P.; Otuo, P.; Onyango, H.; Aura, C.; Okronipa, H. Small-scale fishing households facing COVID-19: The case of Lake Victoria, Kenya. Fish. Res. 2021, 237, 105856. [Google Scholar] [CrossRef]
- Love, D.C.; Allison, E.H.; Asche, F.; Belton, B.; Cottrell, R.S.; Froehlich, H.E.; Gephart, J.A.; Hicks, C.C.; Little, D.C.; Nussbaumer, H.E.; et al. Emerging COVID-19 impacts, responses, and lessons for building resilience in the seafood system. Glob. Food Secur. 2021, 100494. [Google Scholar] [CrossRef] [PubMed]
- Pérez, F.R.; Vina, M. From below and from within: Fishing communities under the COVID-19 pandemic and other globalizations in southern Manabí, Ecuador. Territ. Politics Gov. 2021, 1–20. [Google Scholar] [CrossRef]
- Shi, K.; Weng, J. Impacts of the COVID-19 epidemic on merchant ship activity and pollution emissions in Shanghai port waters. Sci. Total Environ. 2020, 790, 148198. [Google Scholar] [CrossRef]
- Depellegrin, D.; Bastianini, M.; Fadini, A.; Menegon, S. The effects of COVID-19 induced lockdown measures on maritime settings of a coastal region. Sci. Total Environ. 2020, 740, 140123. [Google Scholar] [CrossRef]
- Mullié, W.C. Apparent reduction of illegal trawler fishing effort in Ghana’s Inshore Exclusive Zone 2012–2018 as revealed by publicly available AIS data. Mar. Policy 2019, 108, 103623. [Google Scholar] [CrossRef]
- Su, F.; Fu, D.; Yan, F.; Xiao, H.; Pan, T.; Xiao, Y.; Kang, L.; Zhou, C.; Meadows, M.; Lyne, V.; et al. Rapid greening response of China’s 2020 spring vegetation to COVID-19 restrictions: Implications for climate change. Sci. Adv. 2021, 7, eabe8044. [Google Scholar] [CrossRef]
- FAO. FAO Yearbook: Fishery and Aquaculture Statistics; FAO: Rome, Italy, 2008. [Google Scholar]
- March, D.; Metcalfe, K.; Tintoré, J.; Godley, B.J. Tracking the global reduction of marine traffic during the COVID-19 pandemic. Nat. Commun. 2021, 12, 1–12. [Google Scholar] [CrossRef]
- FAO. Coronavirus Disease (COVID-19) Pandemic on Fishing Overview of Impacts for Industry and Aquaculture: Update to the State of World Fisheries and Aquaculture 2020; FAO: Rome, Italy, 2020. [Google Scholar] [CrossRef]
- Takar, S.; Gurjar, U.R. Review on present status, issues and management of Indian marine fisheries. Innov. Farm. 2020, 5, 034–041. [Google Scholar]
- Marschke, M.; Vandergeest, P.; Havice, E.; Kadfak, A.; Duker, P.; Isopescu, I.; MacDonnell, M. COVID-19, instability and migrant fish workers in Asia. Marit. Stud. 2021, 20, 87–99. [Google Scholar] [CrossRef]
- Rodríguez, J.P.; Fernández-Gracia, J.; Duarte, C.M.; Irigoien, X.; Eguíluz, V.M. The global network of ports supporting high seas fishing. Sci. Adv. 2021, 7, eabe3470. [Google Scholar] [CrossRef]
- Snapir, B.; Waine, T.W.; Biermann, L. Maritime vessel classification to monitor fisheries with SAR: Demonstration in the North Sea. Remote Sens. 2019, 11, 353. [Google Scholar] [CrossRef] [Green Version]
- Kurekin, A.A.; Loveday, B.R.; Clements, O.; Quartly, G.D.; Miller, P.I.; Wiafe, G.; Adu Agyekum, K. Operational monitoring of illegal fishing in Ghana through exploitation of satellite earth observation and AIS data. Remote Sens. 2019, 11, 293. [Google Scholar] [CrossRef] [Green Version]
- Pelich, R.; Chini, M.; Hostache, R.; Matgen, P.; Lopez-Martinez, C.; Nuevo, M.; Ries, P.; Eiden, G. Large-scale automatic vessel monitoring based on dual-polarization sentinel-1 and AIS data. Remote Sens. 2019, 11, 1078. [Google Scholar] [CrossRef] [Green Version]
- Ruiz, J.; Caballero, I.; Navarro, G. Sensing the same fishing fleet with AIS and VIIRS: A seven-year assessment of squid jiggers in FAO major fishing area 41. Remote Sens. 2020, 12, 32. [Google Scholar] [CrossRef] [Green Version]
- Guan, Y.; Zhang, J.; Zhang, X.; Li, Z.; Meng, J.; Liu, G.; Bao, M.; Cao, C. Identification of Fishing Vessel Types and Analysis of Seasonal Activities in the Northern South China Sea Based on AIS Data: A Case Study of 2018. Remote Sens. 2021, 13, 1952. [Google Scholar] [CrossRef]
- Armelloni, E.N.; Tassetti, A.N.; Ferrà, C.; Galdelli, A.; Scanu, M.; Mancini, A.; Fabi, G.; Scarcella, G. AIS data, a mine of information on trawling fleet mobility in the Mediterranean Sea. Mar. Policy 2021, 129, 104571. [Google Scholar] [CrossRef]
- Svanberg, M.; Santén, V.; Hörteborn, A.; Holm, H.; Finnsgård, C. AIS in maritime research. Mar. Policy 2019, 106, 103520. [Google Scholar] [CrossRef]
- Al-Saidi, M.; Hussein, H. The water-energy-food nexus and COVID-19: Towards a systematization of impacts and responses. Sci. Total Environ. 2021, 779, 146529. [Google Scholar] [CrossRef]
- IMO. 2002-Last Update, Guidelines for the Onboard Operational Use of Shipborne Automatic Identification System (AIS); IMO: London, UK, 2002.
- Watson, R.A. A database of global marine commercial, small-scale, illegal and unreported fisheries catch 1950–2014. Sci. Data 2017, 4, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Zhang, X.; Ke, X.; Zhan, X.; Shi, J.; Wei, S.; Pan, D.; Li, J.; Su, H.; Zhou, Y.; et al. LS-SSDD-v1. 0: A deep learning dataset dedicated to small ship detection from large-scale Sentinel-1 SAR images. Remote Sens. 2020, 12, 2997. [Google Scholar] [CrossRef]
- Thiault, L.; Collin, A.; Chlous, F.; Gelcich, S.; Claudet, J. Combining participatory and socioeconomic approaches to map fishing effort in small-scale fisheries. PLoS ONE 2017, 12, e0176862. [Google Scholar] [CrossRef] [Green Version]
Year | 2017 | 2018 | 2019 | 2020 |
---|---|---|---|---|
0.1° grid percentage | 23.91% | 26.29% | 26.81% | 27.49% |
2017 | 2018 | 2019 | 2020 | |
---|---|---|---|---|
Trawlers | 121,697 | 128,107 | 128,940 | 124,525 |
Longlines | 771,091 | 869,463 | 893,790 | 906,221 |
Pure seines | 73,623 | 66,103 | 66,214 | 74,022 |
Gillnets | 6216 | 6832 | 7261 | 7068 |
Other | 75,831 | 76,477 | 72,121 | 120,823 |
Month | Trawlers | Longlines | Purse Seines | Gillnets | Other | |
---|---|---|---|---|---|---|
2017 | China (February) | 27.01% | 45.44% | 1.86% | 6.85% | 18.84% |
China (May–September) | 9.78% | 70.69% | 2.13% | 3.34% | 14.07% | |
Other countries (December) | 53.48% | 31.29% | 2.47% | 3.55% | 9.21% | |
2018 | China (February) | 25.44% | 52.38% | 0.99% | 5.67% | 15.51% |
China (May–September) | 10.89% | 71.01% | 1.77% | 4.47% | 11.87% | |
Other countries (December) | 50.27% | 32.54% | 2.89% | 3.74% | 10.55% | |
2019 | China (February) | 23.45% | 54.07% | 0.99% | 5.59% | 15.9% |
China (May–September) | 11.75% | 67.26% | 1.54% | 5.03% | 14.41% | |
Other countries (December) | 51.90% | 31.9% | 2.60% | 3.84% | 9.76% | |
2020 | China (February) | 19.95% | 60.53% | 1.02% | 3.75% | 14.75% |
China (May–September) | 29.21% | 41.07% | 1.36% | 6.62% | 21.72% | |
Other countries (December) | 53.09% | 29.32% | 2.81% | 3.5% | 11.29% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, B.; Yan, F.; Yu, H.; Su, F.; Lyne, V.; Cui, Y.; Kang, L.; Wu, W. Global Fisheries Responses to Culture, Policy and COVID-19 from 2017 to 2020. Remote Sens. 2021, 13, 4507. https://doi.org/10.3390/rs13224507
He B, Yan F, Yu H, Su F, Lyne V, Cui Y, Kang L, Wu W. Global Fisheries Responses to Culture, Policy and COVID-19 from 2017 to 2020. Remote Sensing. 2021; 13(22):4507. https://doi.org/10.3390/rs13224507
Chicago/Turabian StyleHe, Bin, Fengqin Yan, Hao Yu, Fenzhen Su, Vincent Lyne, Yikun Cui, Lu Kang, and Wenzhou Wu. 2021. "Global Fisheries Responses to Culture, Policy and COVID-19 from 2017 to 2020" Remote Sensing 13, no. 22: 4507. https://doi.org/10.3390/rs13224507
APA StyleHe, B., Yan, F., Yu, H., Su, F., Lyne, V., Cui, Y., Kang, L., & Wu, W. (2021). Global Fisheries Responses to Culture, Policy and COVID-19 from 2017 to 2020. Remote Sensing, 13(22), 4507. https://doi.org/10.3390/rs13224507